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ABSTRACT: Shear viscosities as well as first and second normal stress differences of solutions of rigid
spherocylindrical colloids are investigated by Brownian dynamics simulations for aspect ratiosL/D in a range
from 25 to 60 and scaled volume fractionsLæ/D from 0.5 to 4.5. Shear thinning behavior is observed in all
cases. In the isotropic phase, the calculated viscosities at low volume fractions are in agreement with predictions
by Dhont and Briels, while over a larger range of shear rates they are described by the Hess equation. The
self-rotational diffusion coefficients obtained from the flow curves agree very well with those calculated by
traditional methods. In the nematic phase, the inflection point of the flow curve is associated with the critical
shear rate at which the orientational director changes its motion from kayaking to wagging. The first normal
stress differenceN1 in the nematic solution is positive at low and high shear rates but negative at moderate rates,
which is rather distinct from the monotone behavior shown by isotropic solutions. The simulated second normal
stress differenceN2 is found much smaller in amplitude thanN1 and always opposite in sign. Our findings
qualitatively confirm existing theoretical predictions and experimental measurements. A newly developed event-
driven Brownian dynamics algorithm, in which the excluded-volume interactions between particles are incorporated
as collisions instead of as repulsive potentials, has made these simulations feasible.

1. Introduction

Suspensions of nematic rodlike colloids or liquid crystalline
polymers (LCPs) in shear flow exhibit unusual rheological
behaviors, such as pronounced oscillations of the stress against
time or a negative first normal stress difference at intermediate
shear rates. Because of this complex dynamics, as compared to
conventional polymer liquids, concentrated lyotropic LCPs
aroused much scientific interest both in theoretical predictions1-27

and in experimental observations.28-41 Hess1 and Doi2 suggested
a molecular theory of rodlike LCPs in shear flow. The Doi-
Hess theory has been solved numerically by restricting it to two
dimensions9 or by expanding the orientational distribution
function in spherical harmonics,12,15or by one-particle Brownian
dynamics in a mean-field potential.27 It was found that the
director, i.e., the average direction of the rods, exhibits tumbling,
kayaking, wagging, flow-aligning, or log-rolling types of motion,
depending on the applied shear rates. The theoretical investiga-
tions revealed that all peculiar behaviors mentioned above are
to be attributed to the periodic oscillation of the director.

Besides theoretical and experimental investigations, computer
simulation becomes an increasingly valuable supplement in the
quest to understand complex LCPs. Unfortunately, the previous
computational studies on the rheology of rigid rods only focused
on isotropic solutions42,43or rods with small aspect ratios.44 To
study suspensions of rigid long and thin rods in shear flow,
we45-47 recently developed an event-driven Brownian dynamics
simulation algorithm in which excluded-volume interactions
between rods are taken into account but hydrodynamic interac-
tions are considered unimportant and negligible. This algorithm
has its inherent novelty in preventing the overlaps between
interacting rods by carefully controlling the collisions in stead
of by applying a repulsive potential. By this algorithm, the
collective periodic orientational motions of the directors of

nematic solutions of rigid rods with large shape anisotropy are
clearly described for the first time.45,47 As a supplement of the
previous work, we continue our investigations with the rheo-
logical properties, i.e., viscosities and normal stress differences,
of rigid Brownian rods in shear flow.

This paper is organized as follows: In section 2 we briefly
discuss the microscopic theory for the viscoelastic behavior of
suspensions of rigid rods with excluded volume interactions.
In sections 3.1 and 3.2 we investigate the shear rate dependence
of the viscosities of rodlike colloids in isotropic and nematic
phases, respectively, while the calculated first and second normal
stress differences are presented in section 3.3. Finally, we
summarize our conclusions in section 4. The algorithm of the
event-driven Brownian dynamics simulation is omitted in the
present paper, since it has already been discussed in our previous
publications.45-47

2. Theory

In this section we briefly comment on the expression that
we have used to calculate stresses from our simulation data.
To motivate our choice, we start with the one-particle Smolu-
chowski equation20

describing the time evolution of the one-particle orientational
probability distributionP(û,t) of a collection of rods at timet
with unit vectorsû along their long axes. The rotational operator
R̂ is defined asR̂ ≡ û × (∂/∂û) and plays a role very similar
to that of the gradient operator∇r in the description of
translational diffusion.Dr is the rotational diffusion coefficient
of a single rod* Corresponding author. E-mail: w.j.briels@utwente.nl.

∂

∂t
P(û,t) ) DrR̂‚{R̂ P(û,t) - 1

kBT
P(û,t) Th (û,t)} -

R̂·P(û,t)û × (Γ‚û) (1)
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with ηs the viscosity of the solvent.kB is Boltzmann’s constant
andT the temperature.Γ is the velocity gradient tensor, related
to the flow velocityV at positionr by V ) Γ‚r ; in this work
Γ ) γ̆êxêy with γ̆ the shear rate andêR a unit vector in the
R-direction. The average torque acting on the central rodTh (û,t)
in eq 1 is expressed as

whereFj is the number density of rods andV(r - r ′, û, û′) is
the pair-interaction potential for two rods with orientationsû
andû′ and center-center separationr - r ′; similarly, g(r - r ′,
û, û′, t) is the pair correlation function for the two rods
mentioned above at timet. The main approximation made in
deriving eq 1 was to neglect hydrodynamic interactions between
the rods. For analytical purposes, we now neglect the time
dependence of the pair correlation function and approximate it
by its equilibrium value for very long rods

Making one more approximation when expanding|û × û′| up
to second order in orthogonal polyadic products ofû’s,46 we
may calculate the equation of motion of the order tensorS )
〈ûû〉, with the brackets denoting an ensemble average, obtain-
ing20

whereÎ is the unit tensor,Γ̂ ) Γ/γ̆, andÊ ) 1/2[Γ̂ + Γ̂T], with
the superscript “T” denoting a transposition. The volume fraction
is defined asæ ) 1/4FjπD2L. S(4) is a fourth-order tensor defined
by S(4) ) 〈ûûûû〉. In a previous paper,48 we have argued that
most probably the last two approximations mentioned above
are the most severe in determining the quality of eq 5. It is
important to notice that they are only used in calculating the
term proportional toLæ/D. The extra factor of 5/4 in this term
as compared to the corresponding term in ref 20 has been
explained in our previous paper.46

The expression needed to calculate the deviatoric partΣ of
the stress tensor has been derived by Dhont and Briels20,21and
reads

Also here the somewhat uncontrolled approximations concerning
the pair correlation function are only used in a term proportional
to Læ/D, which carries a factor of 5/4 for the same reason as
the term proportional toLæ/D in eq 5. Fortunately, apart from
a constant factor, both terms proportional toLæ/D are equal in
eqs 5 and 6, and so we may eliminate the one in eq 6, obtaining20

This expression forΣ may be considered to be largely
independent of any approximations concerning the pair cor-
relation function. Obviously, it still suffers from the neglect of
hydrodynamic interactions, which under some circumstances
may be important. The term proportional to dS/dt in eq 7 will
be ignored for the following reasons. In the isotropic state, i.e.,
at low volume fractions, the order tensor is constant, and
consequently dS/dt has no contribution at all. In the nematic
state at low shear rates, the order tensor varies periodically in
time with constant period, meaning that dS/dt is nonzero. In
the present work, however, we will calculate viscosities and
normal stress differences averaged over integer numbers of
oscillation periods, rendering zero the contributions of dS/dt to
the final results. In the nematic state at very high shear rates,
the order tensor becomes constant and dS/dt ) 0 again.

In our simulations, we impose a simple shear flow in the
x-direction with gradient in they-direction. The relative viscosity
η* averaged over time reads

while first and second normal stress differences are calculated
from their definitions:

The bars inΣhxy denote a time averaging.

3. Results and Discussion

In this section, we describe our simulation results of stresses
in solutions of rodlike colloids. First, we address shear viscosities
of isotropic systems as a function of shear rate. Next, we discuss
similar results for nematic phases and finally we study first and
second normal stress differences in both isotropic and nematic
phases in shear flow.

The simulated rigid rods are based on experimental data of
the fd viruses.49,50 These rodlike biopolymers, because of their
monodispersity and well-characterized interparticle interactions,
are considered to be among the best representatives of rigid
rods for experimental purposes. For a recent review article, we
refer the reader to Dogic and Fraden.51 Our simulation boxes
were cubic, and periodic boundary conditions were employed
in both the velocity and vorticity direction, while the Lees-
Edwards boundary conditions were used in the gradient direc-
tion.52 Box volumes were chosen according toV ) c(π/4)(L/
D)-1L3 with c ) 500 forL/D e 40,c ) 750 forL/D ) 50, and
c ) 1000 forL/D ) 60. By doing so, the edges of the boxes
were always 2.5-3 times as large as the rod lengths. The
number of rodsN was obtained fromN ) cLæ/D and ranged
from 250 to 4500. The diameter was chosen to be 14.8 nm.
Water was used as solvent, with viscosityηs ) 10-3 Pa‚s. The
temperature was 300 K in all cases. The event-driven algorithm
described previously46 was used with a time stepδt of 0.5 µs,
which is at least 1 order of magnitude larger than that used in
simulations48 using semihard interactions between rods.

Dr )
3kBT ln(L/D)

πηsL
3

(2)

Th (û,t) ) -Fj∫dr ′ Idu′ P(û′, t) g(r - r ′, û, û′, t) ×
R̂ V(r - r ′, û, û′) (3)

g(r - r ′ û, û′, t) ) exp{- 1
kBT

V(r - r ′ û, û′)} (4)

d
dt

S ) -6Dr{S - 1
3
Î + 5

4
L
D

æ(S(4):S - S‚S)} +

γ̆{Γ̂‚S + S‚Γ̂T - 2S(4): Ê} (5)

Σ ) 2ηsγ̆Ê + 3FjkBT{S - 1
3
Î + 5

4
L
D

æ(S(4):S - S‚S) +

1
6

γ̆
Dr

(S(4):Ê - 1
3
ÎS:Ê)} (6)

Σ ) 2ηsγ̆Ê +
2(L/D)2

3 ln(L/D)
æηsγ̆{Γ̂‚S + S‚Γ̂T - S(4):Ê -

1
3
ÎS:Ê - 1

γ̆
dS
dt } (7)

η* )
Σhxy

γ̆ηs
) 1 +

2(L/D)2

3 ln(L/D)
æ(Γ̂‚S + S‚Γ̂T - S(4):Ê - 1

3
ÎS:Ê)

(8)

N1 ≡ Σhxx - Σhyy (9)

N2 ≡ Σhyy - Σhzz (10)
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3.1. Shear Thinning of Isotropic Systems.In Figure 1 we
have plotted the relative viscositiesη* as a function of shear
rate for three isotropic systems consisting of rods with aspect
ratio equal to 25. A clear shear thinning is observed in all cases.
For comparison, we have included the results obtained by
calculatingS(4):Ê in eq 7 using the closure relation

on the basis of the simulated orientational order tensorS. The
viscosities calculated by using the closure eq 11 are seen to be
within ≈3% of the exact values in the case of isotropic
suspensions. Apparently, the above closure is very accurate, in
agreement with previous findings of ours.48 Also shown in
Figure 1 are viscosities calculated by means of a theory by
Dhont and Briels,20 using the approximate pair correlation
function of eq 4. In the case ofLæ/D ) 0.5 the agreement is
very good, and the neglect of dynamic correlations is apparently
unimportant. This holds true to a lesser extent whenLæ/D ) 1.
ForLæ/D ) 2 the agreement is limited to the lowest shear rates,
which was to be expected since this volume fraction is rather
close to the isotropic-nematic phase transition where a good
description of pair correlations becomes increasingly important.

Some 20 years ago, Hess has suggested that these viscosities
may be described by53,54

where η0
/ and η∞

/ are the values at zero shear rate and very
large shear rates, respectively.τr is a characteristic time given
by τr ) 1/6Dr(æ). This latter expression has been tested
experimentally by Graf et al.36 on isotropic systems offd viruses.
By fitting their measured viscosities with the Hess equation,
they found Dr(æ) in good agreement with self-rotational
diffusion coefficients obtained from electric or magnetic bire-
fringence experiments.55-57 We have made similar fits and
present theDr(æ) obtained this way in Figure 2, together with
those obtained by calculatingDr(æ) using

It is seen that both methods yield results in very good agreement
with each other.

In their review paper,20 Dhont and Briels apply a perturbation
theory to calculate viscosities of isotropic suspensions at low
shear rates and low volume fractions. By expanding the Hess
equation to the same order and comparing both expressions,η0

/

and η∞
/ may be calculated. Using the results in the Hess

equation, we obtain

where the coefficientR is given by

In Figure 3 we compare viscosities obtained with this equation
with those calculated from our simulation results. It is seen that
for the lowest two volume fractions the results agree remarkably
well. For Læ/D ) 2.0 the agreement is less perfect, and in this
case a fit with the Hess equation usingη0

/, η∞
/ , and τr as

adjustable parameters performed slightly better, as indicated by
the dashed line.

3.2. Shear Thinning of Nematic Systems.In this subsection
we describe our results of calculating shear viscosities of nematic

Figure 1. Relative viscosities of isotropic suspensions of rigid rods
with aspect ratioL/D ) 25 for three scaled volume fractions. Circles,
squares, and diamonds represent the results forLæ/D ) 2.0, 1.0, and
0.5, respectively, while crosses, stars, and pluses represent the corre-
spondingη* obtained by using the closure eq 11 on the basis of order
tensorsS from the simulations. Curves represent theoretical results
predicted by Dhont and Briels.20

Figure 2. Self-rotational diffusion coefficients of rods withL/D ) 25
in isotropic suspensions as a function of the scaled volume fraction.
Circles denote the traditional measurements by using the Debye
expression, eq 13, while stars are calculated from the viscosity by the
Hess theory, eq 12.

Figure 3. Relative viscosities of isotropic suspensions of rigid rods
with L/D ) 25 as a function of shear rate. Drawn lines show the results
of eq 14 withDr(æ) calculated from the Debye expression, eq 13, while
the dashed curve is a three-parameter fit with the Hess theory, eq 12.

η* ) (1 + RL
D

æ) - 18
25

1

1 + (6Dr(æ)

γ̆ )2
R L

D
æ (14)

R ) 8
45

L/D
ln(L/D)

(15)

S(4):Ê ≈ 1
5
{S‚Ê + Ê‚S - S‚S‚Ê - Ê‚S‚S + 2S‚Ê‚S +

3SS: Ê} (11)

η* ) η∞
/ +

η0
/ - η∞

/

1 + (γ̆τr)
2

(12)

〈û(t)‚û(0)〉 ) exp{-2Dr(æ)t} (13)
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systems. First, in Figure 4 we plot the relative viscosity as a
function of strain for a nematic system of rods with aspect ratio
equal to 25 and scaled volume fractionLæ/D ) 3.5 for four
different rotational Peclet numbers, Per ) γ̆/Dr. The viscosities
η*( t) ) Σxy(t)/γ̆ηs in this plot are not time averaged and are
calculated using eq 7, including the term proportional to dS/dt.
Similar calculations, neglecting the term proportional to dS/dt,
reveal that this term smooths the results a bit but has no
influence on the time-averaged results that we are interested
in. In panels a and b, the viscosity is clearly seen to periodically
vary in time. In a previous paper47 we found that at the
corresponding shear rates the directorn̂ of the system being
studied here performs kayaking motions. Heren̂ is the unit
eigenvector of S corresponding to its largest eigenvalue,
representing the average direction of the rods. Comparing
viscosities and director motions, we find, to no surprise, that
the peaks in the viscosities in panels a and b occur at strains
where the directors flip from one flow aligned orientation to
the other. Panel c corresponds to a shear rate just above the
kayaking to wagging transition. Hence, the director is mainly
situated in the shear plane, “wagging” about the velocity
direction. The viscosity displays some small oscillations, which
are rather insignificant compared to the absolute value. At very
high shear rates, in panel d, the director is arrested in the shear
plane, making a small angle with the flow direction. The
corresponding viscosity is virtually constant.

In Figure 5 we display time-averaged viscosities as a function
of shear rate, again for rods with aspect ratioL/D ) 25, for

three different volume fractions. The drawn lines will be
discussed later and should be considered as guides to the eye
for the time being. As in the case of isotropic systems, a clear
shear thinning is observed for all three volume fractions. In
Figure 6 shear viscosities are shown to be linear inLæ/D over
a large range of shear rates.

Next, in Figure 7 we investigate the dependence ofη* on
the aspect ratioL/D; the scaled volume fraction in all cases is
given by Læ/D ) 4.5. Two things may be noticed. First, the
zero shear rate value of the viscosity increases substantially with
increasing values ofL/D. Second, the inflection point of the
shear thinning curve moves to lower shear rates with increasing
aspect ratios.

It is intuitively clear that the shear rateγ̆IP at the inflection
point of the viscosity curve reveals some dominant characteristic
time in the system. It seems therefore to be appropriate to fit
the shear thinning curves for nematic systems with the Hess
equation, just as we did with the corresponding curves for
isotropic systems. The drawn lines in Figures 5 and 7 were
obtained in this way. Estimates ofγ̆IP are then calculated
according toγ̆IP ) (x3τr)-1. It is instructive to compare these
values with the shear ratesγ̆kw at the kayaking to wagging
transitions in the corresponding systems. Therefore, in Figure
8 we plot γ̆IP/γ̆kw as a function ofL/D for all systems studied
in Figures 5 and 7. It is seen that for all aspect ratiosγ̆IP is
almost equal toγ̆kw. The origin of shear thinning in nematic
systems may therefore safely be attributed to the kayaking to
wagging transition of the director.

Figure 4. Relative viscositiesη*, calculated by eq 7 including the
dS/dt term, as a function of strain. In panels a-d, four different shear
rates are employed with the corresponding rotational Peclet numbers
Per ) 0.3, 0.7, 2.5, and 10.0, respectively. A running average of dS/dt
is used for each panel to reduce the noise produced by the numerical
differentiation ofS.

Figure 5. Relative viscosities of nematic suspensions of rigid rods
with aspect ratioL/D ) 25 at three scaled volume fractions of 3.5,
4.0, and 4.5, respectively.

Figure 6. Relative viscosities of nematic solutions of rods withL/D
) 25 as a function of the scaled volume fraction, for various shear
rates ranging from Per ) 1 to 100.

Figure 7. Relative viscosities of nematic systems as a function of shear
rate. Solutions of rigid rods withL/D ) 25 (stars), 30 (circles), 40
(diamonds), 50 (squares), and 60 (triangles) are investigated. The
simulation results are fitted using the Hess formula54 given in eq 12.
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Before finishing this subsection, let us make one more remark.
In Figure 9 we have plotted flow curves, i.e., viscosities as a
function of shear rate, for systems withL/D ) 25 andLæ/D )
4.5, once calculated using eq 6 and once using eq 7. There is a
clear difference between the two curves, with eq 6 producing
the larger viscosities. On fitting the new curve with the Hess
equation, we found that its inflection point occurs at a shear
rate γ̆IP which is a factor of 2.5 smaller thanγ̆kw. This
discrepancy may be considered a, be it weak, argument in favor
of eq 7.

3.3. Normal Stress Difference.Measurements28,29of normal
stress differences of nematic liquid crystalline polymers show
remarkable differences compared with those exhibited by
isotropic suspensions. For a concentrated yet isotropic solution,
the first normal stress differenceN1 is always positive and
increases monotonically with shear rate, while the second normal
stress differenceN2 is negative and decreases with shear rate.
In nematic solutions, on the other hand, highly nonlinear
rheological behaviors are observed: both the first and the second
normal stress differences change signs several times with
increasing shear rate.

In Figure 10, we plotN1 and -N2 as a function of the
rotational Peclet number in a log-log scale. The scaled volume
fraction Læ/D is chosen equal to 2.0, ensuring an isotropic
system.46 The monotonic increase in magnitude of bothN1 and
N2 agrees qualitatively with experimental results on rodlike

PBLG (poly(γ-benzyl L-glutamate)) in the isotropic phase by
Magda et al.32 It is well-known that the probability distribution
function of the end-to-end vector of polymers, whether flexible
or rigid, in isotropic phases is distorted from spherical to
ellipsoidal distributions when such systems are subjected to shear
flow. The resulting elastic forces must be balanced by shear
forces, makingΣxx invariably positive andΣyy negative.9 Since
the flow hardly influences the distribution in the vorticity
direction, Σzz remains very small, and the normal stress
differences have the signs found in our simulation.

The absolute values ofN1 andN2 of nematic suspensions are
plotted as a function of Peclet number in parts a and b of Figure
11, respectively. The aspect ratioL/D is chosen equal to 25
again, while the scaled volume fractionLæ/D ) 3.5, ensuring
the nematic state of the systems. Compared with the behaviors
shown by the isotropic suspensions, distinctive phenomena are
observed in nematic phases: both normal stress differences are
not monotonic anymore but change sign with shear rate. The
first normal stress differenceN1 is found positive at low and
high shear rates but negative at intermediate shear rates. The
second normal stress differenceN2 is much smaller in magnitude
than N1 and always opposite in sign. This feature ofN2 is in
accordance with that shown by isotropic solutions.

As can be read from Figure 11, the first change of sign occurs
exactly at the transition from kayaking to wagging, indicated
by an arrow at the upper horizontal axis, while the second
change of sign occurs around the transition from wagging to

Figure 8. Ratio Pekw/PeIP as a function of aspect ratio. Pekw denotes
the critical Peclet number at which the kayaking to wagging transition
occurs, as obtained from inspection of the periodic orientational motions
exhibited by the director. PeIP stands for the Peclet number calculated
from the inflection point of the viscosity by using the Hess theory; see
eq 12. Open symbols represent systems with a scaled volume fraction
of 4.5, while the gray and solid triangles denoteLæ/D ) 4.0 and 3.5,
respectively.

Figure 9. Comparison of the relative viscosities calculated by eq 6
(shown as squares) and eq 7 (circles) in nematic solutions of rods with
L/D ) 25 andLæ/D ) 4.5 at various share rates. The dotted and dashed
lines are fits by the Hess theory, eq 12.

Figure 10. First (shown as circles) and second (squares; note the
reversal of sign) normal stress differences of isotropic solutions of rigid
rods with L/D ) 25 as a function of rotational Peclet number. The
scaled volume fractionLæ/D is chosen equal to 2.0.

Figure 11. Absolute values of the first and second normal stress
differences of nematic solutions of rigid rods withL/D ) 25 andLæ/D
) 3.5 as a function of rotational Peclet number are plotted in (a) and
(b) in the log-log scale, respectively. The critical Peclet number of
the kayaking to wagging transition, Pekw, is represented by an arrow.
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flow-aligning, which is difficult to pinpoint otherwise. This
complex behavior was first analyzed by Marrucci and Maffet-
tone9 on the basis of the two-dimensional analogue of the Doi-
Hess theory. A three-dimensional analysis was provided by
Larson,12 who found three distinct regions very much in
agreement with our results. The elastic response of the flow
aligned state is to a large extent similar to that of the isotropic
state. The orientational probability distribution is already rather
narrow at zero shear, since we are in a nematic state. The flow
has aligned this distribution along the flow direction and tries
to narrow it just like in the isotropic state. The system is
therefore rather similar to that in the isotropic state explaining
the signs ofN1 andN2.

In Figure 12 we have plotted the first normal stress difference
N1, the scalar order parameterP2, and thex component of the
director n̂x of a tumbling system withL/D ) 25, Læ/D ) 3.5,
andγ̆ ) 125 s-1 as a function of strain.N1 has been calculated
on the basis of eq 7, including the term proportional to dS/dt.
We find thatN1 is basically equal toΣxx. From the plot we see
that N1 rises sharply every time when the rods tumble. After
the rods have settled along the flow direction,P2 is somewhat
larger than its equilibrium value at the given value ofLæ/D.
N1, and so alsoΣxx, begin to gradually decrease and become
negative whenP2 drops below its equilibrium value. At this
stageΣxx opposes the elastic forces caused by the fact that the
orientational distribution is too wide for the given value ofLæ/
D. N1 continues to decrease until the whole process starts again
with the next tumbling.

As a final remark we notice that the normal stress differences
N1 andN2 calculated by eq 6 are monotonic against shear rate.
Since this is not in agreement with experimental observation,
we once more conclude that eq 7 provides a much safer
expression to calculate stresses than eq 6.

4. Conclusions

We have calculated relative viscosities as well as first and
second normal stress differences of suspensions of rigid liquid
crystalline polymers in shear flow. To make this goal realizable,
a recently developed event-driven Brownian dynamics algorithm
was used. In this algorithm, excluded-volume interactions
between the rods are considered to be infinitely hard, but
hydrodynamic interactions are neglected.

The general picture of the present paper is summarized as
follows:

1. The suspensions of rigid rods exhibit shear thinning
behavior in shear flow, both in isotropic and in nematic states.

2. In the isotropic phase, the measured shear thinning curves
accord very well with the Hess equation. At low volume
fractions or low shear rates, results by Dhont and Briels were
confirmed. The self-rotational diffusion coefficients calculated
by fitting the simulation results with the Hess equation show
good agreement with traditional measurements.

3. The inflection points of the shear thinning curves of
nematic systems are associated with the shear rates at which
the director transforms its orientational motion from kayaking
to wagging. Our calculated values of the inflection points are
in good agreement with those measured by investigating the
motion of the director.

4. The first normal stress differenceN1 in nematic solutions
of rigid rods is positive at low or high shear rates but negative
when intermediate shear rates are employed. The second normal
stress differenceN2 is found always with opposite sign to that
of N1 and much smaller in amplitude. These fascinating
behaviors are rather distinguished compared to the monotonic
properties that are exhibited by isotropic solutions. Our simula-
tion results qualitatively confirm both theoretical predictions
and experimental measurements.

It is constructive to make a quantitative comparison between
our simulations and experiments on rodlike polymers. In Figure
13, we have plotted the experimental viscosities of isotropic
solutions offd viruses measured by Graf et al.36 Using a molar
weight49 of 1.64× 107 g/mol and an effective aspect ratio of
60, the experimental density of 1.56 mg/ml corresponds to a
scaled volume fraction of 0.5. Simulated viscosities of rod
suspensions withL/D ) 60 andLæ/D ) 0.5 are shown as
circles. The simulations deviate from the experiments by a factor
of 2. Considering the inherent flexibility of thefd virus and the
ionic strength in the aqueous solution, which highly affects the
effective diameter of the virus, this discrepancy is reasonable.
Scaling the contribution of the rods such that the simulated and
experimental viscosities agree at zero shear rate makes them
agree at all shear rates. This scaling roughly amounts to
multiplying ηsim

/ (γ̆) - 1, and henceR Læ/D, by a factor of
(ηexp

/ (0) - 1)/(ηsim
/ (0) - 1).
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