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ABSTRACT: Shear viscosities as well as first and second normal stress differences of solutions of rigid
spherocylindrical colloids are investigated by Brownian dynamics simulations for aspectlias a range

from 25 to 60 and scaled volume fractiohg/D from 0.5 to 4.5. Shear thinning behavior is observed in all
cases. In the isotropic phase, the calculated viscosities at low volume fractions are in agreement with predictions
by Dhont and Briels, while over a larger range of shear rates they are described by the Hess equation. The
self-rotational diffusion coefficients obtained from the flow curves agree very well with those calculated by
traditional methods. In the nematic phase, the inflection point of the flow curve is associated with the critical
shear rate at which the orientational director changes its motion from kayaking to wagging. The first normal
stress differencél; in the nematic solution is positive at low and high shear rates but negative at moderate rates,
which is rather distinct from the monotone behavior shown by isotropic solutions. The simulated second normal
stress differencéN, is found much smaller in amplitude thaw, and always opposite in sign. Our findings
qualitatively confirm existing theoretical predictions and experimental measurements. A newly developed event-
driven Brownian dynamics algorithm, in which the excluded-volume interactions between particles are incorporated
as collisions instead of as repulsive potentials, has made these simulations feasible.

1. Introduction nematic solutions of rigid rods with large shape anisotropy are
clearly described for the first tinf:#” As a supplement of the

polymers (LCPs) in shear flow exhibit unusual rheological preyious work-, we cont.inue our investigations with t.he rheo-
behaviors, such as pronounced oscillations of the stress againsltog'.c"’.II propert!es, L€ v_|scosmes and normal stress differences,
time or a negative first normal stress difference at intermediate of rigid Brownian rods in shear flow.

shear rates. Because of this complex dynamics, as compared to This paper is organized as follows: In section 2 we briefly
conventional polymer liquids, concentrated lyotropic LCPs discuss the microscopic theory for the viscoelastic behavior of
aroused much scientific interest both in theoretical predictidhs ~ suspensions of rigid rods with excluded volume interactions.
and in experimental observatiotfs#! Hes3 and Dof suggested In sections 3.1 and 3.2 we investigate the shear rate dependence
a molecular theory of rodlike LCPs in shear flow. The Boi  of the viscosities of rodlike colloids in isotropic and nematic
Hess theory has been solved numerically by restricting it to two phases, respectively, while the calculated first and second normal
dimension8 or by expanding the orientational distribution stress differences are presented in section 3.3. Finally, we
function in spherical harmonic;'Sor by one-particle Brownian  summarize our conclusions in section 4. The algorithm of the
dynamics in a mean-field potent®#l.It was found that the  event-driven Brownian dynamics simulation is omitted in the
director, i.e., the average direction of the rods, exhibits tumbling, present paper, since it has already been discussed in our previous
kayaking, wagging, flow-aligning, or log-rolling types of motion, publications'>47

depending on the applied shear rates. The theoretical investiga-

tions revealed that all peculiar behaviors mentioned above ares Theory

to be attributed to the periodic oscillation of the director. _ ) ) )

Besides theoretical and experimental investigations, computer " this section we briefly comment on the expression that
simulation becomes an increasingly valuable supplement in the'V& have used to calculate stresses from our simulation data.
quest to understand complex LCPs. Unfortunately, the previous 1 motivate our choice, we start with the one-particle Smolu-
computational studies on the rheology of rigid rods only focused chowski equatio#?
on isotropic solutiorfé-43or rods with small aspect ratié$éTo
study suspensions of rigid long and thin rods in shear flow, QP(G )=D 737 P(0,t) — iP(O 1) T(O,)) —
wet547 recently developed an event-driven Brownian dynamics ot = LT kT T '
simulation algorithm in which excluded-volume interactions g}g.p(g,t)g x ([-0) (1)
between rods are taken into account but hydrodynamic interac-
tions are considered unimportant and negligible. This algorithm describing the time evolution of the one-particle orientational
has its inherent novelty in preventing the overlaps between propaility distributionP(a,t) of a collection of rods at time
interacting rods by carefully controlling the collisions in stead \yith unit vectorsd along their long axes. The rotational operator
of by applying a repulsive potential. By this algorithm, the 7 is defined as’? = 0 x (9/30) and plays a role very similar
collective periodic orientational motions of the directors of 5 ihat of the gradient operatov; in the description of

translational diffusionD; is the rotational diffusion coefficient
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with 75 the viscosity of the solvenkg is Boltzmann’s constant 3 7 dt
andT the temperaturd. is the velocity gradient tensor, related ) ) )
to the flow velocityV at positionr by V = I'r; in this work This expression forX may be considered to be largely
I = 788 with 7 the shear rate an&, a unit vector in the mdependent .of any approximations concerning the pair cor-
o-direction. The average torque acting on the centrafliid) relation funcyon. Obvpusly, it syll suffers from the.: neglect of
in eq 1 is expressed as hydrodynam|c interactions, which u_nder some circumstances
may be important. The term proportional t&8/dt in eq 7 will
- ~ o be ignored for the following reasons. In the isotropic state, i.e.,
T@YH= _15de' fdu' (@', t) o(r — ', 0, 0", t) x at low volume fractions, the order tensor is constant, and
RN —r',0,0) (3) consequently dt has no contribution at all. In the nematic
state at low shear rates, the order tensor varies periodically in
wherep is the number density of rods aMfr — r', G, @') is time with constant period, meaning tha/dt is nonzero. In
the pair-interaction potential for two rods with orientatidhs ~ the present work, however, we will calculate viscosities and
and0’ and center-center separation— r'; similarly, g(r — r', normal stress differences averaged over integer numbers of

@, O', t) is the pair correlation function for the two rods oscillation periods, rendering zero the contributions &fdtito
mentioned above at time The main approximation made in the final results. In the nematic state at very high shear rates,
deriving eq 1 was to neglect hydrodynamic interactions between the order tensor becomes constant aBdid= 0 again.

the rods. For analytical purposes, we now neglect the time [N our simulations, we impose a simple shear flow in the
dependence of the pair correlation function and approximate it x-direction with gradient in thg-direction. The relative viscosity

by its equilibrium value for very long rods i7* averaged over time reads
S 2
A A 1 A A r 2><y _ 2(L/D) A AT TN
—r 0,0, 0 =expl — —M(r —r'Q, =Y=1+4+_"_¢[[-S+ ST — SWE - ISE
oir —r" 0,01 exp{ kB_I_V(r r'a,a )} 4) n 7, 3In(L/D) @ 3

(8)

while first and second normal stress differences are calculated
from their definitions:

Making one more approximation when expandjigx 0'| up
to second order in orthogonal polyadic productsit,*¢ we
may calculate the equation of motion of the order terser

[MAaL] with the brackets denoting an ensemble average, obtain- N=S —% 9)
ing2® 1= < “yy

N,=5%,— = 10
d B 1. 5L " 2 vy 7z ( )
Cs— —6Dr{S——I +2Lp s - S-S)} + - _ _
dt 3 4D The bars inZ,, denote a time averaging.

IS+ ST — 25 E} (5)
3. Results and Discussion

wherel is the unit tensorf" = I'/y, andE = Y,[I" + '], with In this section, we describe our simulation results of stresses
the superscript “T” denoting a transposition. The volume fraction in solutions of rodlike colloids. First, we address shear viscosities
is defined agy = Y4pD?L. S¥ is a fourth-order tensor defined  of isotropic systems as a function of shear rate. Next, we discuss
by S® = @aadd In a previous pape® we have argued that  similar results for nematic phases and finally we study first and
most probably the last two approximations mentioned above second normal stress differences in both isotropic and nematic
are the most severe in determining the quality of eq 5. It is phases in shear flow.

important to notice that they are only used in calculating the  The simulated rigid rods are based on experimental data of
term proportional td_¢/D. The extra factor of 5/4 in this term  thefd viruses?®5° These rodlike biopolymers, because of their
as compared to the corresponding term in ref 20 has beenmonodispersity and well-characterized interparticle interactions,

explained in our previous pap#t. are considered to be among the best representatives of rigid
The expression needed to calculate the deviatoric part rods for experimental purposes. For a recent review article, we

the stress tensor has been derived by Dhont and Bt#éland refer the reader to Dogic and FradérOur simulation boxes

reads were cubic, and periodic boundary conditions were employed

in both the velocity and vorticity direction, while the Lees
. ~ 1~ 5L " Edwards boundary conditions were used in the gradient direc-
2=2nyE+ 3P|<BT{ S—3l* ZBCP(S( $=89 + tion.52 Box volumes were chosen accordingMo= c(x/4)(L/

. D)~1L3 with ¢ = 500 forL/D < 40,c = 750 forL/D = 50, and
:_Ll(s(“);é — :_Lfs;é)} (6) ¢ = 1000 forL/D = 60. By doing so, the edges of the boxes
6D, 3 were always 2.53 times as large as the rod lengths. The

number of rodsN was obtained fronN = cLg/D and ranged
Also here the somewhat uncontrolled approximations concerningfrom 250 to 4500. The diameter was chosen to be 14.8 nm.
the pair correlation function are only used in a term proportional Water was used as solvent, with viscosjty= 10~2 Pas. The
to Lg/D, which carries a factor of 5/4 for the same reason as temperature was 300 K in all cases. The event-driven algorithm
the term proportional th.¢/D in eq 5. Fortunately, apart from  described previous#§ was used with a time steft of 0.5 us,
a constant factor, both terms proportionalLip/D are equal in which is at least 1 order of magnitude larger than that used in
egs 5 and 6, and so we may eliminate the one in eq 6, obt&ning simulation$® using semihard interactions between rods.
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Figure 1. Relative viscosities of isotropic suspensions of rigid rods

with aspect ratid/D = 25 for three scaled volume fractions. Circles,
squares, and diamonds represent the resultsgéd = 2.0, 1.0, and

Ll
100

0.5, respectively, while crosses, stars, and pluses represent the corre

spondingy* obtained by using the closure eq 11 on the basis of order
tensorsS from the simulations. Curves represent theoretical results
predicted by Dhont and Briefs.

3.1. Shear Thinning of Isotropic Systemslin Figure 1 we
have plotted the relative viscositieg as a function of shear
rate for three isotropic systems consisting of rods with aspect
ratio equal to 25. A clear shear thinning is observed in all cases.
For comparisop, we have included the results obtained by
calculatingS“:E in eq 7 using the closure relation

SOE ~ %{ SE+E-S—SSE - E-5S5+2SE-S+
3SS E} (11)

on the basis of the simulated orientational order teisdrhe
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Figure 2. Self-rotational diffusion coefficients of rods withiD = 25

in isotropic suspensions as a function of the scaled volume fraction.
Circles denote the traditional measurements by using the Debye
expression, eq 13, while stars are calculated from the viscosity by the
Hess theory, eq 12.
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viscosities calculated by using the closure eq 11 are seen to be
within ~3% of the exact values in the case of isotropic Figure 3. Relative viscosities of isotropic suspensions of rigid rods

; ; iwith L/D = 25 as a function of shear rate. Drawn lines show the results
suspensions. Apparently, the above closure is very accurate, Inof eq 14 withD.(¢) calculated from the Debye expression, eq 13, while

agreement with previous findings of oufsAlso shown in the dashed curve is a three-parameter fit with the Hess theory, eq 12.

Figure 1 are viscosities calculated by means of a theory by
Dhont and Briel$? using the approximate pair correlation
function of eq 4. In the case a&fp/D = 0.5 the agreement is
very good, and the neglect of dynamic correlations is apparently
unimportant. This holds true to a lesser extent wherfD = 1.
ForLg/D = 2 the agreement is limited to the lowest shear rates,
which was to be expected since this volume fraction is rather
close to the isotropienematic phase transition where a good
description of pair correlations becomes increasingly important.

It is seen that both methods yield results in very good agreement
with each other.

In their review papet? Dhont and Briels apply a perturbation
theory to calculate viscosities of isotropic suspensions at low
shear rates and low volume fractions. By expanding the Hess
equation to the same order and comparing both expressjpns,
and 7% may be calculated. Using the results in the Hess
equation, we obtain

Some 20 years ago, Hess has suggested that these viscosities

may be described B%5*

Mo~ e
+ . 2
1+ (y7)

*

12

=

where iy and 7;, are the values at zero shear rate and very
large shear rates, respectivetyis a characteristic time given
by 7, = 1/6D(¢). This latter expression has been tested
experimentally by Graf et & on isotropic systems dl viruses.

By fitting their measured viscosities with the Hess equation,
they found Di(¢) in good agreement with self-rotational
diffusion coefficients obtained from electric or magnetic bire-
fringence experimen® 5" We have made similar fits and
present théD,(¢) obtained this way in Figure 2, together with
those obtained by calculatirg,(¢) using

[@(t)-G(0)= exp{ —2D(¢)t} (13)

L 18 1 L
* = — - - —
" (1 +ag cp) >e D\ °D Y (14)
1+{———
14
where the coefficientt is given by
8 L/D
=— 15
¢~ 45InLD) (15)

In Figure 3 we compare viscosities obtained with this equation
with those calculated from our simulation results. It is seen that
for the lowest two volume fractions the results agree remarkably
well. ForLg/D = 2.0 the agreement is less perfect, and in this
case a fit with the Hess equation usimg, 7., and 7, as
adjustable parameters performed slightly better, as indicated by
the dashed line.

3.2. Shear Thinning of Nematic Systemsdn this subsection
we describe our results of calculating shear viscosities of nematic
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Figure 4. Relative viscositiesy*, calculated by eq 7 including the  Figure 6. Relative viscosities of nematic solutions of rods Wit
dS/dt term, as a function of strain. In panelsa, four different shear ~ ="25 a5 a function of the scaled volume fraction, for various shear

rates are employed with the corresponding rotational Peclet numbersyates ranging from Re= 1 to 100.

Pe = 0.3, 0.7, 2.5, and 10.0, respectively. A running averageSadtd

is used for each panel to reduce the noise produced by the numerical 6 . | . l , , . .
differentiation ofS.
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200 500 1000 2000 5000 10000 Figure 7. Relative viscosities of nematic systems as a function of shear
y(s'l) rate. Solutions of rigid rods witlh/D = 25 (stars), 30 (circles), 40
(diamonds), 50 (squares), and 60 (triangles) are investigated. The

Figure 5. Relative viscosities of nematic suspensions of rigid rods simulation results are fitted using the Hess forrftigiven in eq 12.
with aspect ratidL/D = 25 at three scaled volume fractions of 3.5,

4.0, and 4.5, respectively.

three different volume fractions. The drawn lines will be
discussed later and should be considered as guides to the eye

systems. First, in Figure 4 we plot the relative viscosity as a ; . . . .
for the time being. As in the case of isotropic systems, a clear

function of strain for a nematic system of rods with aspect ratio e ;
equal to 25 and scaled volume fractib/D = 3.5 for four shear thinning is observed for all three volume fractions. In

different rotational Peclet numbers,Rey/D,. The viscosities ~ Figure 6 shear viscosities are shown to be linedrgrD over
7*(t) = S(t)/yms in this plot are not time averaged and are & large range of shear rates.

calculated using eq 7, including the term proportional $dt Next, in Figure 7 we investigate the dependence;®obn
Similar calculations, neglecting the term proportional S, the aspect rati&/D; the scaled volume fraction in all cases is
reveal that this term smooths the results a bit but has no given byLg/D = 4.5. Two things may be noticed. First, the
influence on the time-averaged results that we are interestedzero shear rate value of the viscosity increases substantially with
in. In panels a and b, the viscosity is clearly seen to periodically increasing values of/D. Second, the inflection point of the

vary in time. In a previous pap€rwe found that at the  shear thinning curve moves to lower shear rates with increasing
corresponding shear rates the diredtoof the system being  aspect ratios.
studied here performs kayaking motions. Hérés the unit

eigenvector of$S corresponding to its largest eigenvalue, point of the viscosity curve reveals some dominant characteristic
representing the average direction of the rods. Comparing,. . h | heref. b . e
viscosities and director motions, we find, to no surprise, that time in the system. It seems therefore to be appropriate to fit
the peaks in the viscosities in panels a and b occur at strainsthe shear _th|nn|ng curves fqr nematic systems_ with the Hess

equation, just as we did with the corresponding curves for

where the directors flip from one flow aligned orientation to . . h i o
the other. Panel ¢ corresponds to a shear rate just above théSOLropiC systems. The drawn lines in Figures 5 and 7 were
obtained in this way. Estimates gfip are then calculated

kayaking to wagging transition. Hence, the director is mainly
situated in the shear plane, “wagging” about the velocity according toyp = (v3m) L Itis instructive to compare these
direction. The viscosity displays some small oscillations, which values with the shear rateg, at the kayaking to wagging
are rather insignificant compared to the absolute value. At very transitions in the corresponding systems. Therefore, in Figure
high shear rates, in panel d, the director is arrested in the shea8 we ploty e/ as a function ol/D for all systems studied
plane, making a small angle with the flow direction. The in Figures 5 and 7. It is seen that for all aspect ratigsis
corresponding viscosity is virtually constant. almost equal torwy. The origin of shear thinning in nematic

In Figure 5 we display time-averaged viscosities as a function systems may therefore safely be attributed to the kayaking to
of shear rate, again for rods with aspect rdti® = 25, for wagging transition of the director.

It is intuitively clear that the shear rajgpe at the inflection
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Figure 8. Ratio Pg./Pepr as a function of aspect ratio. Redenotes Per

the critical Peclet number at which the kayaking to wagging transition Figure 10. First (shown as circles) and second (squares; note the
occurs, as obtained from inspection of the periodic orientational motions reversal of sign) normal stress differences of isotropic solutions of rigid
exhibited by the director. Restands for the Peclet number calculated rods with L/D = 25 as a function of rotational Peclet number. The
from the inflection point of the viscosity by using the Hess theory; see scaled volume fractiohq/D is chosen equal to 2.0.

eq 12. Open symbols represent systems with a scaled volume fraction

of 4.5, while the gray and solid triangles dendig/D = 4.0 and 3.5, 10— e —
respectively. 2
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P00 1000 10000 Figure 11. Absolute values of the first and second normal stress
y(s'l) differences of nematic solutions of rigid rods withb = 25 andL¢/D

= 3.5 as a function of rotational Peclet number are plotted in (a) and
Figure 9. Comparison of the relative viscosities calculated by eq 6 (b) in the log-log scale, respectively. The critical Peclet number of
(shown as squares) and eq 7 (circles) in nematic solutions of rods with the kayaking to wagging transition, Reis represented by an arrow.
L/D = 25 andL¢/D = 4.5 at various share rates. The dotted and dashed

lines are fits by the Hess theory, eq 12. PBLG (poly(-benzylL-glutamate)) in the isotropic phase by

Before finishing this subsection, let us make one more remark. Magda et af? It is well-known that the probability distribution
In Figure 9 we have plotted flow curves, i.e., viscosities as a function of the end-to-end vector of polymers, whether flexible

function of shear rate, for systems withD = 25 andL¢/D = or rigid, in isotropic phases is distorted from spherical to
4.5 once calculated l;sing eq 6 and once using eq 7. There is £llipsoidal distributions when such systems are subjected to shear

clear difference between the two curves, with eq 6 producing 10W- The resulting elastic forces must be balanced by shear
the larger viscosities. On fitting the new curve with the Hess [OrCeS, makingy invariably positive and, negative’ Since
equation, we found that its inflection point occurs at a shear the flow hardly influences the distribution in the vorticity
rate 7p which is a factor of 2.5 smaller thaft. This d!rectlon, pI remains very smal_l, and _the n_ormal stress
discrepancy may be considered a, be it weak, argument in favordifferences have the signs found in our simulation.
of eq 7. The absolute values df; andN, of nematic suspensions are
3.3. Normal Stress DifferenceMeasurement&29of normal plotted as a function of Peclet number in parts a and b of Figure
stress differences of nematic liquid crystalline polymers show 11, respectively. The aspect ratidD is chosen equal to 25
remarkable differences compared with those exhibited by again, while the scaled volume fractitip/D = 3.5, ensuring
isotropic suspensions. For a concentrated yet isotropic solution,the nematic state of the systems. Compared with the behaviors
the first normal stress differends; is always positive and ~ shown by the isotropic suspensions, distinctive phenomena are
increases monotonically with shear rate, while the second normalobserved in nematic phases: both normal stress differences are
stress differencé\, is negative and decreases with shear rate. N0t monotonic anymore but change sign with shear rate. The
In nematic solutions, on the other hand, highly nonlinear first normal stress differench; is found positive at low and
rheological behaviors are observed: both the first and the secondhigh shear rates but negative at intermediate shear rates. The
normal stress differences change signs several times withsecond normal stress differerfdgis much smaller in magnitude

increasing shear rate. thanN; and always opposite in sign. This featureMf is in

In Figure 10, we plotN; and —N, as a function of the accordance with that shown by isotropic solutions.
rotational Peclet number in a ledog scale. The scaled volume As can be read from Figure 11, the first change of sign occurs
fraction Le/D is chosen equal to 2.0, ensuring an isotropic exactly at the transition from kayaking to wagging, indicated
systent'® The monotonic increase in magnitude of bbthand by an arrow at the upper horizontal axis, while the second

N, agrees qualitatively with experimental results on rodlike change of sign occurs around the transition from wagging to
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Figure 12. First normal stress differendé, (drawn curve), the scalar Y ()
order parameteP, (dotted), and thex component of the director Figure 13. Relative viscosities of solutions dfl viruses (squares:
(dashed) of the nematic solution of rods withD = 25 andL¢/D = experiment&f with 1.56 mg/mlfd in 100 mM NacCl; circles: simula-

3.5 as a function of strain. The upper and lower horizontal lines tions withL/D = 60 andL¢/D = 0.5) as a function of shear rate. Solid
represent the equilibrium scalar order parameter and the time averagecurves are fits using the Hess theory eq 12 on the basis of experimental
of the first normal stress difference, respectively. At the applied shear and simulation data. The dashed curve denotes the simulated viscosities

ratey = 125 s%, the director exhibits a tumbling/kayaking motion. following a rescaling by & [(172,40) — 1)/(75,(0) — D077 —

1); see text for details.
flow-aligning, which is difficult to pinpoint otherwise. This
complex behavior was first analyzed by Marrucci and Maffet- 1. The suspensions of rigid rods exhibit shear thinning
toné on the basis of the two-dimensional analogue of the-Doi  behavior in shear flow, both in isotropic and in nematic states.
Hess theory. A three-dimensional analysis was provided by 2. In the isotropic phase, the measured shear thinning curves
Larson}? who found three distinct regions very much in accord very well with the Hess equation. At low volume
agreement with our results. The elastic response of the flow fractions or low shear rates, results by Dhont and Briels were
aligned state is to a large extent similar to that of the isotropic confirmed. The self-rotational diffusion coefficients calculated
state. The orientational probability distribution is already rather py fitting the simulation results with the Hess equation show
narrow at zero shear, since we are in a nematic state. The flowgood agreement with traditional measurements.
has aligneq this digrib_ution allong thg flow direction and trigs 3. The inflection points of the shear thinning curves of
to narrow it just like in the isotropic state. The system is pematic systems are associated with the shear rates at which
therefore rather similar to that in the isotropic state explaining the director transforms its orientational motion from kayaking
the signs ofN; and No. to wagging. Our calculated values of the inflection points are

In Figure 12 we have plotted the first normal stress difference in good agreement with those measured by investigating the
N1, the scalar order parametes, and thex component of the motion of the director.

diregtorﬁx of altumbling system with/D = 25, L¢/D = 3.5, 4. The first normal stress differendd in nematic solutions
andy = 125 s as a function of straif\; has been calculated o rigid rods is positive at low or high shear rates but negative
on the basis of eq 7, including the term proportional Sl when intermediate shear rates are employed. The second normal

We find thatN, is basically equal t@. From the plot we see  giress differencel, is found always with opposite sign to that
that N; rises sharply every time When. the.rod.s tumble. After ¢ N, and much smaller in amplitude. These fascinating
the rods have settled along the flow directi,is somewhat  pehaviors are rather distinguished compared to the monotonic
larger than its equilibrium value at the given valuelgf/D. properties that are exhibited by isotropic solutions. Our simula-

N1, and so alscx, begin to gradually decrease and become {jon results qualitatively confirm both theoretical predictions
negative wherP, drops below its equilibrium value. At this 54 experimental measurements.

stageX opposes the elastic forces caused by the fact that the It is constructive to make a quantitative comparison between

orlentatlor_]al distribution s too V‘.”de for the given valuelgf/ .our simulations and experiments on rodlike polymers. In Figure
D. Nz continues to decrease until the whole process starts again; 3 e have plotted the experimental viscosities of isotropic

with the_ next tumbling. ) ) solutions offd viruses measured by Graf et®IUsing a molar

As afinal remark we notice that the normal stress differences yeight9 of 1.64 x 107 g/mol and an effective aspect ratio of
N; andN; calculated by eq 6 are monotonic against shear rate. gg the experimental density of 1.56 mg/ml corresponds to a
Since this is not in agreement with experimental observation, scajed volume fraction of 0.5. Simulated viscosities of rod
we once more conclude that eq 7 provides a much safergyspensions with./D = 60 andLg/D = 0.5 are shown as
expression to calculate stresses than eq 6. circles. The simulations deviate from the experiments by a factor
of 2. Considering the inherent flexibility of tHd virus and the
ionic strength in the aqueous solution, which highly affects the

We have calculated relative viscosities as well as first and effective diameter of the virus, this discrepancy is reasonable.
second normal stress differences of suspensions of rigid liquid Scaling the contribution of the rods such that the simulated and
crystalline polymers in shear flow. To make this goal realizable, experimental viscosities agree at zero shear rate makes them
a recently developed event-driven Brownian dynamics algorithm agree at all shear rates. This scaling roughly amounts to
was used. In this algorithm, excluded-volume interactions multiplying 7%.(7) — 1, and hencex L¢/D, by a factor of
between the rods are considered to be infinitely hard, but (5, (0) — 1)/(75,(0) — 1).
hydrodynamic interactions are neglected.

The general picture of the present paper is summarized as Acknowledgment. This work is part of the SoftLink research
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