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We present a novel formulation based on quantum Monte Carlo techniques for the treatment of
volume polarization due to quantum mechanical penetration of the solute charge density in the
solvent domain. The method allows to accurately solve Poisson’s equation of the solvation model
coupled with the Schrödinger equation for the solute. We demonstrate the performance of the
approach on a representative set of solutes in water solvent and give a detailed analysis of the
dependence of the volume polarization on the solute cavity and the treatment of electron
correlation. © 2008 American Institute of Physics. �DOI: 10.1063/1.3043804�

I. INTRODUCTION

The dielectric continuum model of solvation is among
the most widely used methods in studying the effects of a
solvent on the properties of a molecular system.1–3 Dielectric
continuum theory allows one to approximately include the
effects of the electrostatic potential produced by the polar-
ization of the solvent in the presence of a solute. These ef-
fects are responsible for a significant fraction of the free
energy of solvation, namely, the so-called polarization free
energy.1 Even though the polarization free energy is gener-
ally not the leading term in the decomposition of the free
energy of solvation,4 it is the most important contribution
due to the solvent in processes like chemical reactions5 and
responses to external fields6 occurring in solution.

Within the dielectric continuum approach, the calcula-
tion of the polarization free energy is performed by placing
the solute molecule in a cavity created in a dielectric con-
tinuum medium representing the solvent. The polarization
occurs when we consider the coupling of Poisson’s equation
of the solute charges �electrons and nuclei� in the dielectric
medium, and the Schrödinger equation for the solute elec-
trons in the solvent reaction field.2,3 All modern packages for
standard ab initio calculations contain codes to solve more or
less rigorously this coupled problem for solutes of arbitrarily
complicated shape.7,8

Computational difficulties arise when a significant frac-
tion of solute electrons are found in the spatial domain of the
solvent, namely, outside the cavity.9–12 While the shape and
size of the cavity are determined based on reasonable physi-
cal constraints, the tails of the solute electronic distribution
extend in principle to infinity and, especially for anions,
charge penetration of the solute in the solvent region cannot
be avoided. In the standard polarizable continuum model
�PCM�,1 charge penetration is neglected and a charge

distribution on the surface of the cavity is determined to
yield the solvent dielectric polarization. When charge pen-
etration is considered, the exact solution of Poisson’s equa-
tion is instead achieved by adding to this surface charge den-
sity a volume polarization charge distribution due to the
solute in the solvent domain.11,12 This approach is often re-
ferred to as the fully polarized continuum model or the sur-
face and volume polarization for electrostatics �SVPE�
method.

In this work, we present an alternative formulation of the
SVPE within a quantum Monte Carlo �QMC� framework. In
conventional SVPE techniques, the volume polarization
charge distribution is represented by a set of point charges
placed in the spatial domain of the solvent. The positions of
the charges are defined by a grid whose shape can be updated
self-consistently. Here, we show how QMC techniques allow
a more flexible sampling of these positions which can be
modulated on the tail distribution of the solute wave func-
tion. The accuracy of the method is demonstrated on a set of
prototypical solute molecules in water solution at ambient
condition. Our results also indicate that electron correlation
tends to reduce the solvent polarization and that the volume
polarization has a non-negligible effect on the solute wave
function.

This paper is organized as follows. In Sec. II, we de-
scribe the proposed approach focusing on its novel features.
In Sec. III, we present accurate calculations on a variety of
molecules in water solvent. We also investigate the behavior
of the polarization free energy contribution with the size of
the cavity. In Sec. IV, we draw the conclusions and discuss
future prospects.

II. THEORY

When the nuclei and the electrons of a solute are placed
within a cavity in a dielectric continuum medium, Poisson’s
equation takes the forma�Electronic mail: amovilli@dcci.unipi.it.
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div E = 4���tot�, �1�

where E is the total electric field and ��tot� is the total charge
density given by the nuclear and electronic distribution of the
solute, and the polarization charge distribution due to the
response of the medium to the presence of the solute. The
polarization charge density contains two contributions, one
coming from the surface of the cavity where the dielectric
constant is discontinuous and one from the solvent regions
where the dielectric constant is different from the vacuum
value and the probability of finding an electron of the solute
is not negligible.

A. Volume polarization charge density

We begin with the calculation of the second contribution
to the polarization charge density, namely, the so-called vol-
ume polarization charge density, given by

�vol
�pol��r� = �1

�
− 1��e�r� , �2�

where �e�r�, in a.u., is the electronic density defined as

�e�r� = − ���	
i=1

N

��r − ri���
 , �3�

with N the number of electrons and � the solute wave
function.

�vol
�pol��r� is nonzero only outside the cavity where the

dielectric constant of the solvent is different from 1. The
contribution to the electrostatic potential due to the volume
polarization charge density is given by the following integral
over the domain outside the cavity C:

�vol
�pol��r� = �

r��C

�vol
�pol��r��
�r − r��

dr�

= �1 −
1

�
����	

i=1

N
��ri�

�r − ri�
��
 , �4�

where ��r� is equal to 1 outside and to 0 inside the cavity. As
we explain in detail below, we adopt the commonly used
definition of a cavity in terms of interlocking spheres. Con-
sequently, a given point is considered outside the cavity if
the distance of the point from the center of each sphere is
greater than the corresponding radius.

In the variational Monte Carlo �VMC� approach, the in-
tegral �Eq. �4�� can be easily estimated by sampling a set of
configurations �r1

�k� , . . . ,rN
�k�� from the square of the wave

function �2 using the Metropolis Monte Carlo method. The
values of the integrand computed with these configurations
are averaged to give

�vol
�pol��r� �

1

M
	
k=1

M �1 −
1

�
�	

i=1

N
��ri

�k��
�r − ri

�k��� , �5�

where the estimate tends to the exact result as M→	. If we
compare this expression with the analogous equation for a
discretized set of nc volume polarization charges:

�vol
�pol��r� � 	

l=1

nc ql

�r − rl�
, �6�

we see that our expression corresponds to nc
N�M point
charges with charge ql= �1−1 /�� /M and positions rl=ri

�k� if
��ri

�k��=1, corresponding to the sampled one-electron coordi-
nates outside the cavity.

B. Surface polarization charge

For the computation of the polarization charge at the
cavity surface, we slightly modify the traditional scheme.
Once the electric field has been obtained after some self-
consistent procedure, the surface polarization charge density
� at the position r of the cavity border is given by the
relation

��r� =
�1 − ��

4��
n+ · E−�r� , �7�

where n+ is the unity vector pointing from r outside the
cavity and E− is the total electric field evaluated at the sur-
face immediately inside the cavity. The electric field results
from the superposition of the fields generated by polarization
and free charges and can be written as

E = Esolute + Esurf + Evol. �8�

Using Eqs. �3�–�6�, we easily obtain

Esolute�r� + Evol�r�

� 	


nuclei

Z

�r − R�
�r − R�3

+
1

M
	
k=1

M

	
i=1

N − 1 + ��ri
�k���1 −

1

�
�� �r − ri

�k��
�r − ri

�k��3
, �9�

where R is the vector position of the solute nucleus . This
equation is formally exact only in the limit of M→	 but, for
the VMC calculations presented in this paper, the length of
the run can be easily made sufficiently long to ensure a small
statistical error.

For the surface charge contribution, we have instead

n+ · Esurf−�r� = − 2���r� + �
�

n+ · �r − ra�
�r − ra�3

��ra�da , �10�

where the integral is defined over the cavity surface �. As in
standard PCM, the cavity is here defined as the outermost
surface obtained by centering spheres of different radii on
the solute nuclei. The surface charge distribution � is dis-
cretized by dividing the surface in small area elements and
placing point charges at the center of each of them. While, in
standard PCM, such elements have well defined shapes, we
adopt here a different approach. First of all, we fix the num-
ber of point charges per unit surface, p, say, which is chosen
to be the same on all the spheres of the cavity. When not too
close to a seam between two spheres, a point charge is as-
signed to a portion of surface with area a given by the in-
verse of the number density p. The surface charge density �
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at the position rk of the point charge qk is thus approximated
as

��rk� �
qk

a
. �11�

At the seams where two point charges of different spheres
are closer than a fixed length proportional to �a, the two
point charges are replaced by a single one in the middle, and
all properties related to them are averaged with the same
weights. An indirect effect of such correction is a smoothen-
ing of the cavity surface at the junction between two spheres.
In any case, we recall that, since the seams determine a one-
dimensional domain, this correction does not significantly
alter the value of the surface integral defined above.

The coordinates of the point charges are separately de-
termined on each sphere before these are joined to model the
cavity. For a sphere of radius R, the positions of the n point
charges �n=4�R2p� are obtained by minimizing the quantity

Un = R	
i=1

n−1

	
j=i+1

n
1

�ri − r j�
, �12�

which does not depend on the radius R. This procedure is
equivalent to minimize the repulsion energy between n equal
charges constrained on a spherical surface. At the optimal
configuration of the n charges, this quantity is a function
only of n, namely,

Un = Ann2, �13�

where An equals the series

An = 	
j=0

	

cjn
−j/2 =

1

2
−

0.552 47
�n

+ ¯ . �14�

This problem is known as the Thomson problem and can be
solved by numerical simulations which find the optimal con-
figuration by analyzing the energy of randomly generated
configurations from a uniform distribution.13,14

Since 2An is the ratio between the interaction energy of
the optimally spaced point charges on a sphere surface and
the self-energy of a homogeneous surface distribution of the
same total charge, 2An can be used to correct the surface
integral of Eq. �10� where the value is obtained by a summa-
tion over a finite set of points. In particular, we adopt the
approximation

�
�

n+ · �rk − ra�
�rk − ra�3

��ra�da � 	
j�k

qj

2Anj
�j�

n+ · �rk − r j�
�rk − r j�3

.

�15�

The quantity Anj
�j� is locally defined as

Anj
�j� =

Rj

2n
	
k�j

sphere�j�
1

�rk − r j�
, �16�

where the sum is restricted to the points generated on the
sphere where the charge j lies and also includes those points
which will be discarded in forming the solute cavity surface.

This approach does not produce significant differences
with the curvature correction used in standard PCM but it

allows the use of an arbitrary number of point charges with-
out any reference to surface elements of particular shape.
Finally, since the integral �15� and the surface density � at
the point charge positions are linear in qk, the values of the
surface point charges can be obtained by solving the linear
system derived from Eq. �7�,

qk = 	
j

Gkj��,��n+ · �Evol�r j� + Esolute�r j�� , �17�

where Gkj depends only on the shape of the cavity and on the
solvent dielectric constant. Equation �17� establishes a rela-
tion between Poisson’s equation and the solute Schrödinger
equation from which the electron density �and subsequently
the volume polarization charges� is derived, and is the basis
for a self-consistent procedure which leads to a simultaneous
solution of both equations.

C. Quantum mechanical treatment of the solute

As many-body wave function to describe the solute, we
employ a spin-free Slater–Jastrow form of the type

��r1,r2, . . .� = ��r1,r2, . . .�J�r1,r2, . . . ,r12, . . .� . �18�

The determinantal component is given by

� = 	
K

DK
↑ DK

↓ dK, �19�

where DK
↑ and DK

↓ are the Slater determinants constructed
from the occupied orbitals of spin-up and spin-down elec-
trons, respectively, and dK are the mixing coefficients. The
Jastrow correlation factor J is the exponential of the sum of
three fifth-order polynomials of the electron-nuclear �e-n�,
the electron-electron �e-e�, and of pure three-body mixed e-e
and e-n distances, respectively.15 In this work, we use a
single-determinantal wave function for all saturated solutes
and a multideterminantal reference for the unsaturated sys-
tems. In the latter case, the starting determinantal part is
obtained from a complete active space self-consistent field
�CASSCF� scheme involving the � electrons and one active
orbital for each center of the � fragment.

All determinantal and Jastrow parameters of the solute
wave function � are simultaneously optimized within VMC
by energy minimization.16 In particular, the optimization of
the wave function parameters is achieved using Eq. �17� to-
gether with the minimization of the energy functional

F��� = ���Helec��
 + 	
��

ZZ�

�R − R��

+
1

2
� 	



Z��r − R� + �e�r�� 	
k

surf,vol
qk

�r − rk�
dr ,

�20�

where Helec is the Hamiltonian of the solute electrons in the
field of the solute nucleus . The last term in the right hand
side of Eq. �20� is a sum over all surface and volume charges
and corresponds to the so-called polarization contribution to
the free energy of solvation.

The basic loop of self-consistency we adopt is the fol-
lowing: �i� At the jth iteration, a VMC run is performed to

244106-3 QMC formulation of volume polarization in PCM J. Chem. Phys. 129, 244106 �2008�

Downloaded 28 Oct 2010 to 130.89.112.86. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



generate a new set of volume polarization charges q�j+1�

�Eq. �5�� given a previous set q�j� and the solute wave func-
tion ��j�; �ii� with the solvent reaction field described by the
new set of charges q�j+1�, the optimal wave function ��j+1� is
obtained by energy minimization. At convergence, a diffu-
sion Monte Carlo �DMC� calculation can also be performed
using the converged polarization charges determined in
VMC and the corresponding optimal wave function. The al-
gorithm has been implemented in the CHAMP package.17

III. TEST CALCULATIONS

In order to test the approach presented in Sec. II, we
compute the polarization free energy for several solutes in
water as solvent. We consider the following solute systems
of increasing complexity: fluoride anion �F−�, cyanide anion
�CN−�, formaldehyde �HCHO�, acethylene �C2H2�, hydra-
zine �NH2NH2�, methylamine �CH3NH2�, methylfluoride
�CH3F�, acetaldeyde �CH3CHO�, acetamide �CH3CONH2�,
and acetone �CH3COCH3�. For these systems, we compute
the surface and volume polarization contributions to the free
energy of solvation together with the fraction of electrons
found outside the cavity for a series of cavity sizes. Although
not realistic, the smallest cavities studied in this work allow
us to truly assess the performance of our approach since

these small sizes correspond to a very strong volume polar-
ization of the solvent. Similar studies have been published by
Chipman11,12 with whom we will also compare our results.

A. Computational details

In this work, we use scalar-relativistic energy-consistent
Hartree–Fock �HF� pseudopotentials18 which are well de-
signed for QMC calculations. Apart from fluorine which is
treated as explained below, we employ the Gaussian cc-
pVDZ basis sets18 constructed for these pseudopotentials and
augment them with diffuse functions to ensure a better de-
scription of the tails of the wave functions. In particular, we
add a diffuse s and, for the heavy atoms, also a diffuse p
Gaussian function with exponents which are a third of the
most diffuse single-Gaussian s and p basis functions of the
cc-pVDZ set. For the fluoride anion, in order to improve
the representation of the charge density, we modified the
cc-pVDZ basis set18 by discarding the single-Gaussian s and
p basis functions and by decontracting the two most diffuse
primitive Gaussians from the original s and p contracted ba-
sis functions. For instance, if we consider the s channel, the
original s contracted basis function is built from nine primi-
tive Gaussians and is now decontracted in 3s basis functions,
i.e., two single-Gaussian functions with the most diffuse ex-

TABLE I. Comparison of HF, UQCISD, VMC, and DMC total energies for the systems treated in this work in
vacuo and with the basis set described in the text. We also include the root-mean-square fluctuations of the local
energy computed in VMC ���. The statistical error on the VMC and the DMC energies is given in parentheses.
Data are in a.u.

System HF UQCISD VMC � DMC

F− −23.983 20 −24.194 00 −24.3014�1� 0.537 78 −24.3127�1�
CH3F −31.262 91 −31.620 00 −31.7520�2� 0.665 15 −31.7825�1�
NH2NH2 −21.753 96 −22.146 88 −22.2353�2� 0.558 17 −22.2657�1�
CH3NH2 −18.157 90 −18.526 81 −18.6079�2� 0.494 31 −18.6347�1�
CN− −15.245 56 −15.548 15 −15.6187�2� 0.482 28 −15.6411�2�
C2H2 −12.123 10 −12.404 81 −12.4728�1� 0.421 68 −12.4927�2�
HCHO −22.448 18 −22.795 52 −22.8859�2� 0.568 66 −22.9113�2�
CH3CHO −29.150 58 −29.655 04 −29.7782�3� 0.643 92 −29.8172�2�
CH3CONH2 −39.498 93 −40.181 54 −40.3534�3� 0.751 97 −40.4053�2�
CH3COCH3 −35.849 49 −36.512 62 −36.6715�3� 0.712 41 −36.7204�2�

TABLE II. Surface ��Gsurf�, volume ��Gvol�, and total ��Gpol� polarization contributions to the free energy of
solvation for the fluoride anion in water and different cavity radii �R�. We list the total polarization computed
using �a� our approach and �b� the formula given in Ref. 20 �in the linear regime and for hard-sphere cavity�
computed with the same VMC electron density as in �a�. qout is the fractional number of solute electrons outside
the cavity. Radii are in bohr and polarization energies are in kcal/mol.

R qout �Gsurf �Gvol �Gpol�a� �Gpol�b�

1.54 1.961 92.66�4� −212.15�4� −119.49�4� −119.42
1.70 1.536 60.65�3� −169.74�4� −109.09�4� −109.08
2.00 0.987 −1.442�1� −105.706�4� −107.148�4� −107.22
2.20 0.750 −29.335�2� −76.706�4� −106.041�4� −106.25
2.40 0.572 −49.004�1� −55.619�1� −104.623�1� −104.63
2.60 0.437 −61.495�2� −40.390�1� −101.885�2� −102.01
2.80 0.337 −68.732�4� −29.67�1� −98.40�1� −98.36
3.00 0.264 −72.409�1� −22.005�2� −94.414�2� −94.42
3.60 0.129 −73.335�1� −9.300�1� −82.635�1� −82.79
4.00 0.082 −70.194�1� −5.374�1� −75.569�1� −75.64
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ponents and one contracted basis function constructed from
the remaining seven Gaussian functions without changing
the original coefficients. In addition, we add two s and two p
diffuse functions with exponents in the same geometrical
sequence of the two decontracted Gaussians.19 For all sys-
tems, we use the equilibrium geometries in vacuo obtained in
an all-electron unrestricted quadratic configuration interac-
tion with single and double excitations �UQCISD� calcula-
tion with the 6-311+ +G�� basis set implemented on the
GAUSSIAN 03 package.8

In Table I, we list the energies calculated in vacuo for all
the systems using the HF, the UQCISD, the VMC, and the
DMC approaches. We note that the quality of the VMC wave
functions is rather good as VMC recovers more than 94% of
the DMC correlation energies while UQCISD only recovers
between 65% and 75%.

For the relative dielectric constant of water, we use the
value of 78.4 at 298 K. To compute the surface polarization
contribution, we use a surface number density of point
charges equal to p=1.831 a.u.−2 and a cutoff distance of
0.562 a.u. for averaging at the seams between two interlock-
ing spheres. The number of volume point charges depends on
the escaped charge, and the MC runs are taken sufficiently
long to guarantee at least 60 000 point charges per escaped
electron.

B. Fluoride anion

The treatment of the fluoride anion is simple since, for a
given electronic density, the polarization contribution to the
free energy of solvation can be computed exactly. Therefore,
to assess the quality of the discretization of the solvent po-
larization charge distribution used in our approach, we start
from the converged electronic density computed according to
the self-consistent scheme presented in Sec. II and solve this
part of the calculation exactly. For the exact computation of
the polarization free energy, we follow the approach we re-
cently published on nonlinear solvent polarization for spheri-
cal solutes,20 which we here consider of course in the limit of
linearity and for a hard-sphere cavity.

In Table II, we list the VMC polarization free energies
computed for different cavity radii at self-consistency and
compare them with the values calculated exactly starting
from the same, final VMC density. Although the differences
between the two sets of values are greater than the statistical
error, the discrepancies always remain below 0.2 kcal/mol.
Therefore, considering that the variation in polarization en-
ergy over the range of the considered cavity radii is about
200 times greater, we can regard the numerical error associ-
ated with the discretization of the charge as small and the
approximation as sufficiently accurate.

Furthermore, we compare our approach with one of the
most commonly used PCM methods, that is, the so-called
integral equation formalism �IEF� PCM �Ref. 9� in the ver-
sion implemented in the GAUSSIAN package.8 In the standard
IEF-PCM approach, the volume polarization charge is simu-
lated via an effective surface polarization which produces the
same effect inside the cavity. For the quantum mechanical
treatment of the solute in these IEF-PCM calculations, we

use the density functional theory �DFT� with the B3LYP
exchange-correlation functional and employ the same
pseudopotentials and basis sets as in the QMC calculations.

The polarization energies computed with our method and
with the IEF-PCM/DFT-B3LYP approach are shown in Fig.
1 as a function of the cavity radius. Our QMC results �curve
b� only suffer from the numerical error coming from the
discretization of the polarization charge distribution dis-
cussed above, which is not visible on the scale of the plot.
On the other hand, as already noted by Chipman,12 the
IEF-PCM approximate treatment of volume polarization
�curve a� leads to an incorrect behavior for small cavity radii
while it tends to the exact result at larger radii. It is important
to stress that the standard PCM without any treatment of the
volume polarization would lead to significantly worse re-
sults. Finally, we also compute the exact polarization energy
using the electron density resulting from the Gaussian
IEF-PCM calculation �curve c�. Although curve c is more
accurate than curve a computed with the IEF-PCM approxi-
mate treatment of volume polarization, the discrepancies for
small cavities indicate that, when the solvent reaction field is
strong, the sensitivity of the solute electronic response to the
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FIG. 1. Polarization contribution to the free energy of solvation of the
fluoride anion in water solution as a function of the cavity radius. Curve a
refers to the IEF-PCM method, curve b to this work, and curve c to the
solution of Poisson’s equation with the IEF-PCM fluorine electron density.
Energies are in kcal/mol and radii are in bohr.
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solvent polarization can be significant leading to not negli-
gible errors if the solvent polarization itself is not properly
described.

For completeness as we do for the other solutes, in Table
II, we also show the surface and the volume polarization
contribution together with the fractional number of fluorine
electrons falling outside the cavity. If we look at the separate
volume and surface contributions, it is interesting to note the
large variation in the volume polarization with the change in
the cavity radius and the change in sign of the surface polar-
ization term when there is one escaped electron.

C. Two heavy atom solutes „N2H4, CH3NH2, CN−, C2H2,
HCHO, and CH3F…

Here, we consider the solutes which contain two heavy
�not hydrogen� atoms. In order to analyze the polarization
free energy term for cavities of different sizes, we have var-
ied the radii of the spheres according to a rule which depends
on only one cavity size parameter. For a given molecule X,
once the radius of a sphere centered on atom j has been
fixed, the radii Ri

X for all other centers are derived from the
relation

Ri
X = aij

X + bij
XRj

X, �21�

where aij
X and bij

X are constant parameters. These parameters
are computed by fitting the resulting surface to the two-
dimensional isodensity contours obtained by a standard
DFT-B3LYP calculation performed in vacuo at the equilib-
rium geometry. For each system, we consider several cavities
and determine one set of optimal fitting parameters, aij

X and
bij

X, for all radii.
In Table III, we report the surface ��Gsurf�, the volume

��Gvol�, and the total ��Gpol� polarization contribution to the
free energy of solvation computed in our VMC scheme for
different cavity radii. We compare our QMC results with the
polarization free energies computed with the same basis set
and pseudopotentials and the IEF-PCM approach in
GAUSSIAN 03 at the restricted HF ��Gpol

RHF� and the DFT
��Gpol

DFT� level of theory. Finally, in Table IV, we give all the
parameters which define the solute cavity in our calculations.

The cavities we consider vary from a size roughly cor-
responding to a contact with the solute �the fractional amount
of electrons outside the cavity, qout, is small� to a size where
one solute electron is outside the cavity. To estimate the radii
typically used in standard PCM calculations, we can consider
the Bondi radii21 multiplied by 1.2, as it has been done for a
long time in the past, and find 3.52, 3.86, 3.45, and 3.33 bohr
for N, C, O, and F, respectively. These values are close to our
largest radii and indicate that, in standard PCM applications,
a fraction of solute electrons, ranging between 0.1 and 0.2,
falls outside the cavity in the solvent domain. From our
VMC calculations for all neutral systems, we see that an
escaped charge of similar magnitude yields a volume

polarization contribution which is very small in comparison
to the total polarization term. For the cyanide anion, on the
other hand, the volume term is significantly larger and
amounts to roughly 10%–15% of the total polarization en-
ergy. It is also interesting to notice that the sign of �Gvol for
small cavities is positive for the neutral solutes and negative
for the anion. Therefore, in the neutral case, the interaction
of the positive volume polarization charges with the nuclei is
dominant while, in the anionic case, the interaction with the
electrons is more important because the number of electrons
is greater than the total nuclear charge.

The results obtained with our VMC scheme and the
DFT-B3LYP energies computed with the IEF-PCM method
allow us to understand the effect of electron correlation on
the polarization contribution to the energy of solvation. If we
compare the HF and DFT-B3LYP polarization energies of
Table III, we observe that correlation tends to reduce in
modulus the polarization free energy for all studied systems
and all cavity radii. For the largest cavity radii where a com-
parison of our approach and the IEF-PCM is meaningful, we
also find that the DFT-B3LYP polarization energies obtained
with the IEF-PCM agree well with the VMC results but are
always slightly higher in modulus than the VMC values. This
further indicates that a better treatment of correlation as the
one obtained in VMC has the effect of reducing the polariza-
tion free energies.

For these small-sized systems, the description of the
electronic density in DFT-B3LYP appears to be sufficiently
accurate to give a reasonable estimate of the polarization free
energy. The favorable comparison of the DFT-B3LYP ener-
gies with the VMC values at large cavity radii supports the
adequacy of DFT. Even for the cyanide anion where the
polarization is strong, the DFT-B3LYP energies compare
well with the results of a CASSCF calculation within the
IEF-PCM. As shown in Fig. 2, the DFT-B3LYP polarization
energies of the cyanide anion are very close to the results of
a CAS�10,10� calculation �all ten valence electrons are
placed in ten active orbitals� over the whole range of escaped
charge. We remark that we perform CASSCF instead of
coupled cluster or extensive configuration interaction calcu-
lations because the GAUSSIAN 03 package computes the di-
electric polarization charges self-consistently only at the HF,
DFT, and CASSCF levels while leaving the charges at the
values determined for the one-determinant reference wave
function in all other cases.

For the smallest cavities, the comparison of our VMC
results with the HF or DFT energies computed with the
IEF-PCM is not meaningful, as we have seen in the case of
the fluoride anion. However, we can compare our VMC en-
ergies with the accurate solution of Poisson’s equation at the
HF level obtained by Chipman12 for the cyanide anion. Since
the cavities in Chipman’s work are constructed in a slightly
different way, a comparison is possible only by plotting the
energies as a function of the escaped charge as done in Fig.
2. Our VMC and Chipman’s curves, also shown in Fig. 2, are
not too dissimilar in shape and the difference in magnitude
must be mainly ascribed to electron correlation. This differ-
ence is similar to the difference between the IEF-PCM
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curves obtained at the HF and the DFT-B3LYP correlated
level. More recently, Chipman11 also separately analyzed the
volume and surface polarization terms within HF for one
cavity size with qout=0.17. From Table III, we find that the
ratio �Gvol /�Gsurf at qout=0.166 is 0.179, which is in agree-
ment with Chipman’s ratio of 0.182.11 Therefore, correlation
lowers both surface and volume polarization contributions by
equal amounts.

While Table III illustrates how the effect of electron cor-
relation is similar in DFT and VMC, it is nevertheless im-
portant to note that the DFT and VMC data do not go to the
same limit at large cavities. The difference in the limiting
polarization free energies varies from 0.26 kcal/mol for C2H2

to 0.93 kcal/mol for HCHO. This discrepancy increases with
the size of the solute as we will explain below where larger
systems are considered.

TABLE III. Solute cavity data �see text� and calculated polarization free energy for the two-heavy-center
solutes in water considered in this work. Our results are compared with the IEF-PCM energies obtained from
GAUSSIAN 03 at the RHF and DFT-B3LYP levels. Radii and charges are in a.u. and free energy contributions are
in kcal/mol.

Rj
X qout �Gsurf �Gvol �Gpol �Gpol

RHF �Gpol
DFT

j=N X=N2H4

3.921 0.099 −4.853�4� −0.1106�1� −4.964�4� −6.16 −5.88
3.647 0.155 −6.305�6� −0.1446�3� −6.45�6� −8.15 −7.76
3.269 0.291 −9.90�1� −0.180�1� −10.08�1� −12.51 −11.87
2.948 0.499 −15.43�1� 0.108�2� −15.32�1� −18.78 −17.76
2.702 0.751 −20.80�1� 1.706�3� −19.09�1� −26.65 −25.24
2.324 1.422 −50.32�2� 9.51�1� −40.81�3� −49.62 −47.53

j=C X=CH3NH2

4.082 0.089 −2.484�4� −0.0326�1� −2.516�4� −3.11 −2.97
3.685 0.173 −3.825�5� −0.0294�3� −3.855�5� −4.66 −4.44
3.364 0.295 −5.722�7� 0.0526�7� −5.670�7� −6.71 −6.38
3.024 0.522 −9.87�2� 0.563�4� −9.31�2� −10.36 −9.82
2.646 0.984 −21.78�1� 3.264�4� −18.52�1� −18.20 −17.37
2.343 1.630 −49.69�3� 11.83�2� −37.86�4� −32.05 −31.07

j=C X=CN−

4.535 0.100 −55.141�1� −5.5690�2� −60.710�1� −62.05 −61.33
4.120 0.166 −54.952�2� −9.8253�3� −64.778�2� −66.41 −65.40
3.628 0.311 −49.396�3� −20.0746�8� −69.471�3� −71.52 −70.09
3.099 0.566 −33.848�3� −40.188�2� −74.037�3� −75.62 −73.69
2.797 0.822 −14.030�3� −61.287�3� −75.317�5� −75.79 −73.56
2.457 1.264 21.270�6� −97.631�7� −76.36�1� −71.86 −69.16

j=C X=C2H2

4.120 0.083 −2.325�3� −0.0803�1� −2.405�3� −3.18 −2.67
3.742 0.151 −3.009�4� −0.1108�3� −3.120�5� −4.62 −3.90
3.383 0.268 −4.575�5� −0.0967�7� −4.672�5� −6.86 −5.85
3.024 0.476 −8.480�7� 0.110�2� −8.370�7� −10.54 −9.20
2.721 0.770 −15.451�9� 1.413�4� −14.04�1� −15.83 −14.16
2.362 1.353 −38.98�2� 8.42�1� −30.56�2� −28.55 −26.60

j=O X=HCHO
3.638 0.077 −3.615�5� 0.0062�1� −3.609�5� −6.23 −4.54
3.345 0.136 −4.841�6� 0.0867�2� −4.755�6� −8.43 −6.16
3.024 0.254 −7.221�8� 0.3723�6� −6.849�9� −12.36 −9.08
2.731 0.451 −11.24�1� 1.441�1� −9.80�1� −18.32 −13.56
2.447 0.783 −21.25�2� 4.804�4� −16.45�2� −30.14 −22.70
2.183 1.312 −48.87�2� 15.056�9� −33.82�3� −50.84 −39.89

j=F X=CH3F
3.345 0.084 −2.371�5� 0.0118�1� −2.360�5� −3.42 −2.94
3.118 0.140 −3.081�6� 0.0759�2� −3.005�6� −4.31 −3.72
2.872 0.243 −4.371�7� 0.3108�6� −4.061�7� −5.76 −4.99
2.608 0.437 −7.48�1� 1.177�2� −6.31�1� −8.36 −7.33
2.400 0.693 −13.20�1� 3.224�3� −9.98�1� −12.08 −10.76
2.117 1.287 −37.59�2� 12.53�1� −25.05�3� −23.29 −21.51
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D. Medium size solutes „CH3CHO, CH3CONH2,
and CH3COCH3…

Common features of acetaldeyde, acetamide, and ac-
etone are that they have three or more heavy atoms and are
unsaturated owing to the presence of a carbonyl group. The
QMC calculations on these solutes performed with a mul-
tideterminantal wave function and a three-body Jastrow cor-
relation factor become computationally much more expen-
sive. Therefore, we limit the calculations to fewer cavity
sizes than for the other molecules. All the data are collected
in Table V.

The effect of electron correlation in reducing the overall
polarization contribution to the solvation energy is here sig-
nificant. This is evident if we compare our VMC results with
the IEF-PCM energies obtained at the RHF level for the
largest cavities and, for acetamide, with the HF data at
different cavities by Chipman.12 The comparison with
Chipman’s results is shown in Fig. 3 where �Gpol is plotted
as a function of the escaped charge. We also observe that the
difference between the DFT-B3LYP and the VMC energies
for the largest cavities is now significantly larger than for the
smaller molecules and amounts to as much as 3 kcal/mol for
acetamide.

It is important to remark that the effect of correlation on
the solvation in the PCM is not limited to the polarization
contribution because the solute wave function will change in
the presence of a polarized solvent leading to a change in the

solute internal energy. If we denote with Ĥ0 the solute
Hamiltonian and with Vs /2 the perturbation due to the polar-
ized dielectric, the polarization contribution to the free en-
ergy of solvation is

�Gpol = − ���
1

2
Vs��
 +

1

2	

� ZVs�r�

�R − r�
dr , �22�

and the so-called solute internal energy change is given by

�Giec = ���Ĥ0��
 − ��0�Ĥ0��0
 , �23�

where � and �0 are, respectively, the solute wave function
in solution and in vacuo. Because of the variational principle,
�Giec is always positive. The electrostatic contribution to the
solvation free energy is therefore given by

�Gel = �Gpol + �Giec, �24�

and, when we minimize the energy of the solute in the di-
electric medium �Eq. �20��, we minimize

TABLE IV. Parameters used to compute the radii of the cavity spheres as
given by Eq. �21�. aij

�X� is in bohrs.

System �X� Center type �i� aij
�X� bij

�X� Reference �j�

NH2NH2 H −0.749 0.91 N

CH3NH2 Ca 0.208 0.95 N
Ha −0.737 0.922 N
Hb −0.680 0.86 N

CN− N 0.227 0.88 C

C2H2 H −0.586 0.81 C

HCHO H −0.926 1.07 O
C −0.227 1.09 O

CH3F H −1.191 1.22 F
C −0.208 1.20 F

CH3CHO Cc 0 1.13 O
Hc −0.964 1.08 O
Ca −0.113 1.13 O
Ha −0.850 1.03 O

CH3CONH2 Cc −0.128 1.093 O
Nb 0.374 0.961 O
Hb −0.620 0.881 O
Ca 0.217 1.046 O
Ha −0.794 1.018 O

CH3COCH3 Cc 0 1.11 O
Ca 0 1.10 O
Ha −0.794 1.009 O

a-CH3, b-NH2, c-C�H�O
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FIG. 2. Polarization contribution to the free energy of solvation of the
cyanide anion in water solution as a function of the solute electronic charge
outside the cavity from this work �square�, from IEF-PCM at the RHF
�asterisk�, the CAS �10,10� �plus�, and the DFT �cross� levels, and from Ref.
12 �filled square�. Energies are in kcal/mol and charges are in a.u.
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F��� = ��0�Ĥ0��0
 + �Gel. �25�

Therefore, in this minimization, there is a competition be-
tween two effects. On the one hand, �Gpol tends to lower the
total energy while �Giec determines a friction to polarization.
It is therefore clear that the changes in the wave function are

better estimated by the use of flexible correlated functional
forms like the ones we use here in our VMC approach. From
a pure chemical point of view, one can imagine that a mul-
ticonfigurational form like in valence bond theory can ac-
count for the relative weights of different structures in dif-
ferent polarization situations much better than the single
determinant of the HF theory. In Table VI, the VMC electro-
static contribution to the free energy of solvation of aceta-
mide in water is compared with the corresponding terms
from IEF-PCM computed within HF, DFT, and UQCISD. As
already mentioned, the UQCISD electrostatic contribution is
obtained within GAUSSIAN 03 with the polarization charges
determined self-consistently for the reference unrestricted
HF function. Because of �Giec, the differences between the
various sets of data are smaller than when comparing the
values of �Gpol. It is important to remark that the QMC
statistical error on �Giec is greater than the error on �Gpol

because �Giec is obtained as the difference of two much
larger numbers.

For many PCM applications, researchers find HF or DFT
plainly satisfactory but here we have shown that, if one al-
lows the method to consider the dielectric polarization and
the solute response in a sophisticated manner, the resulting
solvation energies can differ substantially in molecules such
as acetamide.

Finally, it is interesting to analyze the accuracy of the
surface integration. For the fluoride anion, we have shown
that this integration is performed almost exactly but, when
the symmetry is reduced as in the case of a polyatomic mol-

TABLE V. Solute cavity data �see text� and calculated polarization free energy for the medium-sized solutes in
water considered in this work and comparison with IEF-PCM results obtained from GAUSSIAN 03 at the RHF and
DFT-B3LYP levels. Radii and charges are in a.u. and free energy contributions are in kcal/mol.

Rj
X qout �Gsurf �Gvol �Gpol �Gpol

RHF �Gpol
DFT

j=O X=CH3CHO
3.364 0.181 −5.08�1� 0.1149�6� −4.96�1� −8.31 −6.56
3.043 0.338 −7.32�1� 0.441�1� −6.88�1� −11.73 −9.24
2.769 0.578 −10.97�2� 1.429�3� −9.54�2� −16.39 −12.95

j=O X=CH3CONH2

3.383 0.228 −9.88�1� −0.0334�7� −9.91�1� −14.51 −12.86
3.043 0.427 −14.28�1� 0.183�1� −14.09�1� −20.75 −18.41
2.769 0.702 −20.33�3� 0.753�6� −19.58�3� −28.20 −24.97

j=O X=CH3COCH3

3.402 0.228 −5.52�1� 0.1646�6� −5.36�1� −8.71 −7.24
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FIG. 3. Polarization contribution to the free energy of solvation of aceta-
mide in water solution as a function of the solute electronic charge outside
the cavity from this work �upper curve� and from Ref. 12 �lower curve�.
Energies are in kcal/mol and charges are in a.u.

TABLE VI. Solute cavity data �see text� and electrostatic solvation free
energy for acetamide in water calculated with VMC and comparison with
IEF-PCM results obtained from GAUSSIAN 03 at the RHF, DFT-B3LYP, and
UQCISD levels. Radii are in bohr and free energy contributions are in
kcal/mol.

Rj
X �Gel

VMC �Gel
RHF �Gel

DFT �Gel
UQCISD

j=O X=CH3CONH2

3.383 −9.1�3� −11.91 −10.40 −9.84
3.043 −12.9�3� −16.65 −14.49 −13.83
2.769 −18.8�4� −22.33 −19.36 −18.60
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ecule and the dielectric responds to a nonspherical solute
field, we expect in general a larger error. In fact, in such
cases, the solvent polarization charges could be both positive
and negative and have a rather asymmetrical distribution
leading to a much more complicated situation. For the pur-
pose of estimating this error, we compare the total surface
polarization charge of the polarized dielectric with the ex-
pected theoretical value which can be calculated by using the
escaped charge as

Qsurf = �1

�
− 1��Qion + qout� , �26�

where Qion is the charge of the solute �not zero only for ions�
and qout is the fractional number of electrons outside the
cavity, which is here a positive number as listed in Tables II,
III, and V. In Fig. 4, we compare this theoretical value with
the surface polarization charge calculated by summing all
surface point charges in the VMC calculations for all the
molecules and cavity radii. We find that the differences are
always smaller than 5% and the largest discrepancies are
found for the smallest cavities. These errors in the surface
charge integration propagate to �Gsurf and we roughly esti-
mate that the resulting free energy uncertainty is about 5%.
By rescaling the surface polarization charge as already done
in the past within the PCM,4,22 one would obtain a more

negative value of �Gsurf since the theoretical Qsurf is in gen-
eral more negative than the one calculated by summing all
surface point charges. We estimate that a better treatment
of the surface charge may reduce the differences with
Chipman’s HF results by at most 25%. Here, we did not
perform any adjustment of the surface polarization charge
and will leave this delicate aspect of the model to future
work.

E. Diffusion quantum Monte Carlo

Starting from a given trial wave function, the fixed-node
DMC method produces the best energy within the fixed-node
approximation �i.e., the lowest-energy state with the same
zeros �nodes� as the trial wave function�. We slightly modi-
fied the DMC code of the CHAMP package in order to explore
this opportunity to further improve our results. In the DMC
run, we use as trial wave function the one optimized in the
dielectric medium with our VMC approach. In the Hamil-
tonian, we keep the solvent reaction field �surface and vol-
ume charges� which has been obtained at convergence in
correspondence to the VMC function. We select only F− and
HCHO as solutes for this study and collect the DMC mixed
estimators of the polarization energies and the electrostatic
component for the different cavities in Table VII.

Despite the large variations in the surface and free en-
ergy contributions as a function of the cavity size, the differ-
ences with the corresponding energies obtained at the VMC
level are always within �0.1 kcal /mol. Therefore, the
Slater–Jastrow forms of solute wave functions we use in this
work are sufficiently accurate to properly account for corre-
lation effects in the solution of the PCM problem. From the
DMC results, it also appears that the internal energy change
contribution is small for these two molecules. We note on the

-1.5

-1

-0.5

0

0.5

1

-1.5 -1 -0.5 0 0.5 1

exact
F-

N2H4
CH3NH2

CN-
C2H2

HCHO
CH3F

CH3CHO
CH3CONH2
CH3COCH3

Q
(
t
h
e
o
)

s
u
r
f

Q (calc)
surf

FIG. 4. Theoretical vs calculated total surface polarization charge in a.u.

TABLE VII. Solute cavity data �see text� and calculated polarization �total
and partial� and electrostatic free energies for fluoride anion and formalde-
hyde at the DMC level. Radii are in bohr and free energy contributions are
in kcal/mol.

Rj
X �Gsurf �Gvol �Gpol �Gel

j=F X=F−

1.540 92.60�8� −211.82�8� −119.2�1� −118.9�1�
1.700 60.50�3� −169.51�4� −109.01�5� −108.43�9�
2.000 −1.5018�4� −105.63�2� −107.13�2� −106.5�1�
2.200 −29.349�7� −76.63�1� −105.98�2� −105.40�9�
2.400 −48.90�1� −55.71�1� −104.61�1� −104.2�1�
2.600 −61.46�1� −40.440�7� −101.90�1� −101.6�1�
2.800 −68.71�1� −29.626�6� −98.34�1� −98.2�1�
3.000 −72.424�9� −22.046�4� −94.47�1� −94.46�9�
3.600 −73.368�6� −9.339�2� −82.707�7� −83.1�1�
4.000 −70.184�5� −5.4660�2� −75.650�5� −76.0�1�

j=O X=HCHO
3.638 −3.606�4� 0.0017�1� −3.604�4� −3.5�1�
3.345 −4.828�6� 0.0882�3� −4.740�6� −4.7�1�
3.024 −7.214�9� 0.3884�9� −6.826�9� −6.5�1�
2.731 −11.29�1� 1.506�2� −9.78�1� −9.4�1�
2.447 −21.30�2� 4.868�5� −16.43�2� −16.0�1�
2.183 −48.90�3� 15.03�1� −33.87�3� −32.2�1�
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other hand that, during the VMC optimization in solvent,
both polarization and escaped charges changed significantly.
This means that the small variation in the internal DMC and
VMC energies is due to the great flexibility of our wave
function form. The same behavior is, in fact, not observed at
a pure RHF level.

In future work, we believe that DMC could be used to
accurately compute �Gel while using much simpler VMC
trial wave functions. A consideration which is relevant for
large solutes where the use of complex functional forms be-
comes prohibitive.

IV. CONCLUSIONS

We propose a new formulation of the volume polariza-
tion due to solvation of a dielectric medium within the
framework of QMC methods. In this approach, the dielectric
response is considered in the linear regime and the solute is
placed in a cavity made by interlocking spheres centered on
the nuclei. The polarization charge density is discretized as a
set of point charges positioned on the surface of the cavity
and in the region of the dielectric medium where the tail of
the solute electron density extends. The surface polarization
charges are generated from a uniform distribution while the
positions of the volume polarization charges are sampled
from the square of the solute wave function. Poisson’s equa-
tion for the electric field of the solute in a dielectric solvent
is then solved self-consistently with the minimization of the
solute electronic energy. The solute Hamiltonian includes the
solvent reaction field and the wave function chosen here in
the Slater–Jastrow form is optimized within a VMC scheme.
The main features of the proposed method are �i� the rela-
tively simple and rather accurate treatment of Poisson’s
equation and �ii� the use of highly correlated wave function
forms for the description of the solute electrons.

To validate the method, we have performed numerical
tests on selected solutes of different sizes in water solvent at
ambient conditions. In order to obtain an enhanced effect of
volume polarization, we have also considered unrealistically
small cavities as done recently by Chipman11,12 using the
restricted HF method. The results show that electron corre-
lation tends to reduce the solvent polarization and that vol-
ume polarization has an effect in changing the solute wave
function. Our results for the behavior as a function of cavity
size compare qualitatively well with Chipman’s work for
CN− and CH3CONH2, and the quantitative differences are
due to electron correlation and to Chipman’s choice of a
basis set without diffuse functions.

We have also performed a DMC calculation with the
converged VMC solvent reaction field, which yields solva-
tion energy contributions not significantly different from the
VMC values. This finding is due to the very accurate form
we used for trial wave function which consists of fully opti-
mized sophisticated Jastrow and multideterminantal compo-
nents. In general, since a rather time-consuming part of the
calculation is the computation of the Jastrow factor contain-
ing the electron-electron-nucleus three-body terms, one
could adopt a simpler wave function form with only a two-

body Jastrow factor for large molecular solutes and use the
DMC step to improve on the VMC solvation results.

For a given choice of trial wave function, the computa-
tional cost of a QMC calculation in solution will roughly be
the same as in vacuo if the polarization potential is set up
and interpolated on a grid. Alternatively, if the polarization
potential is computed by summing over all polarization
charges, the computational cost will depend on the total
number of charges. For example, for CH3CHO with about
35 000 volume polarization charges, the calculation in solu-
tion is about two times as long as in vacuo.

Finally, we note that while the volume polarization
charges have a simple definition and, in our method, do not
suffer from numerical errors in their evaluation, a compari-
son of the total surface polarization charge obtained in our
VMC calculations with the expected value coming from the
solute escaped charge showed small differences in some
cases. Although such discrepancies are acceptable for practi-
cal applications, we think that this point deserves further
attention in future work. In particular, one must pay attention
to the treatment of Eq. �15� where the surface integral is
transformed into a sum over a finite number of points with
appropriate weights as in a typical quadrature formula. Here,
we used a constant number density of point charges, p, but a
better choice could possibly be to introduce different number
densities for different spheres. The definition of a more effi-
cient strategy is the subject of further studies.
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