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Shape-induced capillary interactions of colloidal particles
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Abstract. – We show that near-spherical micrometer-sized colloidal particles at an interface
of two fluids experience inter-particle forces merely as a consequence of their shape-induced
capillary interaction. The interaction is strong even if the deviations from sphericity are on
the nm-scale, and can hardly be avoided in experiment. For particles of 2 µm radius, a defor-
mation of 20 nm can result in an attractive potential of 2kBT at a distance of 4 particle radii.
Dynamical simulations of many particles confirm that the forces lead to aggregates of dendritic
or hexagonal-lattice type. The latter pattern exhibits strong herringbone-phase orientational
order.

Introduction. – Colloidal particles trapped at the interface between two fluids (air/water,
oil/water, etc.) form various patterns, from 2D crystals to foam-like polygonal patterns and
fractal-like aggregates [1–5]. To explain such patterns, knowledge of the much debated in-
teraction potential between particles is required. Apart from van der Waals attraction and
electrostatic dipole-dipole repulsion (for charged particles) a number of extra contributions
have been suggested. Chan et al. [6] consider the deformation of the interface by the weight
of the particles; this potential contribution is negligible (i.e., much smaller than kBT ) for
(polystyrene) particles smaller than 10µm diameter. Stamou et al. [7] consider the effect of
a (very) rough contact line and calculate that the associated potential can be as much as
104kBT for particles of 1µm diameter. A Casimir-like attraction from thermal fluctuations
of the interface has also been discussed [8, 9].

In this paper, we show that even uncharged colloidal particles, in the absence of gravita-
tional effects or contact line roughness, will experience mutual attraction or repulsion if they
are slightly non-spherical. The particle shape induces an undulating contact line and a sub-
stantial inter-particle potential contribution analogous to that in [7]. In contrast to previous
studies, we quantify the contact line deformation directly from the particle shape. In addition,
we explicitly demonstrate and calculate pattern formation. In experiment, the shape-induced
potential contribution should always be present as no particle is ever perfectly spherical. For
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Fig. 1 – (a) Particle and interface geometry parameters. (b) Sketch of the coordinate system and
geometry for multiple particle simulations.

example, our calculations show a significant attraction (2kBT ) at a separation of 4 particle
radii for particles of 2µm radius with only a 1% deformation (i.e. 20 nm) from sphericity.

Contact line determination. – Figure 1a shows a spheroidal particle with semi-axes c
and b (c > b) at an interface between two fluids. We use the spheroid as a representation
of a slightly deformed sphere. Other deformations can be treated analogously using a shape
expansion, e.g. into spherical harmonics. We exclude gravitational surface deformation, which
produces attractive potentials� kBT for particles of around 1 micron radius (alternatively, we
can think of the particle and the fluids as density-matched). Interfaces with small deformations
from flatness are described by a function z(r, ϕ) in polar coordinates. Since only surface energy
is present, the equilibrium interface is a minimal surface [10] which fulfills
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The components of the Laplacian dominate the other terms by O(z2/r2). The multipole
solution to Laplace’s equation, taking into account the fore-aft symmetry of the ellipsoid, is

zs(r, ϕ) =
∞∑

n=1

C2n

r2n
cos(2nϕ), (2)

where the subscript s denotes the fluid/fluid interface. This reduces the problem to finding
the coefficients C2n. Two boundary conditions are imposed at the contact line described by
[ϕ, zc(ϕ), rc(ϕ)]:

zs = zp = zc(ϕ) at r = rc(ϕ), (3)
n̂s · n̂p = cos(θ) at r = rc(ϕ). (4)

The first ensures continuity of the interface at the contact line (zp designates a point on the
spheroidal particle), the second enforces the thermodynamic contact angle θ at every position
ϕ, as n̂s and n̂p are unit normal vectors to the fluid interface and the particle, respectively.
Points on the spheroid (fig. 1a) are described by

(z̃p − C0)2 = 1− r̃2(1− e2 cos2 ϕ), (5)

where e =
√
1− b2

c2 is the eccentricity of the particle and z̃p = zp/b, r̃ = r/b (from now on we
will drop the tilde). For a perfect sphere (e = 0), (4) is fulfilled by a flat interface and circular
contact line (n̂s = êz), so that C0 = − cos(θ) and C2n = 0 for all n ≥ 1. However, for finite
e, rc and zc are functions of ϕ and the contact line undulates. The multipole coefficients can
then be determined numerically, or approximated analytically.
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Table I – Coefficients C2n for several eccentricities and contact angles. These values of e correspond
to c/b =1.001, 1.01, and 1.1. The right-most column shows the relative deviation δC2 = (K2e

2−C2)/C2

of the analytical approximation from the numerical contact line integration.

θ e C0 C2 C4 C6 C8 δC2

100 0.045 0.174 2.72 · 10−5 2.86 · 10−8 2.69 · 10−10 1.33 · 10−10 2.20 · 10−3

0.14 0.173 2.74 · 10−4 2.88 · 10−6 3.71 · 10−8 3.21 · 10−10 2.19 · 10−2

0.42 0.166 2.92 · 10−3 3.21 · 10−4 4.34 · 10−5 6.49 · 10−6 1.91 · 10−1

120 0.045 0.500 4.69 · 10−5 3.90 · 10−8 1.77 · 10−10 −2.99 · 10−12 2.60 · 10−3

0.14 0.498 4.74 · 10−4 3.96 · 10−6 4.10 · 10−8 6.02 · 10−10 2.58 · 10−2

0.42 0.483 5.21 · 10−3 4.65 · 10−4 5.11 · 10−5 6.24 · 10−6 2.20 · 10−1

140 0.045 0.766 2.18 · 10−5 1.04 · 10−8 3.57 · 10−12 6.68 · 10−13 3.20 · 10−3

0.14 0.764 2.22 · 10−4 1.06 · 10−6 6.35 · 10−9 2.28 · 10−11 3.17 · 10−2

0.42 0.751 2.57 · 10−3 1.35 · 10−4 8.83 · 10−6 6.47 · 10−7 2.63 · 10−1

Numerical calculation of coefficients. – Using (5) to replace r2 in (2), and then using (3)
yields an implicit equation for zc(ϕ),

∞∑
n=1

C2n

(1− (zc − C0)2)n
cos(2nϕ)(1− e2 cos2 ϕ)n − zc = 0. (6)

We truncate (6) at n ≤ 50 and use a Newton-Raphson algorithm with an initial set of C2n

to obtain an approximation of zc for a set of ϕ. With (5), rc values follow, and n̂s and n̂p

can be computed at the contact line. The set of coefficients C2n must now be optimized in
order to fulfill (4). We discretize G ≡ ∫

Γ
(n̂s · n̂p − cos(θ))2 ds, using 90 equidistant values of

ϕ on the line Γ which, for symmetry reasons, is taken as one quarter of the full contact line.
The multidimensional minimization of G with respect to the C2n was done with the simplex
method [11]. Table I lists the first few coefficients for different values of e and θ.

Analytical calculation of coefficients. – It is desirable to have an analytical result for C2n

as well, to speed up calculations and clarify the scaling of the interaction with the system pa-
rameters. We expand the contact line simultaneously in even multipole components and pow-
ers of squared eccentricity (e2). We write the multipole components as powers of µ2 ≡ cos2 ϕ,
using cos(2nϕ) = T2n(µ), where T2n are the even Chebyshev polynomials. With this nomencla-
ture, the spheroidal particle surface (5) is described by zp = C0−

(
1− r2(1− e2µ2)

)1/2
, from

which n̂p is obtained. We further use the assumption (later shown to be self-consistent) that
every multipole order 2n can be satisfied by terms of order e2n, i.e. we rewrite C2n = K2ne

2n

in (2), where K2n = O(1) for all n. To determine rc(ϕ), we apply the expansion

rc = r00 + r02e
2 + r20µ

2 + r22e
2µ2 + . . . (7)

to (3) and (4) and equate equal orders of e2 and µ2. Truncating at n = 1 uniquely determines
r00 = sin θ, r20 = 0, r02 = − sin θ(1 + cos2 θ)/6, r22 = sin θ(3 + cos2 θ)/6, as well as C0 =
− cos θ + e2 cos θ(2 + sin2 θ)/4 and K2 = − sin4 θ cos θ/12. The equilibrium position of the
particle center (C0) is thus shifted by O(e2), and the interface around the particle, to leading
order, is given by

zs = − e2

12r2
sin4 θ cos θ cos 2ϕ . (8)

Note that (8) peaks at θ ≈ 63.4◦ and 116.6◦, cf. fig. 2(right). Comparing the coefficients C2 =
e2K2 to the values obtained numerically (see table I), we find them in excellent agreement for
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Fig. 2 – Non-dimensionalized potential vs. separation for varying (left) eccentricities e and (right)
contact angles θ. The potential is stronger for larger particles, smaller separations, and larger defor-
mations. In the left panel θ = 120◦ and in the right one e = 0.14.

small e, with a relative error of order e2, as expected. The approximation becomes unreliable
for e � 0.2, so that the more complete numerical algorithms should be employed for simulations
of strongly deformed particles (cf. the experiments in [4, 5]).

Particle interaction and aggregate formation. – With surface tension as the only force
present in the problem, the interaction potential between particles is given by the gain (or loss)
in surface area as their relative position is changed [7]. We use the Nicolson approximation,
valid for small e [6, 7, 12, 13], where the interfacial deformation is taken to be the sum of the
deformations due to the isolated particles. If a cluster with M particles is already present,
the interaction energy between it and one additional free particle i is

Etot. =
M∑

j=1

Eij = 2σ
∫

P

zi

(
n̂i ·

M∑
j=1

∇zj

)
dsi. (9)

Here, σ is the surface tension, zi, zj the height of the contact line of particles i, j, and n̂i is
the normal to the projection P of the contact line around particle i onto the z = 0 plane,
pointing away from the area of integration.

Equation (9) contains two assumptions of linearity: i) Nicolson superposition and ii) ad-
ditivity of particle pair interactions. Both are violated at small interparticle distances, as the
equations governing boundary conditions around multiple particles become nonlinear. Once
i) is accepted, however, ii) is fulfilled because of the linear dependence of Eij on zi and ∇zj

(this is unlike the case of membrane interactions [14]). We will focus on the longer-range
effects of capillary interaction here, as nonlinear corrections at small particle separations, e.g.
those discussed in [13, 15], should not alter our qualitative conclusions (see the discussion of
numerical results below).

Figure 2 shows Eij/σc
2 for two particles, computed with the coefficients of table I. The

scaling behaviour expected from (8) is confirmed: since zi,j ∝ e2, the curves are separated
by a factor (e1/e2)4. In absolute terms, Eij is quite large: e.g., at an air/water interface two
touching particles with e = 0.14 and c = 2µm, experience Eij ≈ 33kBT at room temperature.

Dynamic simulations of particle aggregation are performed using (9), either by direct
computation of the integrals or, for small e, by making use of the analytical results. As the
interaction energies typically exceed kBT considerably, we perform the simulations at zero
temperature. Equation (8) describes the deformation induced by a (point) quadrupole, and
to this approximation, the interaction energy becomes (cf. [7])

Eij = −12 cos [2(αi + αj − 2χij)]
( c

L

)4

δE , (10)
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Fig. 3 – (a) Dendritic structure of particles with e = 0.10, (b) zoom showing particle alignments, and
(c) the corresponding distribution of relative orientations.

where δE = πσc2C2
2 . Figure 1b indicates the connector angle χij and director angles αi and

αj used in (10). Using the analytical value for K2, we have an explicit expression for the
interaction energy in terms of particle shape, correct to O(e2). The force Fij and torque τij

exerted on particle i by particle j are given by

Fij = −∂Eij

∂L
êij =

1
3
e4πσ sin8 θ cos2 θ

c6

L5
cos [2(αi + αj − 2χij)] êij , (11)

τij = −∂Eij

∂αi
= −1

6
e4πσ sin8 θ cos2 θ

c6

L4
sin [2(αi + αj − 2χij)] , (12)

with the unit vector êij connecting the centers of particles i and j. As the Reynolds numbers
are very small, we model the particle response to Fij , τij as dominated by Stokes drag, so
that particle i translates and rotates with velocity vi and angular velocity Ωi according to

vi =
M∑

j=1

1
6πβηc

Fij and Ωi =
M∑

j=1

1
8πβηc3

τij . (13)

The factor β is the fraction of the particle surface area subjected to drag. In the case
of a gas-liquid interface, β = (1 + cos θ)/2 to consistent leading order. In the simulations,
the particle positions are advanced by ∆ri = vi∆t during a time step ∆t, and the particle
orientation by ∆αi = Ωi∆t. From (13), the time scale ttrans needed for translation through
a distance c is larger than the time scale trot needed to rotate through an angle of order 1, as
ttrans ∼ (L/c)trot. Particles therefore tend to adjust to locally optimal angles of orientation
quasi-statically while translating, except when very close to other particles.

Dendritic structures. – The eventual pattern of particle aggregates depends on the details
of particle interaction within the aggregates. If the particles are assumed “sticky” (freezing
their position and orientation once they make contact), dendritic structures as shown in fig. 3
evolve. Dendrites were produced using both the explicit contact line integration and the
analytical approach, with very similar results. In fig. 3 we show a calculation for M = 1000
particles with the analytical inter-particle potential. A wide variety of relative orientations
∆αij = (αi−αj) of neighboring particles i and j (fig. 3c) is observed. This is to be expected, as
these particles settle into locally optimal orientations with respect to their nearest neighbor.
Because of the effects of next-nearest neighbors, a slight preference for director alignment
(∆αij ≈ 0) can be seen.
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Fig. 4 – Raft structure: (a) initial configuration for simulation (e = 0.10); (b) end result of simulation
(10000 seconds); (c) corresponding distribution of relative orientations with a zoom from (b) showing
hexagonal packing with herringbone particle alignment.

Raft and lattice structures. – A different class of pattern emerges when the inter-particle
potential is “non-sticky”, i.e. all particles are free to rotate and translate at all times. This
is achieved by adding a short-range repulsion, such as the generic short-range correction to
quadrupolar capillary interactions discussed in [15]. Under these conditions, the particles tend
to form “rafts”. Particles interacting by quadrupolar forces may be expected to arrange in
a square grid, as proposed in [15, 16]. Figure 4 shows the result of a quasi-static simulation
starting with the centers of M = 900 particles in a square pattern, and a ±5◦ variation in
director angles. Contrary to expectation, the system evolves away from this initial configu-
ration, developing instead a hexagonal positional order. This arrangement allows particles to
fill space more efficiently (inter-particle distances are smaller).

With quadrupolar particles, hexagonal order does not allow for energetically optimal ori-
entations. Instead, the orientational order that develops is of the herringbone type [17, 18],
with directors of neighboring particles aligned in rows, but stacked at about 90◦ between two
rows (fig. 4b). The relative orientations ∆αij near 0◦ and 90◦ are strongly favored. In a
perfect herringbone structure, each particle has two neighbours with ∆α = 0◦ and four with
∆α = 90◦; this 1 : 2 ratio is also present in the distribution of fig. 4c.

The herringbone phase has been discussed recently in the context of molecular crystals
and Langmuir monolayers [17, 18], and it has been shown that it is the low-temperature
ground state for molecules with quadrupolar interaction [19]. Our simulations show that this
phase develops on a much larger (micron) scale as well. As the simulations are conducted
at T = 0, the resulting raft is not perfect, but consists of “crystallites” of herringbone order
with unannealed voids between them (fig. 4b). When simulations are repeated with different
short-range repulsion terms, the features of translational and orientational order persist. We
conclude that short-range corrections to the quadrupolar potential are not crucial for the
development of these patterns.

Conclusions. – The shape-induced potential described here is substantial (> kBT ) even
for very small eccentricity (e = 0.14 corresponds to 10 nm deformations of 1µm particles from
spherical shape), so that it will nearly always be present in experiment. For typical material
parameters (air/water interface, particle density 1050 kg/m3) and e = 0.14, θ = 120◦, shape-
induced forces are dominant for radii in the range 0.3µm < c < 10µm (larger particles expe-
rience stronger forces by gravitational interface deformation, while thermal motion destroys
aggregates for smaller sizes). For the conditions of the recent experiment by Loudet et al. [5],
shape-induced forces are even expected to dominate gravitational forces up to c ≈ 35µm.
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Loudet et al.’s observations that particles approaching tip-to-tip do so with L(t) ∝ t1/6 along
a mostly straight trajectory are consistent with our results (note that (11) and (13) demand
dL/dt ∝ L−5). However, it must be noted that the particles in that experiment greatly exceed
the eccentricity for which our approximations and simulations are valid.

The relatively rapid 1/L4 decay of the potential (10) makes it an unlikely candidate to
explain a much-discussed secondary potential minimum of long-range like-charged particle
attraction beyond the reach of electrostatic repulsion [20]. It could, however, factor in the
explanation of a secondary minimum at smaller distances [21]. We predict that the effect is
largest for certain contact angles (θ ≈ 63◦ for partially wetting particles). Also, since the parti-
cle shape imposes the interfacial deformation, the shape interaction is stronger with increasing
surface tension σ. These characteristics help in detecting the presence of shape interactions
in experiment (the potential in [6], for instance, becomes weaker with increasing σ). While
sticky particles form dendrites, non-sticky ones form rafts. Raft aggregates show hexagonal
positional order and a peculiar herringbone orientational order. A quadrupolar interaction
potential clearly allows hexagonal patterns and such ordering cannot, therefore, distinguish
between isotropic and quadrupolar potentials.
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