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Methods for testing hypotheses concerning the regression parameters in linear mod-
els for the latent person parameters in item response models are presented. Three
tests are outlined: A likelihood ratio test, a Lagrange multiplier test and a Wald test.
The tests are derived in a marginal maximum likelihood framework. They are explic-
itly formulated for the 3-parameter logistic model, but it is shown that the approach
applies to a broad class of item response models. Since the distributions of the test
statistics are derived asymptotically, simulation studies were performed to assess the
Type I error rates of the tests for small realistic sample sizes. Overall, the Type I error
rates for the null hypothesis that a regression coefficient equals zero, were close to
the nominal significance level. A number of power studies were conducted. It is ar-
gued that on theoretical grounds the power of the Lagrange multiplier test might be
less than the power of the other two tests, but this expectation was not corroborated.

The robustness of the tests to violation of the item response model was investi-
gated with simulation studies of the power and Type I error rate. The results showed
that the performance of the tests was acceptable in the cases where local independ-
ence and the constancy of the discrimination parameters over treatment groups were
violated to the same extent for all treatment groups. The simulation studies also
showed that the tests were biased if local independence was violated for one of the
treatment groups.

Item response theory (IRT) models provide a useful and theoretically
well-founded framework for educational and psychological measurement. They
support the construction of measurement instruments, linking and equating mea-
surements, and the evaluation of test bias and differential item functioning. Fur-
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ther, IRT provides the theoretical underpinning for item banking, optimal test con-
struction and various flexible test administration designs, such as multiple matrix
sampling, flexi-level testing and computerized adaptive testing (see van der Lin-
den & Hambleton, 1997). A common element in these applications is that individ-
ual respondents or groups of respondents are administered partially different tests,
the consequences of which motivate the application of IRT outlined below.

In IRT models, the influence of the items and persons on the observed scores are
modeled by separate sets of parameters, say person ability parameters �n, n = 1, …,
N and item parameters, for instance, item difficulty parameters bi, i = 1, …, K. One
of the consequences of this separation of parameters is that if the item parameters
are calibrated on a common scale, the person parameters �n can be estimated even
though the persons are not administered the same subset in items. In this case,
comparing raw sum score means makes no sense because the numbers of items ad-
ministered and the characteristics of the items differ across groups. However, the
measures �n are on a common scale and the averages of these measures can be
compared meaningfully regardless of the items administered.

An analogous argument holds for regression and analysis of variance models
for raw sum scores: If individual respondents or groups are administered different
items, raw sum scores lose their meaning. Therefore, as an alternative, linear re-
gression models for the parameter �n can be used to model the differences between
groups, or, more generally, to model ability parameters using covariates. For ex-
ample, suppose one is interested in the influence of background variables on intel-
ligence. An intelligence test is administered in a two-factor design defined by a
variable yn1 which is equal to one if person n is male and equal zero if person n is
female, and a variable yn2 which is equal to one if person n lives in an urban area
and equal zero if person n lives in a rural area. To evaluate the main effects of gen-
der and place of residence, and a possible interaction effect, we consider the model

�n = �0 + yn1�1 + yn2�2 + yn1yn2�12 + �n, (1)

where �n has a normal distribution with a mean equal to zero and a variance �2.
Note that �0 is an overall mean, �1 is the main effect of gender, �2 is the main effect
of place, and �12 is the interaction effect between gender and place of residence.

Linear models for the latent parameters � were considered by Zwinderman
(1991, 1997), and Fox and Glas (2001, 2002). The latter two authors present appli-
cations in the field of school effectiveness research. Other applications in educa-
tional research where differences between groups are relevant are international
comparative educational surveys such as those of the IEA (TIMSS and PIRLS) and
the OECD (IALS and PISA); for statistical issues regarding these surveys refer to
Adams and Wu (2002). Embretson (1996) discussed applications in the framework
of psychological research.
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Apart from the advantage of the possibility of using incomplete designs, there are
otherarguments for favoring IRT-basedmethodsover regressionanalysis andanaly-
sis of variance of classical number-correct scores. Firstly, if the two- or three-param-
eter IRT models hold, rather than the one-parameter logistic IRT model (all models
defined below), then using number-correct scores leads to loss of precision (Fox &
Glas, 2001, 2002). Secondly, and more importantly, Embretson (1996) showed that
zero interaction effects in IRT models can be estimated as non-zero effects in num-
ber-correct score models, vice versa. The appropriateness of the test difficulty level
for the ability distribution determined both the direction and magnitude of the bias of
the estimates. The absolute value of the interaction contrast decreased as test diffi-
culty differed from the optimal level, and the bias of the interaction contrast in-
creased inward as the test difficulty level was increasingly inappropriate.

The objective of this article is to investigate means of testing hypotheses con-
cerning the regression parameters in linear models for the latent parameters �.
Usually, the null-hypothesis entails that one or more regression parameters are
equal to zero. Three tests will be compared: The likelihood ratio (LR) test, the
Lagrange multiplier (LM) or efficient score test and the Wald test. The Type I error
rate and the power of the tests will be compared using simulation studies. These
simulation studies pertain to a situation where item parameters are estimated con-
currently with the regression parameters. A second set of simulation studies per-
tains to the situation where the item parameters are considered known and only the
regression parameters and the variance �2 are estimated. This situation occurs in
situations were tests are assembled from an item bank, in which case the item pa-
rameters are estimated separately in a so-called calibration study. Finally, the ro-
bustness of the tests to violation of the IRT model will be investigated.

ITEM RESPONSE THEORY

In this article, the focus will be on dichotomously scored items. However, in the
discussion section it will be shown that the theory presented also applies to
polytomously scores items. Let a response of a person n to an item labeled i be
coded by a stochastic variable Xni, that assumes a value xni = 1if the response was
correct and xni = 0 otherwise. In IRT, the probability of giving a correct response to
an item is a function of the latent person parameter � and a number of item parame-
ters. The probability of a correct response given the item and person parameters,
denoted by Pi(�n), is called the item response function (IRF). Much used models
are the 1-, 2-, or 3-parameter logistic models (1PLM, 2PLM, and 3PLM). The
3PLM (Lord & Novick, 1968, Chaps. 17–20) is defined as

TESTING LINEAR MODELS 27

� � � �
� �� �
� �� �

exp
1 . (2)

1 exp
i n i

i n i i
i n i

a b
P c c

a b

�
�

�

�
� � �

� �



This item response function is determined by an item discrimination parameter
ai, an item difficulty parameter bi, and the guessing parameter ci. The item diffi-
culty parameter bi is the point on the latent � scale where the probability of a cor-
rect response is ci + (1 – ci)/2. If ci = 0, that is, if there is no guessing, this chance is
equal to .5. The greater the value of bi, the greater the ability that is required to give
a correct response to the item, that is, the item is more difficult. When the latent
ability scale � is identified in such a way that its mean is 0 and its standard devia-
tion is 1, the values of bi vary typically from about –2 (very easy) to +2 (very diffi-
cult). The ai parameter is proportional to the slope of the IRF at the point bi on the
ability scale. In practice, ai ranges from 0 (flat IRF) to 2 (very steep IRF). Items
with steeper slopes are more useful for separating persons near an ability level � =
bi. The guessing parameter ci (ranging from 0 to 1) is the probability of a correct
score for low-ability persons (that is, ).

The 2PLM is obtained by setting ci = 0 for all items; the 1PLM or Rasch (1960)
model is obtained by additionally setting ai = 1 for all items. In the 2- and 3PLM
the IRFs may cross, whereas in the Rasch model the IRFs do not cross.

MML ESTIMATION

Marginal maximum likelihood (MML) estimation is probably the most used tech-
nique for item calibration. For the 1PLM, 2PLM and 3PLM, the theory was devel-
oped by such authors as Bock and Aitkin (1981), Thissen (1982), Rigdon and
Tsutakawa (1983), and Mislevy (1984, 1985, 1986), and computations can be made
using the software packages Bilog-MG (Zimowski, Muraki, Mislevy, & Bock,
1996) and ConQuest (Wu, Adams, & Wilson, 1997). In this section, a general MML
frameworkforestimationof linearmodels for theabilityparameterswillbeoutlined.
In the next section, this framework will be used to define the three test statistics.

Since the most interesting applications will probably by in the framework of in-
complete test administration designs, we introduce an item administration variable
dn, which is a vector with entries dni, i = 1, …, K, assuming a value one if item i was
administered to person n, and zero otherwise. Further, let xn be the response pattern
of person n (n = 1, …, N), that is, xn has elements xni, for i = 1, …, K. If dni = 1, the
entries xni are as defined above, if dni = 0, xni is an arbitrary constant. Given ability
parameter �n and the item parameters of the 3PLM ai, bi, and ci, the probability of
response pattern xn is given by

In the MML approach, it is assumed that the ability parameters �n are independ-
ently drawn from one or more distributions. It will be assumed that the distribu-
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tions of �n is normal with density g(.; �, �). However, the principle of defining a
linear model for �n does not depend on the assumption of normality, and the tests
proposed here could also be applied to alternative distributional assumptions. In
this respect, the program Bilog-MG (Zimowski et al., 1996) has several options. It
will be assumed that the expectation �, depends on observed covariates yn and re-
gression coefficients �. MML estimation derives its name from maximizing the
log-likelihood that is marginalized with respect to �, rather than maximizing the
joint log-likelihood of all abilities parameters � and item parameters. Let � be a
vector of all item parameters ai, bi and ci, regression coefficients � and �. Then, the
marginal log-likelihood function of � is given by

The reason for maximizing the marginal rather than the joint likelihood is that
maximizing the latter does not lead to consistent estimates. This is related to the
fact that the number of ability parameters grows proportional with the number of
observations and in general this lead to inconsistency (Neyman & Scott, 1948).
Simulation studies by Wright and Panschapakesan (1969) and Fischer and
Scheiblechner (1970) show that these inconsistencies can indeed occur in IRT
models. Kiefer and Wolfowitz (1956) have shown that MML estimates of an IRT
model, are consistent under fairly reasonable regularity conditions, which moti-
vates the general use of MML in IRT models.

Glas (1999) shows that the marginal likelihood equations in IRT models can be
easily derived using Fisher’s identity (see B. Efron, p. 29, in Dempster, Laird, &
Rubin, 1977; Louis, 1982). Applying this to the present model, the first order de-
rivatives of the log-likelihood function with respect � can be written as

with

where the expectation in Equation 5 is with respect to the posterior distribution
p(�|xn, yn, �).
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Application of this framework to derive the likelihood equations for the item
parameters of the 3PLM and the mean � and standard deviation � of the ability dis-
tribution g(�; �, �) can be found in Glas (1998, 2001). Here, only the derivation of
the likelihood equations for the regression coefficients will be outlined. To apply
Equations 5 and 6, first the first order derivatives of the log of the density of the
ability parameters with respect to � will be derived. In the present case, g(�; �, �)
is the well-known expression for the normal distribution with mean � and standard
deviation �, so it is easily verified that this derivative is given by

The regression parameters are modeled as linear functions of the group means,
that is,

� = Y�,

where � is a vector of expected abilities, Y is some known matrix of observed
covariates, and � is the vector of regression parameters. To obtain MML estimates
of the regression parameters, we need to calculate the first order derivatives of the
log-likelihood with respect to �. This is done using

where the vector �logL/�� has entries

Also the standard errors are easily derived in this framework: Mislevy (1986)
points out that the information matrix can be approximated as

and the standard errors are the diagonal elements of the inverse of this matrix.
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THE WALD TEST

The Wald test is used for testing a special model against a more general alternative
(Wald, 1943; also see Buse, 1982). The Wald test is evaluated using the maximum
likelihood estimates of parameters of the general model. In the framework of the
previous section, a hypothesis concerning some function of the item parameters, �
and �, say

f(�) = 0,

can be tested using the statistic

Note that this is a quadratic form in f(�) where the matrix of weights is the inverse
of the covariance matrix of f(�). The statistic has an asymptotic �2-distribution
with degrees of freedom equal to the number of elements in f(�).

This definition of the Wald test also envelopes hypotheses about item parame-
ters and �, but below we are only interested in hypotheses about �. For instance,
the special case where the null hypothesis is �s = 0 (where 1 ≤ s ≤ Q) can be evalu-
ated using the statistic

Where is the MML estimate of the parameter of interest. The test will be labeled
Wl (the subscript l refers to the fact that the test focuses on means of latent vari-
ables). The standard error in the denominator is the diagonal of the inverted infor-
mation matrix given by Equation 9.

LIKELIHOOD RATIO TEST

The likelihood function is a sufficient summary of sample information, and the
likelihood principle entails that inferences are based on likelihood functions.
When there are competing models, as possible explanations of a set of data, the
likelihood approach is to compare their likelihoods. When H0 and H1 are a null and
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alternative hypothesis, we compare their likelihoods by means of the likelihood ra-
tio statistic

where L(H0) and L(H1) are the likelihood under the null hypothesis and the alterna-
tive hypothesis, respectively (Lehmann, 1986). The LR statistic has an asymptotic
�2-distribution with degrees of freedom equal to the difference in the number of pa-
rameters in H1 and H0. As intuition suggests, we prefer the explanation offered by H1

whenLRissmall, that is,whenH1 ismuchmore“likely” thanH0 (Lindgren,1993).

LAGRANGE MULTIPLIER TEST

Applications of the LM test to the framework of IRT have been described by Glas
(1998, 1999). The principle of the LM test (Aitchison & Silvey, 1958) and the
equivalent efficient score test (Rao, 1947) can be summarized as follows. The ar-
rangement of the LM test is the same as the arrangement of the likelihood-ratio test
and the Wald test; all these three tests are used for testing a special model against a
more general alternative (Buse, 1982). The LM test is based on evaluating a qua-
dratic function of partial derivatives of the log-likelihood function of the general
model evaluated at the maximum likelihood estimates of the special model. The
LM test is evaluated using the maximum likelihood estimates of parameters of the
special model. The vector of the first order derivatives of the special model are
equal to zero because their value originate from solving the likelihood equations.
The magnitude of the elements of the vector of the first order derivatives corre-
sponding with special parameters determine the value of the statistic: the closer
they are to zero, the better the model fits.

More formally, the principle can be described as follows. Consider a null hypoth-
esis about a model with parameters �0. This model is special case of a general model
with parameters �. In this case, the special model is derived from the general model
by setting one or more parameters to zero. Let the parameter vector �0 be partitioned
as �0 = (�01, �02), the null hypothesis is �02 = 0. Let h(�) be the partial derivatives of
the log-likelihood of the general model, so h(�) =�logL(�)/��. Let H(�, �) be de-
finedas–�2logL(�)/����t. [Note thatH(., .) isusedasageneric symbol foramatrix
of the opposite of second order derivatives of the log-likelihood function and the
variables with respect to which derivatives are taken are the arguments of H(., .). An
analogous definition is used for h(.)] The LM statistic is given

LM = h(�0)tH(�0, �0)–1h(�0). (12)
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If Equation 12 is calculated using maximum likelihood estimate of �01, it has an
asymptotic �2-distribution with degrees of freedom equal to the number of param-
eter in �02 (Aitchison & Silvey, 1958).

Evaluated at the maximum likelihood estimate of �01, the partial derivatives
h(�01) are equal to zero. Therefore, the Equation 12 can be computed as

where

and where all expressions are evaluated using the maximum likelihood estimates
of �01 and the values of �02 under the null hypothesis. The statistic has an as-
ymptotic �2-distribution with degrees of freedom equal to the number of param-
eter in �02.

Note that H(�01, �01) also plays a role in the Newton-Raphson procedure for
solving the estimation equations and in computation of the observed information
matrix or standard error. So its inverse will generally be available at the end of the
estimation procedure. Further, if the validity of the model of the null-hypothesis is
tested against various alternative models, the computational work is reduced be-
cause the inverse of H(�01, �01) is already available and the order of W is equal to
the number of parameters fixed.

The interpretation of the test is supported by observing that the value of Equa-
tion 13 depends on the magnitude of h(�02). If the absolute values of these deriva-
tives are large, the fixed parameters are bound to change once they are set free. It
means that the test is significant, that is, the special model is rejected. If the abso-
lute values of these derivatives are small, the fixed parameters will probably show
little change should they be set free. It means that the test is not significant, that is,
the special model is adequate.

Besides a test of significance, this approach also provides information with re-
spect to the direction in which the fixed parameters will change when set free. This
is done by computing a new value of the fixed parameters, say by performing
one Newton-Raphson step, that is,

Below, this new value is often called a modification index. Testing whether
significantly differs from zero can be done using Rao (1947) efficient score
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test. Rao shows that, assuming asymptotic normality of the estimates, has a
multivariate normal distribution with mean zero and dispersion matrix W.
Hence, has asymptotic �2-distribution with degrees of freedom
equal to the number of parameters fixed in the null-model (Glas, 1999). The test
based on this statistic is asymptotically equivalent to the LM test (see, for in-
stance, Buse, 1982).

Note that the score test is based on performing one Newton-Raphson step, that
is, the test is based on an estimate that improves the likelihood, but does not com-
pletely maximize it under the alternative model. The LR and Wald tests, on the
other hand, are both based on actual maximization of the likelihood under the alter-
native model. Therefore, it must be expected that these tests will have greater
power than the LM test and score test. The reason for considering the LM test,
where the LR and Wald tests are available, is that in complicated models with
many parameters, various possibilities are open for improvement. Instead of esti-
mating all these alternatives and performing LR and Wald tests to evaluate the im-
provement, one can perform a number of LM tests using one estimate under the
null model only. The outcome of the tests are then used as a diagnostic tool to di-
rect further analyses. So the LM test derives its significance from the fact that it
serves another purpose than the LR and Wald tests.

To apply the principle of the LM test to the linear regression for �, we partition
the regression parameters � as (�0, �1) and we test the null-hypothesis �1 = 0. Fur-
ther the matrix Y is partitioned [Y0, Y1] analogously to the partition of �. So �0,
with � = Y0�0 are the regression coefficients in the model under the null-hypothe-
sis and �1, with � = Y1�1 are the regression coefficients under the alternative hy-
pothesis, respectively. The LM test statistic is calculated under the null hypothesis
�1 = 0 using the MML estimates of the item parameters, �0, and the variances of the
ability distributions � in that order. Further, stands for the MML estimates of the
item parameters, and � and �, where is the MML estimate of the
regression coefficients under the null-model. The first order derivatives are calcu-
lated as

where the vector �logL/�� has entries defined by Equation 8. The matrix of
weights is calculated as
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where H(�, �) is the matrix of second order derivatives with respect to a parameter
vector�containing the itemparameters, theexpectations�, and�, in thatorder,and

The matrices W and H(�1, �1) in Equation 16 can be viewed as the asymptotic
covariance matrices of h(�1) with � estimated and known, respectively. Further,

is theasymptoticcovariancematrixof theestimateof theparame-
ters of the null-model, so the term
accounts for the influence of the estimation of the parameters on the covariance ma-
trix of h(�1). So W is a conditional covariance matrix where the variance of the esti-
matesofparametersunder thenull-model is explicitly taken intoaccount.Below, the
LM test will also be studied in a situation where the item parameters are considered
known. In that case, these elements are removed from the matrix H(�, �) and the first
P rowsaredeletedfromthematricesB0 andB1.TheelementsofH(�,�)areofcourse
still a function of the item parameters also, but H(�, �) is then computed with the
known values imputes as fixed constants.

A SIMULATED EXAMPLE

Before presenting the simulation studies pertaining to the Type I error rate and
power of the tests, a simulated example will be presented to give the flavor of the
method. We will use the model given by Equation 1, where �0 is an overall mean
that is here assumed to equal to zero, �1 is the main effect of, say, gender, �2 is the
main effect of, say, place of residence (urban or rural), and �12 is the interaction ef-
fect between gender and place of residence. The main effects were chosen as �1 =
0.5 and �2 = 1.0, and there was no interaction effect, so �12 = 0. The variance of the
ability distribution was chosen equal to one. The number of simulees for each of
the four combinations of the main effects was 50.

To keep the example concise, the Rasch model was used to simulate the data.
The parameters of 50 items were chosen equally spaced between –0.5 and 2.0, that
is, bi = –0.5 + 2.5(i – 1)/(K – 1), for i = 1, …, K, with K = 50.

Three test administration designs were considered. In the first design, labeled
Design 1, all simulees responded to all items. The generated data in Design 1 are
summarized in the third column of Table 1. The column labeled Treatment refers
to the four combinations of the main effects. The rows labeled Items give the item
numbers, the rows labeled Range give the range of the item parameters, the rows

TESTING LINEAR MODELS 35

0 0 1 1

0 0 0

0 0 and .

0 0 1 0

P
 � 
 �
� � � �
� � � �� �� � � �
� � � �� � � �� � � �

I

B Y B Y

� � 1
00 ,t �
 �� �B H B� �

� � � � � �1
0 0 11 0 0, , ,t t t�
 �� �B H B B H B B H B� � � � � �



labeled Mean and Sd give the mean and the standard deviation of the distributions
of the number-correct scores, and the rows labeled Alpha give Cronbach’s Alpha
indexing the reliability for the generated data. It should be noted that the item pa-
rameters were well matched to the ability distributions, so it was conjectured that
the problems of bias in the estimates of interaction effects using number-correct
scores reported by Embretson (1996) might not occur here. An analysis of variance
supported this conjecture.

For the next two designs, subsamples of the original simulated data sets were
used. The second design, labeled Design 2, was an optimal design given the chosen
item parameters with 20 items per treatment. In the Rasch model, information is
optimal if the item and ability parameters are as close as possible (see, for instance,
Birnbaum, 1968). In the treatment y1 = 0 and y2 = 0, the expectation of � is equal to
zero, so this treatment is administered the 20 easiest items, which have item pa-
rameters ranging from –0.5 to 0.5, with a mean of 0.0. The items for the other three
treatments were chosen in an analogous manner. The resulting tests are given in the
rows labeled Items under the column labeled Design 2 in Table 1. Note that the test
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TABLE 1
Information on Simulated Data Set

Treatment

y1 y2 Design 1 Design 2 Design 3

0 0 Items 1 – 50 1 – 20 31 – 50
Range –0.5 – 2.0 –0.5 – 0.5 1.0 – 2.0
Mean 18.0 10.1 4.3
Sd 9.6 4.6 3.5
Alpha .90 .81 .76

1 0 Items 1 – 50 11 – 30 21 – 40
Range –0.5 – 2.0 0.0 – 1.0 0.5 – 1.5
Mean 23.1 10.0 8.1
Sd 10.1 4.6 4.5
Alpha .91 .81 .81

0 1 Items 1 – 50 21 – 40 11 – 30
Range –0.5 – 2.0 0.5 – 1.5 0.0 – 1.0
Mean 26.6 9.4 11.3
Sd 11.0 4.9 4.9
Alpha .92 .84 .84

1 1 Items 1 – 50 31 – 50 1 – 20
Range –0.5 – 2.0 1.0 – 2.0 –0.5 – 0.5
Mean 30.8 9.6 15.0
Sd 9.6 4.5 3.4
Alpha .90 .80 .72

Note. Sample size 50 simulees per test; test length Design 1 was 50 items; test length Design 2 and
3 was 20 items.



administration design is anchored by the common items of the tests. Since the
means of the items administered to each treatment are now equal to the mean abili-
ties, the mean probability of a correct response in each treatment is equal to 0.5, so
the means observed scores of are all approximately equal to 10.0. This, of course,
provides no further basis for evaluation of the mean and interaction effects using
number-correct scores. Note that the reliability of the tests in the four treatments
was smaller than the analogous reliability for Design 1. This is attributed to the de-
crease in test length. Still, in all four treatments the reliability is above the of-
ten-used benchmark of 0.80.

Design 3 was a mirror-image of Design 2, in the sense that the most proficient
group of simulees were administered the easiest test and the least proficient group
of simulees were administered the most difficult test. The choice of Design 2 and
Design 3 is such that they have no data in common. Details are given in Table 1 un-
der the heading Design 3. Note that since Design 3 provides far less information
than the optimal Design 2, the reliability decreases further, with the reliability in
two treatments falling below 0.80.

Next, concurrent MML estimates of the item and regression parameters and the
standard deviation of the ability distribution were made. The latent scale was iden-
tified by setting the mean of the item parameters to zero. This restriction also held
for the simulating values. For each of the three designs, two estimates were made,
one with and one without an interaction term. Further, the three test statistics out-
lined above were computed. The results are given in Table 2. The true and esti-
mated item parameter values are given only for six items, the results for the other
items are analogous. Note that the standard error of the estimates increased from
Design 1 to Design 2 (due to the decrease of the data set) and from Design 2 to De-
sign 3 (due to the difference in optimality of the two designs). Still, in all three de-
signs the estimates of the main effects differed significantly from zero, both in the
model with and the model without an interaction effect. The outcomes of the three
tests for the null hypothesis of zero interaction effect are shown in the last three
rows of the table. All nine tests lead to the conclusion that the null hypothesis was
not rejected.

SIMULATION STUDY WITH
ALL PARAMETERS ESTIMATED

The first set of simulation studies was made to compare the Type I error rate and
the power of the LR test, the LM or efficient score test and the Wald test in a situa-
tion where the item, regression and variance parameters were estimated concur-
rently. In all simulation studies, the linear model for � given by Equation 1 was
used. So the design consisted of four treatment groups, and the model for the
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means of the four groups included two main effects, �1 and �2 and an interaction ef-
fect �12. In the simulations, the null hypothesis �12 = 0 was tested with a signifi-
cance level of .05. The number of replications was equal to 100 for every condition
in the simulation design. The numbers of simulees in the four treatment groups
(Ng, g = 1, 2, 3, 4) were equal. In this study, the factor Ng had three levels: 50, 250,
and 500 simulees, respectively. Test length was varied as K = 5, 15, and 30. The
item responses were generated with the 2PLM. The item discrimination parame-
ters were drawn from a log-normal distribution with a mean 0.0 and a standard de-
viation 0.25. The item difficulty parameters were drawn from a standard normal
distribution. These item parameter distributions can be considered realistic, in fact,
they are the standard item parameter priors in Bilog-MG (Zimowski et al., 1996).

Finally, all simulations were made using two setups for the regression models.
In the first setup, in the null model, all regression coefficients were zero, that is � =
0, and in the alternative model, the interaction effect was varied as �12 = .0, .2, and
.5. So in this setup, the null model was constant for all effect sizes of �12. In the sec-
ond setup, all regression parameters varied along with the effect size, except �0,
which was always equal to zero. So in this case, the model is �1 = �2 = �12 = �s, for
effect sizes �s = .0, .2, and .5. The latter two are usually labeled as minimal and
moderate (see Cohen, 1988). The second setup was added as a replication of the
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TABLE 2
Results of the IRT Analyses

Design 1 Design 2 Design 3

Parameter True Value Estimate (Se) Estimate (Se) Estimate (Se)

b1 –0.5 –0.49 (.16) –0.68 (.26) –0.73 (.37)
b10 0.0 –0.07 (.15) –0.09 (.28) –0.11 (.36)
b20 0.5 0.64 (.15) 0.54 (.20) 0.50 (.28)
b30 1.0 1.18 (.15) 0.99 (.25) 1.11 (.24)
b40 1.5 1.35 (.15) 1.12 (.25) 1.33 (.22)
b50 2.0 1.96 (.16) 1.84 (.33) 2.06 (.36)
�1

a 0.5 0.52 (.11) 0.59 (.16) 0.54 (.18)
�2 1.0 0.87 (.11) 0.95 (.23) 0.88 (.26)
�1

b 0.5 0.63 (.15) 0.58 (.19) 0.63 (.21)
�2 1.0 0.97 (.17) 0.95 (.26) 0.98 (.28)
�12 0.0 –0.17 (.24) 0.03 (.31) –0.27 (.34)

Fit Test Outcome (Pr) Outcome (Pr) Outcome (Pr)

LR 0.15 (.70) 0.03 (.85) 0.96 (.33)
Wald 0.52 (.47) 0.01 (.91) 0.83 (.36)
LM 0.90 (.34) 0.02 (.88) 1.04 (.31)

aModel with main effects only. bModel including interaction effect.



first setup with different parameter values and to make comparisons with the simu-
lations reported in the next section.

Results

The empirical Type I error rate and the power of LR test, Wald test, and LM test for
2PLM are shown in Tables 3 and 4, for the first and second setup, respectively. The
first, second and third column give the effect size, the test length and the sample size,
respectively. The three last columns give the proportion of tests significant at the .05
level in 100 replications, for the LR test, Wald test, and LM test, respectively. Note
that the bold numbers pertain to the power of the tests and other numbers pertain to
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TABLE 3
Type I Error Rate and Power of the LR, Wald, and LM Test for the 2PLM,

Setup 1, All Parameters Estimated (Power in Bold)

Statistics

Effect Size �s Test Length K Group Size Ng LR Wald LM

.0 5 50 .05 .04 .06
250 .06 .06 .06
500 .03 .02 .03

15 50 .08 .02 .10
250 .04 .03 .05
500 .06 .05 .06

30 50 .08 .02 .15
250 .04 .03 .06
500 .05 .04 .06

.2 5 50 .12 .09 .12
250 .25 .25 .25
500 .44 .44 .44

15 50 .12 .04 .14
250 .34 .33 .34
500 .67 .66 .68

30 50 .13 .04 .26
250 .43 .38 .47
500 .78 .76 .79

.5 5 50 .22 .13 .21
250 .70 .69 .70
500 .97 .97 .97

15 50 .31 .17 .35
250 .90 .90 .91
500 1.00 1.00 1.00

30 50 .39 .17 .54
250 .96 .96 .96
500 1.00 1.00 1.00



the Type I error rate. Overall, the results in Table 3 and Table 4 are comparable, so the
difference in the choice of the parameters �1 and �2 had no remarkable effect. In the
rows pertaining to an effect size �12 = .0, it can be seen that, the Type I error rate was
close to its nominal value. For some cases (the LR and LM tests with test lengths 15
and 30), the Type I error rate was slightly inflated. This is because the derivations of
distributions of the statistics are based on asymptotic arguments.

In the rows with an effect size �12 > .0, it can be seen that the power characteris-
tics of the tests are as expected: There are main effects of sample size and test
length. The explanation is that long tests contain more information on the ability
parameters. The expectation that the power of the LM tests would be inferior to the
power of the LR and Wald tests was not corroborated. In fact, in both setups, the
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TABLE 4
Type I Error Rate and Power of the LR, Wald, and LM Test for the 2PLM,

Setup 2, All Parameters Estimated (Power in Bold)

Statistics

Effect Size �s Test Length K Group Size Ng LR Wald LM

.0 5 50 .07 .04 .06
250 .08 .06 .08
500 .05 .05 .05

15 50 .05 .02 .08
250 .06 .06 .08
500 .03 .03 .03

30 50 .06 .01 .12
250 .07 .05 .08
500 .04 .04 .05

.2 5 50 .10 .06 .11
250 .30 .28 .30
500 .47 .46 .47

15 50 .11 .08 .14
250 .40 .39 .41
500 .70 .69 .71

30 50 .12 .04 .20
250 .46 .41 .49
500 .88 .86 .92

.5 5 50 .22 .06 .28
250 .64 .59 .64
500 .96 .96 .96

15 50 .35 .25 .42
250 .91 .91 .92
500 1.00 1.00 1.00

30 50 .38 .15 .49
250 .91 .88 .93
500 1.00 1.00 1.00



power of the Wald test is inferior for a small group size Ng = 50, and the effect di-
minishes for Ng = 250, and it vanishes for Ng = 500. Unlike the LR statistic, the Wl

statistic is based on an approximation of the matrix of second-order derivatives,
but this also holds for the LM statistic, so there is no clear-cut explanation for this
finding.

In general, it must be noted that in order to have acceptable power characteris-
tics, there must at least be a moderate effect size (in the terminology by Cohen,
1988) and a sample size of 50 is clearly too small. The reason for the relatively less
than favorable power characteristics is that the tests are model based and a large
number of parameters needs to be estimated. This leads to inflation of uncertainty
and standard errors, which, in turn, lowers the power of the tests.

SIMULATION STUDY WITH ITEM PARAMETERS FIXED

A second set of simulation studies pertains to the situation where the item parame-
ters are considered known and only the regression parameters and the variances are
estimated. Roughly speaking, the tests performed analogously in the previous
study, so it was decided to focus on one test only, the Wald test. The model, the test
lengths and sample sizes and the choice of item parameters were analogous to the
previous study. However, in this case, a condition using the 3PLM was added; the
guessing parameter was equal to .25. Further, to be able to increase the number of
factors in the simulation design and to be able to increase the number of replica-
tions in each setting to 1,000, true values rather than estimates of the item parame-
ters were used. So only the regression coefficients � and the variances of the distri-
butions of � were estimated. In this setup, two factors were varied. The first was an
effect size labeled �s, which has two levels: �s = .2 and .5. The second factor con-
sisted of four variations of the basic model shown by Equation 1:

Model 0: �0 = �1 = �2 = �12 = .0;
Model 1: �0 = �2 = �12 = .0 and �1 = �s;
Model 2: �0 = �12 = .0 and �1 = �2 = �s;
Model 3: �0 = .0 and �1 = �2 = �12 = �s.

Note that Model 3 was equal to the model used in the second setup of the previous
study.

Results

The empirical Type I error rate and the power of the Wl-test for 2PLM with effect
size �s = .2 are shown in Table 5. The first, second and third column of Table 5 are
the test length, the sample size, and regression parameter tested, respectively. The
four last columns in Table 5, pertain to the data generation models, for example,
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Model 0, 1, 2, and 3. For Model 0, all regression parameters were equal to .0, so
this column shows the Type I error rate. For the other three models, the bold num-
bers pertain to non-zero-effects, and the other numbers to zero-effects. So the for-
mer are estimates of the power and the latter estimates of the Type I error rate. It
can be seen that the presence of non-zero regression coefficients did not interfere
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TABLE 5
Type I Error Rate and Power of Wald Test for 2PLM With Effect Size �s = .2

(Power in Bold)

Model

Test Length K Sample Size Ng Parameter 0 1 2 3

5 50 �0 .07 .05 .06 .05
�1 .05 .15 .18 .15
�2 .03 .04 .16 .14
�12 .04 .05 .04 .09

250 �0 .06 .07 .06 .06
�1 .06 .51 .48 .51
�2 .04 .04 .47 .51
�12 .06 .05 .04 .22

500 �0 .06 .06 .05 .05
�1 .06 .74 .73 .76
�2 .06 .08 .75 .74
�12 .07 .06 .07 .42

15 50 �0 .07 .08 .07 .06
�1 .07 .21 .21 .20
�2 .08 .09 .21 .20
�12 .06 .07 .08 .14

250 �0 .04 .06 .04 .04
�1 .04 .65 .63 .68
�2 .05 .05 .66 .71
�12 .04 .04 .04 .37

500 �0 .05 .05 .05 .06
�1 .05 .93 .93 .93
�2 .05 .05 .92 .93
�12 .04 .05 .06 .66

30 50 �0 .07 .05 .06 .08
�1 .06 .20 .20 .20
�2 .09 .07 .20 .24
�12 .08 .08 .08 .13

250 �0 .04 .04 .05 .04
�1 .06 .70 .71 .72
�2 .04 .06 .71 .71
�12 .04 .06 .06 .46

500 �0 .06 .06 .05 .05
�1 .06 .95 .95 .95
�2 .05 .04 .97 .97
�12 .04 .04 .03 .74



with the Type I error rates of the tests for the zero regression coefficients. In Table
6, the Type I error rate and the power across the different conditions is depicted for
the effect size �s = .5. The format of this table is the same as Table 5. As in the pre-
vious studies, the Type I error rate was approximately .05 for all conditions, and
the power of the test increased with test length and group size. The power of the
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TABLE 6
Type I Error Rate and Power of Wald Test for 2PLM With Effect Size �s = .5

(Power in Bold)

Model

Test Length K Sample Size Ng Parameter 0 1 2 3

5 50 �0 .04 .05 .05 .05
�1 .04 .39 .38 .37
�2 .04 .05 .41 .40
�12 .04 .04 .06 .18

250 �0 .07 .06 .06 .04
�1 .06 .96 .95 .96
�2 .04 .04 .95 .96
�12 .05 .04 .05 .69

500 �0 .05 .05 .06 .04
�1 .06 1.00 1.00 1.00
�2 .05 .05 .99 1.00
�12 .06 .06 .06 .93

15 50 �0 .07 .06 .06 .06
�1 .06 .53 .54 .54
�2 .06 .05 .56 .53
�12 .07 .08 .07 .34

250 �0 .04 .04 .05 .06
�1 .06 1.00 1.00 1.00
�2 .05 .05 1.00 1.00
�12 .06 .04 .05 .92

500 �0 .05 .05 .05 .05
�1 .04 1.00 1.00 1.00
�2 .04 .04 1.00 1.00
�12 .05 .05 .05 1.00

30 50 �0 .08 .07 .07 .07
�1 .08 .64 .60 .59
�2 .09 .08 .62 .59
�12 .09 .09 .09 .35

250 �0 .05 .05 .04 .04
�1 .05 1.00 1.00 1.00
�2 .05 .05 1.00 1.00
�12 .06 .04 .05 .94

500 �0 .05 .05 .04 .05
�1 .05 1.00 1.00 1.00
�2 .04 .04 1.00 1.00
�12 .04 .06 .05 1.00



tests for the hypotheses �1 = 0 and �2 = 0 is larger than the power of the tests for the
hypothesis �12 = 0.

The effect of fixing the item parameters at their true values can be assessed by
comparing the power of the test for the hypothesis �12 = 0 in Table 4 with the power
of the analogous test for the hypothesis �12 = 0 for Model 3 in the tables 5 and 6. It
can be verified that the results are comparable, so there is no systematic effect here.

The simulation studies using the 3PLM are reported in the Table 7 and 8, for ef-
fect sizes .2 and .5, respectively. Comparing these results with the results in the
previous tables, it can be seen that the power under the 2PLM is larger than under
the 3PLM. This result is as expected because adding parameters while keeping the
amount of data constant increases uncertainty, which in turn decreases the power.
In the limiting case where the number of parameters is equal to the number of free
observations, the power is zero.

SIMULATION STUDY OF ROBUSTNESS

Inferences made using IRT models are only valid if these models fit the data. How-
ever, it may be expected that some violations of the model detriment the inferences
more than others. Consider the case of differential item functioning (DIF, for an
overview refer to Holland & Wainer, 1993, and Camilli & Shepard, 1994). DIF is a
difference in item response probabilities between equally proficient members of
two or more groups. One might think of a test of foreign language comprehension,
where girls are impeded by items referring to a football setting. The poor perfor-
mance of the girls on the football-related items must not be attributed to their poor
level of comprehension of the foreign language but to their lack of knowledge of
football. If gender is entered as a main effect in a latent analysis of variance model
as given in Formula 1, and the item difficulties bi are systematically higher for one
treatment group, this interaction will obviously bias the inferences made. On the
other hand, other assumptions of the IRT models, such as constancy of discrimina-
tion parameters ai over subgroups, or local stochastic independence may not sys-
tematically bias the inferences. The reason why varying item discrimination pa-
rameters might not affect the inferences is because they can be viewed as a noise
factor. That is the item difficulties define the latent scale on which the abilities �
are positioned and compared. Discrimination parameters varying over groups af-
fect the precision of the evaluation of � but may have a relatively small effect on the
positioning of � on the latent scale. With respect to the violation of local independ-
ence the expectation is based on the fact that this violation can be imposed as a ran-
dom shift of difficulty parameters that does not depend on the treatment group.
Therefore, the effects of these two violations were the subject of a simulation
study.

The simulation study had the same setup as the simulation studies reported in
Tables 5 and 6, that is, the Type 1 error rate and power of the Wald test was investi-
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gated for the 2PLM with fixed item parameters. Test lengths, sample sizes and ef-
fect sizes remained unchanged. However, only Model 3, the model with non-zero
main effects, and the null-hypothesis �12 = 0 were studied.

The constancy of discrimination parameters ai over subgroups was violated by
drawing the item discrimination parameters from the log-normal distribution with
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TABLE 7
Type I Error Rate and Power of Wald Test for 3PLM With Effect Size �s = .2

(Power in Bold)

Model

Test Length K Sample Size Ng Parameter 0 1 2 3

5 50 �0 .06 .06 .07 .07
�1 .07 .10 .11 .12
�2 .05 .04 .11 .12
�12 .07 .04 .06 .07

250 �0 .05 .05 .06 .05
�1 .05 .38 .39 .39
�2 .06 .04 .38 .36
�12 .05 .05 .05 .15

500 �0 .05 .05 .06 .05
�1 .04 .58 .58 .59
�2 .05 .04 .57 .63
�12 .05 .05 .06 .32

15 50 �0 .06 .06 .05 .06
�1 .08 .18 .15 .13
�2 .07 .06 .17 .15
�12 .07 .07 .06 .16

250 �0 .04 .04 .04 .06
�1 .04 .60 .60 .60
�2 .06 .05 .59 .59
�12 .05 .03 .04 .33

500 �0 .04 .04 .04 .04
�1 .06 .84 .86 .87
�2 .04 .04 .89 .87
�12 .06 .06 .06 .58

30 50 �0 .07 .09 .07 .07
�1 .09 .22 .19 .20
�2 .07 .07 .19 .21
�12 .10 .09 .08 .14

250 �0 .05 .07 .06 .04
�1 .05 .67 .68 .71
�2 .06 .06 .66 .68
�12 .05 .05 .05 .39

500 �0 .04 .04 .05 .05
�1 .05 .92 .94 .93
�2 .05 .04 .95 .94
�12 .05 .04 .04 .69



a mean 0.0 and a standard deviation 0.25 for each of the four treatment groups sep-
arately. The item difficulty parameters, that were drawn from a standard normal
distribution remained the same for each group.

Local stochastic independence was violated using a model proposed by
Kelderman (1984) and Jannarone (1986) in the framework of Rasch model. In the
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TABLE 8
Type I Error Rate and Power of Wald Test for 3PLM With Effect Size �s = .5

(Power in Bold)

Model

Test Length K Sample Size Ng Parameter 0 1 2 3

5 50 �0 .04 .06 .06 .05
�1 .08 .26 .24 .29
�2 .07 .03 .27 .28
�12 .07 .06 .05 .11

250 �0 .07 .06 .05 .03
�1 .06 .90 .88 .90
�2 .05 .05 .86 .89
�12 .06 .05 .06 .52

500 �0 .05 .05 .06 .05
�1 .04 .58 .58 .59
�2 .05 .04 .57 .63
�12 .05 .05 .06 .32

15 50 �0 .05 .06 .06 .06
�1 .05 .99 .99 .99
�2 .04 .06 .99 .99
�12 .05 .05 .05 .84

250 �0 .05 .05 .04 .05
�1 .05 .99 .99 .99
�2 .05 .04 .99 .99
�12 .05 .05 .05 .84

500 �0 .06 .05 .05 .05
�1 .06 1.00 1.00 1.00
�2 .04 .04 1.00 1.00
�12 .04 .05 .04 .99

30 50 �0 .09 .07 .09 .09
�1 .09 .54 .53 .57
�2 .07 .07 .55 .57
�12 .09 .06 .07 .35

250 �0 .05 .05 .06 .04
�1 .05 1.00 1.00 1.00
�2 .05 .06 1.00 1.00
�12 .06 .07 .06 .93

500 �0 .03 .04 .04 .04
�1 .05 1.00 1.00 1.00
�2 .03 .05 1.00 1.00
�12 .05 .05 .05 1.00



application considered here, the dependence between the response on item i and
the response on item i – 1 is modeled by the introduction of a parameter �. The
model is given by

Note that if � = 0, there is no dependence, so then the 2PLM holds. Apart from � =
0, the values � = .2 and � = .5 were used. The latter two conditions were crossed
with a condition where the model was violated in all four treatment groups and a
condition were the model was only violated in the fourth treatment group. The
number of replications for every combination in the simulation design was 1,000.

Results

The results are shown in Table 9. The proportions in the last six columns of Ta-
ble 9 are the proportions of significant Wl-tests in 1,000 replications. The col-
umn labeled No Violation pertains to the condition without a model violation,
that is, the condition was � = 0. The results in this are the same as the results in
the last column of Table 5 and Table 6, in the rows pertaining to the test for the
hypothesis �12 = 0. These results are included in Table 9 for reference purposes.
Note that introduction of a violation of local independence only leads to an in-
flation of the Type I error rate and the power in the condition where the violation
is only applied to treatment group 4. In the conditions where the violation is ap-
plied to all four treatment groups, the Type I error rate and the power are similar
to the analogous values found in the simulations without a model violation. So
the fact that the 2PLM did not hold here had no effect. From the comparison of
the last column of Table 9 with the column labeled No Violation, it can be seen
that the same held for the conditions where the constancy of the discrimination
parameters ai was violated. So the model violation introduced by redrawing ai in
every treatment group had no effect.

DISCUSSION

In this article, methods for testing hypotheses on regression parameters in linear
models for � in IRT models were presented. Three tests were outlined: A LR test, a
LM test and a Wald test. Simulation studies were conducted to assess the Type I er-
ror rate and power of the tests. In the first set of simulation studies, all model pa-
rameters were estimated concurrently. The results showed that there were no
marked systematic differences between the three tests. The expectation that the
power of the LM test would be inferior to the power of the LR and Wald tests was
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not confirmed. For a small sample size, the power of the Wald test was inferior to
that power of the other two tests. The power curve of all tests was as expected:
Power increased with the effect size, test length and sample size. This was also
found in the next set of simulation studies. These simulations were conducted to
assess the effect of fixing the item parameters at their true values. The results
showed no marked differences with the previous simulations.

Above, the testing procedure was outlined in detail and investigated in simula-
tion studies for the 2PLM and 3PLM. However, the procedure can be easily gener-
alized in several directions. First, incomplete designs, such as in multiple matrix
sampling, flexilevel testing and computerized adaptive testing, can be accommo-
dated by restricting the product over items in Equation 3 to the items that were ac-
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TABLE 9
Type I Error Rate and Power of Wald Test 2PLM

(Item Parameters Are Fixed; Power in Bold)

Effect
Size �s

Test
Length K

Group
Size Ng

No
Violation

Treatment 4 All Treatments

� = .2 � = .5 � = .2 � = .5 DIF on ai

.0 5 50 .05 .07 .07 .05 .06 .07
250 .04 .09 .22 .06 .05 .07
500 .04 .16 .40 .06 .06 .07

15 50 .07 .07 .14 .06 .06 .07
250 .05 .12 .38 .03 .06 .05
500 .06 .23 .65 .04 .05 .06

30 50 .10 .10 .15 .08 .07 .08
250 .05 .15 .46 .06 .05 .07
500 .05 .23 .70 .03 .05 .07

.2 5 50 .09 .15 .21 .07 .09 .11
250 .22 .44 .68 .24 .25 .25
500 .42 .79 .94 .49 .46 .46

15 50 .14 .21 .33 .14 .13 .15
250 .37 .70 .93 .41 .38 .42
500 .66 .95 1.00 .69 .65 .64

30 50 .13 .25 .38 .14 .13 .14
250 .46 .78 .96 .44 .45 .43
500 .74 .97 1.00 .73 .73 .68

.5 5 50 .18 .27 .39 .20 .18 .21
250 .69 .90 .97 .72 .72 .72
500 .93 1.00 1.00 .95 .94 .92

15 50 .34 .45 .67 .36 .32 .31
250 .92 .98 .99 .92 .92 .90
500 1.00 1.00 1.00 1.00 1.00 .99

30 50 .35 .51 .69 .38 .35 .29
250 .94 1.00 1.00 .95 .94 .95
500 1.00 1.00 1.00 1.00 1.00 .99



tually responded to. The likelihood function shown by Equation 4 and all other
derivations change analogously. Second, models for polytomous items (Bock,
1972; Masters, 1982; Muraki, 1992; Samejima, 1969, 1972, 1973; Tutz, 1990;
Verhelst, Glas, & de Vries, 1997) are also easily accommodated. Consider
polytomous items with mi response categories, and define xnih(h = 0, …, mi) as
equal to one if the response was in category h, and zero otherwise. Then a response
pattern can be coded as a vector xn with entries xnih(h = 0, …, mi), and the probabil-
ity of a response pattern as given in Equation 3 can be redefined as

where Pih(�n) is the probability of scoring in category h as defined by the IRT
model considered, and all other derivations remain valid. Third, the tests are de-
rived in an MML framework. Glas (1999, also see, Mislevy, 1984, 1985, 1986)
shows that this framework is straightforwardly adapted to a Bayes modal frame-
work, where prior distributions on item and population parameters are introduced.

A final remark concerns the robustness studies presented here. It was argued
that the effects of model violations might be most serious if they pertained to the
constancy of the location parameters bi in combination with interaction with the
covariates. The simulation studies showed that the tests were also biased if local
independence was violated for one of the treatment groups. This bias did not oc-
cur in the case were local independence was uniformly violated and in the case
where the constancy of the discrimination parameters ai over treatment groups
was violated. Still, in practical applications, it remains important to start an anal-
ysis by assessing item fit (for an overview, see Glas & Suarez Falcon, 2003) and
person fit (for an overview, see Meijer & Sijtsma, 2001) in the separate treat-
ment groups, and applying the techniques described above only to the subset of
the data where the model fits, of course, as far as this does not substantially
harm the validity of the research set up.

REFERENCES

Adams, R., & Wu, M. (2002). Pisa 2000 technical report. Paris: OECD.
Aitchison, J., & Silvey, S. D. (1958). Maximum likelihood estimation of parameters subject to re-

straints. Annals of Mathematical Statistics, 29, 813–828.
Birnbaum, A. (1968). Some latent trait models. In F. M. Lord & M. R. Novick (Eds.), Statistical theo-

ries of mental test scores (pp. 395–479). Reading, MA: Addison-Wesley.
Bock, R. D. (1972). Estimating item parameters and latent ability when responses are scored in two or

more nominal categories. Psychometrika, 37, 29–51.

TESTING LINEAR MODELS 49

� � � �| , ,ni nihd x
n n n ih n

i h

p P� ��

x d



Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: an ap-
plication of an EM-algorithm. Psychometrika, 46, 443–459.

Buse, A. (1982). The likelihood ratio, Wald, and Lagrange multiplier tests: An expository note. The
American Statistician, 36, 153–157.

Camilli, G., & Shepard, L. A. (1994). Methods for identifying biased test items. Thousand Oaks, CA:
Sage.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale, NJ: Lawrence
Erlbaum Associates.

Dempster, A., Laird, N., & Rubin, D. (1977). Maximum likelihood from incomplete data via the EM al-
gorithm. Journal of the Royal Statististical Society, Series B, 39, 1–38.

Embretson, S. E. (1996). Item response theory models and spurious interaction effects in factorial
ANOVA designs. Applied Psychological Measurement, 20, 201–212.

Fischer, G. H., & Scheiblechner, H. H. (1970). Algorithmen und programme für das probabilistische
testmodell von Rasch. Psychologische Beiträge, 12, 23–51.

Fox, J. P., & Glas, C. A. W. (2001). Bayesian estimation of a multilevel IRT model using Gibbs Sam-
pling. Psychometrika, 66, 271–288.

Fox, J. P., & Glas, C. A. W. (2002). Modelling measurement error in structural multilevel models. In G.
A. Marcoulides & I. Moustaki (Eds.), Latent variable and latent structure models (pp. 245–269).
Mahwah, NJ: Lawrence Erlbaum Associates.

Glas, C. A. W. (1998). Detection of differential item functioning using Lagrange multiplier tests.
Statistica Sinica, 8, 647–667.

Glas, C. A. W. (1999). Modification indices for the 2-PL and the nominal response model.
Psychometrika, 64, 273–294.

Glas, C. A. W. (2001). Differential item functioning depending on general covariates. In A. Boomsma,
M. A. J. van Duijn, & T. A. B. Snijders (Eds.), Essays on item response theory (pp. 131–148). New
York: Springer.

Glas, C. A. W., & Suarez Falcon, J. C. (2003). A comparison of item-fit statistics for the three-parame-
ter logistic model. Applied Psychological Measurement, 27, 87–106.

Holland, P. W., & Wainer, H. (1993). Differential item functioning. Hillsdale, NJ: Lawrence Erlbaum
Associates.

Jannarone, R. J. (1986). Conjunctive item response theory kernels. Psychometrika, 51, 357–373.
Kelderman, H. (1984). Loglinear RM tests. Psychometrika, 49, 223–245.
Kiefer, J., & Wolfowitz, J. (1956). Consistency of the maximum likelihood estimator in the presence of

infinitely many incidental parameters. Annals of Mathematical Statistics, 27, 887–903.
Lehmann, E. L. (1986). Testing statistical hypotheses (2nd ed.). New York: Springer.
Lindgren, B. W. (1993). Statistical theory (4th ed.). London: Chapman & Hall.
Lord,F.M.,&Novick,M.R. (1968).Statistical theoriesofmental test scores.Reading:Addison-Wesley.
Louis, T. A. (1982). Finding the observed information matrix when using the EM algorithm. Journal of

the Royal Statistical Society, Series B, 44, 226–233.
Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47, 149–174.
Meijer, R. R., & Sijtsma, K. (2001). Methodology review: Evaluating person fit. Applied Psychological

Measurement, 25, 107–135.
Mislevy, R. J. (1984). Estimating latent distributions. Psychometrika, 49, 359–381.
Mislevy, R. J. (1985). Estimation of latent group effects. Journal of the American Statistical Associa-

tion, 80, 993–997.
Mislevy, R. J. (1986). Bayes modal estimation in item response models. Psychometrika, 51, 177–195.
Muraki, E. (1992). A generalized partial credit model: Application of an EM algorithm. Applied Psy-

chological Measurement, 16, 159–176.
Neyman, J., & Scott, E. L. (1948). Consistent estimates, based on partially consistent observations.

Econometrica, 16, 1–32.

50 GLAS AND HENDRAWAN



Rao, C. R. (1947). Large sample tests of statistical hypothesis concerning several parameters with ap-
plications to problems of estimation. Proceedings of the Cambridge Philosophical Society, 44,
50–57.

Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Copenhagen: Danish
Institute for Educational Research.

Rigdon S. E., & Tsutakawa, R. K. (1983). Parameter estimation in latent trait models. Psychometrika,
48, 567–574.

Samejima, F. (1969). Estimation of latent ability using a pattern of graded scores. Psychometrika,
Monograph Supplement, No. 17.

Samejima, F. (1972). A general model for free response data. Psychometrika, Monograph Supplement,
No. 18.

Samejima, F. (1973). Homogeneous case of the continuous response model. Psychometrika, 38,
203–219.

Thissen D. (1982). Marginal maximum likelihood estimation for the one-parameter logistic model.
Psychometrika, 47, 175–186.

Tutz, G. (1990). Sequential item response models with an ordered response. British Journal of Mathe-
matical and Statistical Psychology, 43, 39–55.

van der Linden, W. J., & Hambleton, R. K. (Eds.). (1997). Handbook of modern item response theory.
New York: Springer Verlag.

Verhelst, N. D., Glas, C. A. W., & de Vries, H. H. (1997). A steps model to analyze partial credit. In W.
J. van der Linden & R. K. Hambleton (Eds.), Handbook of modern item response theory (pp.
123–138). New York: Springer Verlag.

Wald, A. (1943). Tests of statistical hypotheses concerning several parameters when the number of ob-
servations is large. Transactions of the American Mathematical Society, 54, 426–482.

Wright, B. D., & Panchapakesan, N. (1969). A procedure for sample-free item analysis. Educational
and Psychological Measurement, 29, 23–48.

Wu, M. L., Adams, R. J., & Wilson, M. R. (1997). ConQuest: Generalized item response modelling
software. Camberwell, Victoria: Australian Council for Educational Research.

Zimowski, M. F., Muraki, E., Mislevy, R. J., & Bock, R. D. (1996). Bilog MG: Multiple-group IRT
analysis and test maintenance for binary items. Chicago: Scientific Software International.

Zwinderman, A. H. (1991). A generalized Rasch model for manifest predictors. Psychometrika, 56,
589–600.

Zwinderman, A. H. (1997). Response models with manifest predictors. In W. J. van der Linden & R. K.
Hambleton (Eds.), Handbook of modern item response theory (pp. 245–256). New York: Springer.

Accepted June 2004

TESTING LINEAR MODELS 51




