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At the beginning of the last century Worthington and Cole discovered that the high-
speed jets ejected after the impact of an axisymmetric solid on a liquid surface are
intimately related to the formation and collapse of an air cavity created in the wake
of the impactor. In this paper, we combine detailed boundary-integral simulations
with analytical modelling to describe the formation of such Worthington jets after
the impact of a circular disk on water. We extend our earlier model in Gekle
et al. (Phys. Rev. Lett., vol. 102, 2009a, 034502), valid for describing only the jet
base dynamics, to describe the whole jet. We find that the flow structure inside
the jet may be divided into three different regions: the axial acceleration region,
where the radial momentum of the incoming liquid is converted to axial momentum;
the ballistic region, where fluid particles experience no further acceleration and move
constantly with the velocity obtained at the end of the acceleration region; and the
jet tip region, where the jet eventually breaks into droplets. From our modelling of
the ballistic region we conclude that, contrary to the case of other physical situations
where high-speed jets are also ejected, the types of Worthington jets studied here
cannot be described using the theory of hyperbolic jets of Longuet-Higgins (J. Fluid
Mech., vol. 127, 1983, p. 103). Most importantly, we find that the velocity and the
shape of the ejected jets can be well predicted at any instant in time with the only
knowledge of quantities obtained before pinch-off occurs. This fact allows us to
provide closed expressions for the jet velocity and the sizes of the ejected droplets as
a function of the velocity and the size of the impactor. We show that our results are
also applicable to Worthington jets emerging after the collapse of a bubble growing
from an underwater nozzle, although this system creates thicker jets than the disk
impact.

Key words: aerosols/atomization, breakup/coalescence, bubble collapse, drops, jet
formation, solid-liquid impact

1. Introduction
The impact of a solid object against a liquid interface is frequently accompanied by

the ejection of a high-speed jet emerging out of the liquid bulk into the air. Figure 1,
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Figure 1. Image from above of the high-speed upward jet ejected into the atmosphere when
a circular disk impacts perpendicularly against an air–liquid interface. In this paper, we will
treat axisymmetric jets, an assumption which is well justified by the near-axisymmetric shape
of the jet despite some non-axisymmetric disturbances visible at the jet tip and around the
base.

which shows the effect of a horizontal disk that impacts on a pool of water, illustrates
a liquid jet which flows ∼20 times faster than the disk impact speed. The qualitative
description of this common and striking phenomenon was first elucidated at the
beginning of the twentieth century by Worthington & Cole (1897, 1900). Through the
careful analysis of the photographs taken after a solid sphere was dropped into water,
Worthington & Cole (1897, 1900) realized that these types of liquid threads emerge as
a consequence of the collapse of the air-filled cavity which is created at the wake of
the impacting solid. They also made the remarkable observation that the generation
of such cavities was very much influenced by the surface properties of the spherical
solid. Decades after their original observations, May (1951) and Duez et al. (2007)
quantified the conditions that determine the existence of the air cavity in terms of the
surface properties of the solid and the material properties of the liquid.

High-speed jets emerging out of a liquid interface are also frequently observed
in many other situations. For instance, it is very usual to perceive that the liquid
‘jumps’ out of the surface of sparkling drinks, a fact which is known to happen as a
consequence of bubbles bursting at the liquid interface (Boulton-Stone & Blake 1993;
Duchemin et al. 2002; Liger-Belair, Polidori & Jeandet 2008; Thoroddsen et al. 2009).
Less familiar situations such as those related to the focusing of capillary (MacIntyre
1968; Thoroddsen, Etoh & Takehara 2007b) or Faraday waves (Hogrefe et al. 1998;
Zeff et al. 2000) also give rise to the same type of phenomenon. In all the cases
enumerated above, surface tension plays an essential role in the jet formation process.
However, there are also many types of jets created by purely inertial mechanisms,
such as those generated by pressure waves (Blake et al. 1993; Ohl & Ikink 2003;
Antkowiak et al. 2007; Tjan & Phillips 2007) or those ejected after cavity collapse,
which is the case analysed here.

All these jets share a common feature: they are ejected as a consequence of a
very large axial pressure gradient created at the jet base, which is the region where
the jet meets the bulk of the liquid. This indicates that there exist, at least, two
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main characteristics that differentiate the many types of high-speed jets appearing
in nature: the way the large overpressures are created and the length scale at which
pressure variations take place. For instance, in Antkowiak et al. (2007), a large axial
impulse pressure gradient originates near the bottom of a curved interface after the
sudden deceleration of a liquid mass. Moreover, pressure variations occur at a length
scale which is fixed by the radius of curvature of the interface. The associated pressure
gradients are proportional to the product of the impact velocity times the aspect ratio
of the cavity, which is of order unity and, consequently, Antkowiak et al. (2007) find
that the initial jet velocity is of the order of 1–4 times the impact velocity.

In the case of Worthington jets created after cavity collapse, the overpressure
originates from the radial deceleration experienced by the liquid at the jet base, and
this overpressure deflects the flow in the axial direction. Note that whereas in the
case studied by Antkowiak et al. (2007) the axial pressure gradient is created at one
instant – just after the impact – in our case the axial pressure gradient is created
continuously while the cavity is collapsing. In addition, in the case of Worthington
jets after cavity collapse, energy is focused at length scales much smaller than those
imposed by the geometry of the impactor and, consequently, the ratio of jet velocity to
impact velocity can be as high as 20. We will show later that, in the case under study
here, the jet velocity is proportional to the impact velocity divided by a non-trivial
power of the radius of the jet at its base. As will become clear from the forthcoming
discussion, this length scale varies in time and is not imposed by the geometry, but
by the dynamical process taking place near the jet base.

Also, the impact of a drop on a liquid interface or solid surface (Oguz & Prosperetti
1990; Shin & McMahon 1990; Rein 1993; Morton, Rudman & Liow 2000; Howison
et al. 2005; Bartolo, Josserand & Bonn 2006; Yarin 2006; Deng, Anilkumar & Wang
2007) is commonly accompanied by the ejection of columnar jets or liquid sheets
whose velocities can be substantially larger than that of the impacting drop. These
processes share some similarities with the type of Worthington jets considered here
since, in our case, the high-speed jet is caused by the radial ‘impact’ of the flow along
the axis of symmetry. In addition, Worthington jets ejected after cavity collapse are
very similar in nature to the very violent jets of fluidized metal which are ejected after
the explosion of lined cavities (e.g. Birkhoff et al. 1948), to those jets formed when
an axisymmetric bubble collapses inside a stagnant liquid pool (Manasseh, Yoshida
& Rudman 1998; Bolanos-Jiménez et al. 2008) or even to the granular jets observed
when an object impacts a fluidized granular material (Thoroddsen & Shen 2001;
Lohse et al. 2004). Because of the axisymmetric geometry of Worthington jets and
their intrinsic unsteady nature, classical two-dimensional conformal mapping methods
(see e.g. Gurevich 1966) cannot be applied in this case.

Most of the results presented here refer to the perpendicular impact of a circular
disk with radius RD and constant velocity VD against a liquid surface. The fact that
the solid is a disk instead of a sphere leads to the formation of an air cavity which is
attached at the disk periphery, independent of the surface properties. Thus, this choice
for the solid geometry avoids the additional difficulty of determining the position of
the void attachment line on the solid surface. The differences pointed out above set
our system somewhat apart from other impact studies (Glasheen & McMahon 1996;
Duclaux et al. 2007; Duez et al. 2007; Grumstrup, Keller & Belmonte 2007; Aristoff
& Bush 2009; Do-Quang & Amberg 2009). The experimental realization of the setup
to which the numerical simulations presented are referred is described by Bergmann
et al. (2006, 2009) and Gekle et al. (2008, 2009a), who show that boundary-integral
simulations are in agreement with experiments.
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In addition to disk impact, we also report potential flow numerical simulations
to study the Worthington jets ejected after bubble pinch-off from an underwater
nozzle sticking into a quiescent pool of water (Longuet-Higgins, Kerman & Lunde
1991; Oguz & Prosperetti 1993; Manasseh et al. 1998; Burton, Waldrep & Taborek
2005; Keim et al. 2006; Gordillo, Sevilla & Martı́nez-Bazán 2007; Thoroddsen, Etoh
& Takehara 2007a , 2008; Bolanos-Jiménez et al. 2008; Burton & Taborek 2008;
Gordillo 2008; Schmidt et al. 2009). As in the case of Worthington jets ejected after
solid-body impact, similar boundary-integral simulations have been shown to be in
agreement with experiments (see Oguz & Prosperetti 1993; Gordillo et al. 2007;
Bolanos-Jiménez et al. 2008).

This paper is organized as follows. In § 2 we compare experimental results with
boundary-integral simulations and review the main results of our earlier paper (Gekle
et al. 2009a). In § 3 we analyse the structure of the liquid velocity field within the jet
and divide the jet into the acceleration, ballistic and tip regions. In § 4, contrary to
what could be expected from the analogy with other related physical situations, we
show that Worthington jets ejected after cavity collapse cannot be described using the
theory of hyperbolic jets developed by Longuet-Higgins (1983) and Longuet-Higgins
& Oguz (1995). In § 5 we provide closed-form expressions for the velocity and the
diameters of the drops ejected from the tip of the jet as a function of the impact
velocity, the size of the impactor and the cavity pinch-off radius. Section 6 is dedicated
to extending the results of the previous sections to the case of jets created after bubble
pinch-off from a submerged nozzle. Finally, conclusions are drawn in § 7.

2. Experimental validation of the axisymmetric boundary-integral method
and revision of previous results

The process of impact of a disk on a free surface (see also Bergmann et al. 2006,
2009; Gekle et al. 2009a) is illustrated in figure 2: after impact, a large cavity is
created beneath the surface. Shortly after, this cavity collapses about halfway due
to the hydrostatic pressure from the liquid bulk and, from the closure location, two
high-speed jets are ejected upwards and downwards. Here positions, velocities and
time are made dimensionless using as characteristic quantities the disk radius RD , the
impact velocity VD and TD = RD/VD , respectively. The main dimensionless parameters
that control the sequence of events shown in figure 2 are the Froude number,
Fr = V 2

D/(RD g), and the Weber number, We = ρV 2
DRD/σ , where ρ and σ indicate

the liquid density and the interfacial tension coefficient, respectively. The Reynolds
number based on the impact velocity and the disk radius is Re =VD RD/ν � 1, with ν

as the kinematic viscosity of the liquid, whereas the local Reynolds number based on
the jet size and the jet speed is of the order of 104, as shown in figure 3. Therefore, since
viscous effects are negligible both at the disk and the jet scales, we will not include
the Reynolds number as a control parameter. Moreover, since We = ρV 2

DRD/σ � 1,
surface tension effects are negligible in the first approach (see Gekle et al. 2009a for
details) and, thus, the relevant control parameter for our experiments is only the
Froude number.

From now on, variables in capital letters will be used to denote dimensional
quantities and their lower-case analogues will indicate the corresponding
dimensionless variable. Moreover, for both analytical and numerical purposes it
will be assumed that axisymmetry is preserved and, thus, a polar coordinate system
(r, z) will be used. The origins of both the axial polar coordinate z and time t are set
at the cavity pinch-off height and at the pinch-off instant, respectively.
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Figure 2. (Colour online) Experimental results obtained when a circular disk impacts
perpendicularly and at constant velocity on a flat liquid interface, with Fr = 5.1, which is
constant in time. Upon impact (a–c) a cavity attached to the disk periphery is created in
the liquid which collapses under the influence of hydrostatic pressure. As a consequence of
the cavity collapse, two jets with velocities much larger than that of the impacting solid, are
ejected upwards and downwards (d, e). Note that the boundary-integral numerical simulation
(in blue/grey) reproduces not only the collapse of the cavity but also the jet ejection process.
The details of the comparison between experiments and numerical results in the complex
region where the jet is ejected are more clearly shown in figure 4.

2.1. Verification of the potential flow approach

The results presented in this paper are largely based on axisymmetric boundary-
integral simulations, which are known to provide good results whenever vorticity is
confined to thin boundary layers. The only difference between the numerical code
used here to simulate the ejection of the jet and that employed by Bergmann et al.
(2009) is that, in the present axisymmetric simulations, it is necessary to impose an
ad hoc cutoff radius, rmin , which we fix here to rmin = 0.01. The cutoff length rmin

represents the value of the minimum radius of the cavity at which we impose the
topological transition between a continuous, single cavity, into two separate cavities
(see Appendix B for numerical details). This means that rmin acts as a filter that
circumvents the difficulty of resolving the tiny time and spatial scales involved near
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Figure 3. (Colour online) The high values of the local Reynolds number defined at the jet
base justify our assumption of inviscid flow. Here rb(t) is the jet base radius and ub(t) is the
time-dependent axial velocity calculated at this point. The point defined as the jet base, where
the interface reaches a local minimum, is shown by a diamond in figure 4 and its definition
is also sketched in figure 14, where the radial (rb(t)) and axial (zb(t)) coordinates of this
important point are also indicated. To facilitate the comparison between the different Froude
cases, times have been normalized by tmax , the time when the downward jet hits the disk and
the simulation stops.

the topological transition. This simplification is necessary since, among other things,
our code assumes axisymmetry and does not take into account gas inertia, although
at these small scales both air (Gordillo et al. 2005; Gekle et al. 2010) and azimuthal
asymmetries (Keim et al. 2006; Schmidt et al. 2009) greatly influence the pinch-off
process. The simplification of fixing rmin , however, only affects a tiny portion of the
jet – the jet tip – as shown in Appendix A.

To check the validity of the potential flow approach, we have compared several
experiments with the numerical results. One of these comparisons is shown in
figure 2(a–c), where it is shown that the agreement between simulation and experiment
is excellent. Our numerical simulations are also in good agreement with experiments
after pinch-off, as shown in figure 4. Note also that in figure 4 we define a crucial
quantity characterizing the jet: the local free surface minimum which will be called,
in what follows, the ‘jet base’ (see also figure 14, where the location of the jet base
is sketched). The radial and vertical positions of this point shall be denoted by rb(t)
and zb(t), respectively.

Other evidence that reinforces the validity of the axisymmetric potential flow
approach to describe not only the cavity collapse but also the jet ejection process is
provided in figure 5. This figure compares the numerical solution with experimental
values of rb and zb. Observe that, for the two different values of the Froude number
considered – and especially for the case Fr = 10.6 – the numerical solution (magenta
line) is in fair agreement with experiments.

Let us emphasize here that, as shown in Appendix A, the good agreement between
experiments and numerical results does not depend on the specific value of rmin: the
same good agreement would be found whenever rb > rmin for any chosen value of rmin .

2.2. Influence of the Froude number on the cavity shape

Once we have demonstrated that we can resort to boundary integral simulations to
reliably predict the time evolution of jets ejected after the collapse of axisymmetric
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Figure 4. (Colour online) Magnification of the jet region corresponding to the two pictures
located at the bottom row of figure 2. (a–d ) The details of the emergence process of both
the upward and downward jets observed in figure 2(d, e) are shown. Observe that the
boundary-integral simulation closely follows the time evolution of the jet base region observed
experimentally. The jet base is shown by a diamond.
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Figure 5. (Colour online) The dynamics of the jet base from the experiments (black diamonds)
agrees rather well with the numerical simulations (dashed magenta line) and the analytical
model (solid blue line) described in § 2.3 and Gekle et al. (2009a). The constants for the model
are C = 4.55 and Csink = 0.63 in (a) and C =5.5, Csink =0.63 in (b).
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Figure 6. (a–c) Numerical results corresponding to the experimental images in figure 2 for a
circular disk (horizontal blue line) impacting perpendicularly and at constant velocity on a flat
liquid interface: cavity formation (a, d), collapse (b, e), and jet formation (c, f). The consequence
of increasing the impact Froude number from Fr = 5.1 (a–c) to Fr = 92 (d–f ) is that the cavity
becomes more slender.

cavities, we can easily investigate the influence of the impact speed (quantified by
the Froude number) on the different stages of the jet formation process. This is
illustrated in figure 6, where it can be observed that larger Froude numbers create
more slender cavities and also increase the non-dimensional depth at which the cavity
closes. Furthermore, it can be appreciated that the jets are extremely thin and that
the time needed for the tip of the jet to reach the free surface is only a small fraction
of the total time from impact to cavity closure. This latter observation means that jets
move much faster than the impacting solid. Indeed, as shown in the Appendix, we
have experimentally measured that the ratio between the jet velocity and that of the
impacting solid can reach values as high as 20. In this context, note that the impact
of either a drop (Weiss & Yarin 1999; Thoroddsen 2002; Howison et al. 2005) or a
solid object (Thoroddsen et al. 2004) onto a free surface also provokes the ejection
of a sheet of liquid moving with a velocity of tens of times the impact velocity. More
details on these types of related physical situations can be found in the review of
drop impact on thin liquid layers and dry surfaces by Yarin (2006).

One of the main purposes of this paper is to explain the occurrence of Worthington
jets after cavity collapse and also to provide a closed-form expression of the jet tip
velocity as a function of the impactor’s velocity. As a first step, we review in the next
subsection the simplified model developed by Gekle et al. (2009a), as it contains the
essential ingredients to understand the physics underlying the jet ejection process and
since it will be used in the forthcoming sections to express the jet tip velocity as a
function of the impactor’s velocity.

2.3. Reviewing the model for rb(t) and zb(t)

As pointed out above, the position of the jet base is crucial for characterizing the time
evolution of liquid velocities within the jet. The first piece of evidence that clearly
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Figure 7. (Colour online) Jet shapes translated vertically for different instants in time and
different values of the impact Froude number.
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Figure 8. (Colour online) Shapes of the jets shown in figure 7(a, b) when distances are
normalized using rb overlay reasonably well, indicating that rb is a good choice for the
characteristic local length scale. The definition of the outer and jet regions given in § 3 is also
indicated.
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Figure 9. (Colour online) Jet shapes for the downward jet at Fr = 92, taken at the same times
as in figures 7 and 8, show similarly good rescaling with the corresponding base radius rb .
Note that in (b) all lines overlap.

shows the importance of the radial distance rb for the study of Worthington jets is
shown in figures 7–9, where some of the different jet shapes taken from the time
evolutions of figure 6 are translated vertically so that they share a common vertical
origin. Note that both the jet base and the jet itself widen as the time from pinch-off
increases. Interestingly enough, figures 8 and 9 show that the shapes of both the
upward and downward jets exhibit some degree of self-similarity since they nearly
collapse onto the same curve when distances are normalized using rb. These figures
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Figure 10. (Colour online) Time evolution of radial and axial positions of the jet base, rb

and zb , respectively. The upward jet is shown in black (solid) and the downward jet in red
(dashed) (for the downward jet −zb is shown for convenience). The behaviour of both jets is
very similar.

indicate that the natural length scale for characterizing both the jet shape and the
flow field within the jet is the jet base radial position, rb.

Another length of crucial importance for describing the time evolution of the jet is
the vertical distance between the pinch-off point and the jet base, namely, zb. Figure 10
shows numerical results for the time evolutions of both rb and zb for two different
values of the Froude number. The comparatively large values of zb(t) with respect to
rb(t) are caused by the confinement of the jet by the (negative) radial velocities at the
cavity interface, which partly inhibits the widening of the base radius. Note that both
rb and zb are time-dependent length scales that do not depend on any geometrical
length scale. Instead, rb and zb will be fixed by the dynamical local process occurring
near the jet base, where the liquid is decelerated radially and is accelerated in the
axial direction (Gekle et al. 2009a).

The first step in building a model to predict the time evolutions of both rb and zb is
to find a simplified and realistic expression for the flow field in an outer region away
from the jet itself (z < zb and r > rb) that satisfies continuity. This will be achieved
starting from Green’s identity, which expresses the potential φ at any point r as an
integral of sources and dipoles over the free surface:

βφ (r) =

∫
1

|r − r ′|
∂φ

∂n
dS −

∫
φ

∂

∂n

1

|r − r ′| dS, (2.1)

with the integration taken over r ′ and β = 4π in the liquid bulk. As pointed out by
Gekle et al. (2009a), since the dipole term decays quickly as 1/|r − r ′|2, the source term
(which decays only as 1/|r − r ′|) will be the dominant contribution to the integral if
the observation point r is chosen sufficiently far from the free surface. Taking this
fact into account, in the following we will only consider the contribution coming from
the source term. Moreover, we use slender-body approximation (Ashley & Landahl
1965) to write dS � 2π rcav dz and ∂φ/∂ r � ṙcav , where rcav and ṙcav indicate the radius
of the cavity and its associated radial velocity, respectively. This gives

βφ = −
∫

2πrcav ṙcav√
r2 + (z − z′)2

dz′ → 2φ =

∫
qaxis√

r2 + (z − z′)2
dz′. (2.2)

Thus, the starting point of our model is the description of the flow field after pinch-off
using a line of sinks on the axis of symmetry of intensity qaxis (z, t) = −rcav (z, t)ṙcav (z, t).
Both the spatial variation and the time evolution of qaxis are shown in figure 11. The
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Figure 11. (Colour online) (a) The sink distribution qc(z) = qaxis (z, t =0) at the moment of
pinch-off (green) for the impacting disk at Fr = 5.1 is the essential ingredient in our jet
formation model. The sink distribution on the cavity interface at later times – red, blue
and black curves – remains approximately equal to the sink distribution at pinch-off (the
variation during the entire time of jet formation is roughly 9 % for the upper and 2 % for
the lower jet, respectively). Note that, for a given t > 0 and |z| > |zb|, the function qaxis (z, t) is
multivalued since, for these axial positions, the interface is double-valued: the cavity and the
jet (see figure 4). However, the sink strength along the jet (far left) is virtually zero due to
the vanishing radial velocities at the jet interface and only the contribution of sinks along the
cavity interface will be considered, i.e. qaxis (z, t) = − rcav ṙcav . Note that the sink distribution at
later times on the cavity interface can be approximated by qc(z) if two additional effects are
accounted for: the accumulation of sinks around the base and the hole between the upward
and the downward jets. (b) The sink strength distribution at the moment of pinch-off, qc(z),
for two values of the Froude number.

sink distribution at pinch-off qc(z) = qaxis (z, t =0) represents the central building block
of our model. Note that qc(z) will depend on the Froude number, but that for clarity
we will omit this dependence in the forthcoming discussion.

Figure 11 shows that the sink distribution after pinch-off along the cavity interface
remains reasonably similar to the one existing right at pinch-off – except around the
jet base – due to the very short time scale of jet formation. Thus, since our purpose is
to develop the minimum model that retains the essential ingredients of the jet ejection
process, we carry out the simplification resulting from the assumption that, along
the cavity walls, the sink distribution remains constant in time and equal to the sink
distribution at pinch-off, except near the jet base. Thus, the sink distribution at any
instant in time can be approximated to qc(z) if two additional effects are considered:
a hole is created between the bases of the upward and downward jet and sinks
accumulate around the jet base (Gekle et al. 2009a). Indeed, note first that there cannot
be sinks located between z = 0 and z = zb(t) for t > 0 since this would imply infinite
velocities at the axis of symmetry (see figure 11). Moreover, the sink accumulation
at the jet base occurs as a consequence of the ‘hole’ which is created between the
two jet bases. Indeed, just before pinch-off occurs, the flow rate directed towards the
axis is given by Q(t = 0) =

∫
qc(z

′) d z′. However, the contribution to the total flow
rate of the sinks which were located at the pinch-off instant between 0<z <zb(t)

namely,
∫ zb(t)

0
qc(z

′) dz′ cannot disappear after pinch-off. If this happened, the value
of Q(t) would enormously decrease with respect to the value of Q at t = 0, which
is physically impossible since liquid inertia prevents an abrupt time variation in Q.
Consequently, the sinks that were originally located between z = 0 and z = zb are
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rearranged and accumulated near the jet base in a typical distance ∼O(rb) in such a
way that the total inward flow rate does not vary so abruptly in time. On the basis
of these observations, we derived in Gekle et al. (2009a) an analytical expression for
the flow potential φ at an arbitrary point located in the outer region. The potential
is expressed as a function of the instantaneous base position rb(t), zb(t) and the sink
strength at the height of the base qb(t) = qc(z = zb(t)), which implicitly depends on
time due to the motion of the jet base:

2φ = −qb

∫ ∞

−∞

dz′√
r2 + (z − z′)2︸ ︷︷ ︸

collapsing cavity

+ qb

∫ zb

−zb

dz′√
r2 + (z − z′)2︸ ︷︷ ︸
hole

+
C qb rb√

r2 + (z − (zb +Csink rb))2︸ ︷︷ ︸
point sink

,

(2.3)

where the order unity constants C and Csink are obtained from a fit to the numerical
data. Observe that the flow field derived from the potential in (2.3) is independent of
the velocities at the pinch-off location. Instead, it is clear from the expression in (2.3)
that velocities in the liquid, once the cavity splits in two, are determined by the flow
field induced by the collapse of the cavity interface (which keep on moving radially
inwards after pinch-off) and, interestingly enough, by the local flow around the jet
base induced by the point sink term. Thus, the jet ejection process is a consequence
of the fact that the liquid flow field before pinch-off must be modified to account for
the ‘hole’ which is created between z = 0 and z = zb.

As explained by Gekle et al. (2009a), (2.3) is deduced taking into account two facts.
First, note that the dominant contribution to the integral

I =

∫ ∞

zb

qc(z
′) dz′/

√
r2 + (z − z′)2 (2.4)

comes from the axial region closest to the observation point r and, consequently,

I � qc(z)

∫ ∞

zb

dz′/
√

r2 + (z − z′)2 . (2.5)

Thus, since r will be located at an altitude z similar to or below that of the jet base,

qc(z) � qb and I � qb

∫ ∞
zb

dz′/
√

r2 + (z − z′)2. Second, note that the accumulation of
sinks after pinch-off takes place near the jet base in a spatial region of typical length
∼O(rb) (see figure 11). Consequently, the contribution of these sinks to the radial
inflow can be regarded as a point sink of strength C rb qb at distances |r| � rb. This is
because the excess of sink strength on the jet base region along the length ∼rb is, to
first order, �qb. Moreover, the point sink will be located at the small distance above
the base zsink , which is proportional to the local length scale, rb, i.e. zsink = zb + Csink ·rb.

Once an approximate expression for the potential φ has been deduced, the desired
ordinary differential equations (ODEs) for the unknown variables rb(t) and zb(t) are
obtained from both the Bernoulli equation applied at a single point on the cavity
interface and the kinematic boundary condition applied at the jet base. Taking into
account the fact that the liquid pressure at the cavity interface is constant and can be
set to zero without loss of generality, the former equation reads

∂φ

∂t
+

|∇φ|2
2

= 0, (2.6)

where the surface tension can be safely neglected because of the large value of the
impact Weber number We = ρV 2

DRD/σ (see Gekle et al. 2009a for details). On the
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Figure 12. (Colour online) (a) Time evolution of the jet base radial and axial positions, rb and
zb , respectively, taken from the simulation (dashed magenta lines) and the analytical model
(solid blue lines) for the upward jet of an impacting disk with Fr = 92. The fitting constants
are C = 7.8 and Csink = 0.63. (b) The same system but for the downward jet with C = 6.66 and
Csink = 0.55.
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Figure 13. The flow field obtained from the model with C = 4.55 and Csink = 0.63 for the disk
impacting at Fr = 5.1 (blue arrows) shows fair agreement with the numerically calculated flow
field (red arrows). The region inside the jet and very close around the base is excluded since
the model is not perfectly reliable there (due to the assumption of the observation point far
from the base).

other hand, the kinematic boundary condition is given by

dzb

dt
=

∂φ

∂z
. (2.7)

Note that small hydrostatic contributions have been neglected in (2.6) and, due to the
fact that the jet base is a local minimum where ∂z/∂ r =0, the kinematic boundary
condition adopts the simple form given in (2.7).

The algebra to obtain a closed system of two ODEs from (2.6) and (2.7) is given
by Gekle et al. (2009a). When the constants C and Csink are appropriately fitted
to reproduce the numerically obtained evolution of the jet base, not only the time
evolutions of both rb and zb but also the entire flow field in the outer region can
be reproduced with our theory. Indeed, in spite of the number of approximations,
figures 5, 12 and 13 illustrate the reasonable agreement between theory and numerics,
which we find in all cases studied.



306 S. Gekle and J. M. Gordillo

Jet
region Outer region

Tip
region

Ballistic
region

Acceleration
region

Pinch-off plane

zb(t)

rb(t)

rj(z, t)

v

z

r

u

z0(t)

0.5 rb(t) = r0(t)

Figure 14. Sketch showing the different lengths used to define the jet base and the regions
of the jet. The jet base (rb, zb) is located where the interface possesses a local minimum. The
outer region covers the bulk of the fluid with r > rb and z < zb . The jet region is subdivided
into the acceleration, the ballistic and the tip regions. Note that, in the following, u and v will
be used to denote the axial and radial velocities, respectively.

Let us remark that both rb and zb are calculated in terms of only the sink strength
intensity at pinch-off, qc(z), once the minimum radius of the cavity, rmin , is fixed. In
the next section we will extend this result by expressing both the jet shape and the
flow field within the jet using rb and qb/rb as characteristic length and velocity scales,
respectively. As detailed in this section, both quantities can be expressed as a function
of only qc and rmin .

3. Jet structure: the flow field within the jet
The main purpose of this section is to express the velocity field within the jet as

a function of the sink strength distribution at pinch-off, qc, the radial coordinates of
the jet base, rb, and the vertical position of the jet base, zb. Because the velocity field
within the jet varies in a non-trivial manner, it proves convenient for clarity purposes
to define first the different regions in which the jet is divided. As shown in figure 14,
the flow is separated into two large parts: the outer region, which occupies the spatial
region r > rb, z < zb and has been already described by the model given in § 2.3 and
the jet region, which we describe here. For that purpose, the jet region is subdivided
into three subregions: the acceleration region, the ballistic region and the tip region,
the latter being studied in depth in Part 2 of this paper (Gordillo & Gekle 2010).

3.1. The acceleration region

The acceleration region, located near the jet base, is where fluid particles are
decelerated in the radial direction and accelerated upwards. This is clearly illustrated
in figure 15, where both the axial and radial velocities evaluated at the jet air–liquid
interface, u and v, respectively, are represented for different instants in time. In this
figure one can observe that, while the axial velocities u are of similar magnitude as the
radial velocities at r = rb, they monotonically increase to much higher values as the
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Figure 15. Time evolutions of the radial and axial velocities (v and u respectively) of the
liquid evaluated at the jet interface for Fr = 5.1 (a, c) and Fr = 92 (b, d).

jet radius diminishes. Contrarily, the modulus of the (negative) radial velocities v

decays from ∼O(10) at r = rb to zero at r � 0.5 rb and, therefore, the radial inflow
experiences a strong deceleration in the small distance ∼0.5 rb. Because the liquid is
at atmospheric pressure at the free surface of the jet, the strong radial deceleration
provokes an overpressure below the jet base. Accordingly, a strong favourable vertical
pressure gradient is created and, therefore, the liquid experiences a large upward
acceleration in the vertical direction, creating the high-speed jet ejected into the
atmosphere.

In view of these observations, we shall define the ‘acceleration region’ as the region
between the base rb and r0 = 0.5 rb, which is the radial position on the jet interface
at which radial velocities become negligible, i.e. v ≈ 0 for jet radii smaller than r0.
The corresponding vertical position and axial velocity are denoted in what follows
by z0 and u0, respectively. The sketch in figure 14 indicates the locations of both r0

and z0. All quantities to be defined in the following with the index 0 will refer to this
important transition point from the acceleration into the ballistic region.

Moreover, it will prove convenient, for our purposes, to define at this point a
local Weber number as We0(t) = ρ U0(t)

2 R0(t)/σ =We u0(t)
2 r0(t) (recall that capital

letters indicate dimensional quantities and lower-case letters their non-dimensional
counterparts). Its time evolution is depicted in figure 16. The large values indicate
that surface tension effects can be neglected in the description of the jet ejection
process (for a direct comparison of jet shapes with and without surface tension, see
Gekle et al. 2009a).

3.2. The ballistic region

Because the jet interface can be considered to be at constant atmospheric pressure and
surface tension effects are negligible near the jet base (cf. figure 16), the only source
of axial acceleration is the axial pressure gradient caused by the radial deceleration of
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Figure 16. (Colour online) Time evolution of the local Weber number at the beginning of
the ballistic region for two different values of the impact Froude number. The large values
demonstrate that surface tension is not relevant during the jet ejection process. Here tmax

indicates the instant at which the simulation stops.

the flow in the acceleration region. Therefore, the source of axial acceleration (radial
deceleration) is no longer active high up into the jet, but only near the jet base.
We will therefore define the ‘ballistic region’ in which no further (radial or axial)
acceleration takes place and which follows at the end of the acceleration region (see
figure 14).

This term is based on the fact that, since v � 0 for r < r0 and the pressure at the
jet interface is atmospheric, the momentum equation projected in the axial direction
yields

Du

Dt
= 0 for z > z0 with u = u(z, t), (3.1)

and D/Dt indicating the material derivative. In (3.1), gravitational effects have been
neglected since the Froude number based on the jet radius and jet speed is always
much larger than unity, i.e. Fr u2

0/rb � 1. Equation (3.1) implies that fluid particles
are no longer accelerated upwards and conserve the vertical velocities they possess
at z = z0, which is the axial boundary between the axial acceleration region and the
ballistic region. In (3.1), u is assumed not to depend on r since the radial velocity
gradients of axial velocities are negligible in the ballistic region (not shown) and, thus,
u = u(z, t). The radius of the jet in the ballistic region, rj (z, t), is calculated from the
continuity equation

∂r2
j

∂t
+

∂(ur2
j )

∂z
= 0 →

D ln r2
j

Dt
= −∂u

∂z
. (3.2)

From the pair of equations (3.1) and (3.2), u, rj and zj – the height at which the jet
radius is rj – are completely determined if the relevant quantities at the beginning of
the ballistic region (r0, z0, and the velocity u0) are known functions of time. A particle
which is ejected from the acceleration into the ballistic region at a certain time τ will
move with constant velocity and thus, at a later time t > τ, have attained the height

zj (t) = z0(τ ) + (t − τ ) u0(τ ). (3.3)

Therefore, because fluid particles conserve their velocities along the ballistic region of
the jet, ∂u/∂z in (3.2) can be calculated as

∂u

∂z
=

u̇0(τ )

u̇0(τ )(t − τ ) + ż0(τ ) − u0(τ )
. (3.4)
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Figure 17. (Colour online) Comparison between the numerical jet shape and that obtained
from (3.5) for the disk impact at Fr =5.1. The solid black line is the simulation and the dashed
red line is the analytical model. The input values of r0(t), z0(t) and u0(t) for the jet stretching
model are taken from the simulations.

Thus, to obtain the corresponding jet radius rj , (3.2) can be readily integrated to give

r2
j (z = zj , t) = r2

o (τ )
uo(τ ) − dzo/dτ

uo(τ ) − dzo/dτ − duo(τ )/dτ (t − τ )
. (3.5)

Introducing the definition of the strain rate at the beginning of the ballistic region

so(τ ) =
∂u

∂z
(z = z0) = − u̇o(τ )

uo(τ ) − żo(τ )
(3.6)

allows us to rewrite (3.5) in a more compact form as

rj (zj , t)

ro(τ )
=

1√
1 + (t − τ )so

. (3.7)

Moreover, the local velocity field in a frame of reference moving at the constant
velocity uo(τ ) is given by

u(z, t) − uo(τ ) =
so z

1 + (t − τ ) so

, (3.8)

where (3.6) has been substituted into (3.4) and integration over z was carried out.
Now, in order to obtain the complete jet shape at time t , we vary τ between

0 and t and use (3.3) and (3.5) to compute the corresponding vertical and radial
coordinates of the jet. Note that, clearly, the particle ejected at τ = 0 will end up
forming the tip of the jet. The comparison between the numerical results and those
obtained from the integration of the 1-D model equations (3.1)–(3.7) is depicted
in figure 17. The agreement between numerics and the model further validates the
approach of considering that fluid particles conserve their axial velocities within the
ballistic region.

However, eventually surface tension effects will become important at the jet tip
and render the above description inapplicable. The region near the tip where surface
tension needs to be taken into account shall be called the ‘tip region’. In this region,
the jet disrupts into drops, as described in Part 2 (Gordillo & Gekle 2010).
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Figure 18. Spatial and temporal evolutions of the radial and axial velocities shown in figure 15
normalized with qb(t)/rb(t). Observe that u/(qb/rb) and v/(qb/rb) nearly collapse onto the same
curves for each of the two values of the impact Froude number considered, Fr = 5.1 (a) and
Fr = 92 (b).

3.3. Connecting the outer flow to the ballistic region

Once we have shown that fluid particles conserve their velocities within the ballistic
region, as a next step, we would like to link the time-dependent flow field within the
jet with that existing right at pinch-off. For that purpose, we normalize the velocities
v (radial) and u (axial) at the jet surface (as shown in figure 15) using, as the
characteristic scale for velocities, qb(t)/rb(t), where we recall that qb(t) = qc(z = zb(t))
is the sink strength at the height of the jet base as described in § 2.3. The important
result, shown in figure 18, is that both rescaled velocities nearly collapse onto the same
master curves for a given Froude number and thus are almost constant in time for
a fixed value of the rescaled position r/rb < 1. This implies that, for a fixed value of
qb, axial velocities are inversely proportional to rb, i.e. the smaller the jet base radius –
or, equivalently, the more confined is the jet by the cavity interface – the larger
will be the axial liquid velocities within the jet. Note that figures 8, 9 and
18 provide conclusive evidence that the correct length and velocity scales for
characterizing both the jet shape and the flow field within the jet are rb and qb/rb,
respectively.

Of great importance for our forthcoming discussion is the rescaled axial
velocity evaluated at the transition from the acceleration into the ballistic region,
Bt = u0(t)/(qb(t)/rb(t)), whose time evolution is shown in figure 19(a). In accordance
with the collapse of the rescaled velocities on a single master curve shown in figure 18,
Bt hardly changes with time and, thus, we can define the function B(Fr) = u0/(qb/rb),
which also depends very weakly on the Froude number, as shown in figure 19(b).

The result in figure 19 has the additional interesting implication that axial velocities
within the jet are larger than the radial velocities existing at the cavity interface before
pinch-off occurs. This can be seen directly by recalling that |qb/rb| = |ṙb| and, thus,
B is the ratio between the axial velocity u0 with which fluid is ejected into the
jet and the radial inward velocity at the jet base. Then, during the initial instants
of jet formation, rb � rmin , with rmin as the minimum radius of the cavity before
the jet emerges. Therefore, because the maximum radial velocity before pinch-off
occurs is |ṙmin | = |qc(z = 0)/rmin |, the maximum axial velocity within the jet is given
by max(u0) = B(Fr) qc(z = 0)/rmin ∼ 3 ṙmin . This means that, essentially, the velocity
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Figure 19. (Colour online) (a) The time evolution of Bt demonstrates that Bt is roughly
constant in time, but does depend somewhat on the Froude number. (b) Taking the average
of Bt over time (with error bars indicating the min/max) for different Froude numbers yields
a function B(Fr) which varies only between 2.5 and 3.5 in the range 3 � Fr � 92. As indicated
in figure 16, tmax is the time when the downward jet hits the disk and the simulation stops.
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Figure 20. (Colour online) (a) Strain rate at the beginning of the ballistic region for the
impacting disk. (b) The rescaled strain rate for the same case does not vary strongly in time.
(c) Time-averaged values of the rescaled strain rate for different Froude numbers.

with which the jet is ejected is roughly three times larger than the maximum radial
velocity attained before pinch-off.

In addition, provided that We0 � 1, fluid particles conserve their axial velocity
within the ballistic region (see (3.1)) and, consequently, the tip of the jet transports
away from the pinch-off location very valuable information about the largest velocities
reached during the cavity collapse process. Knowledge of the function B could thus
allow an experimentalist to estimate the maximal pinch-off velocity simply from
measurements of the jet tip velocity.

Figure 20 shows the value of the axial velocity gradient at the beginning of the
ballistic region, s0 = ∂u/∂z(z = z0). Note that the values of s0 scale with qb/r2

b since,
in spite of its broad variation for a fixed Froude number, the time-averaged value of
s∗ = s0/(qb/r2

b ) remains of order unity during the whole evolution of the jet. Here, we
provide data on s0 because it is clear from (3.7) that s0 determines the shape of the
jet. Moreover, in Part 2 (Gordillo & Gekle 2010) it is shown that s0 plays an essential
role in the determination of both the jet breakup time and the sizes of the drops
obtained.



312 S. Gekle and J. M. Gordillo

−20 −10 0 10 20

z0

zclosure

u

z

−1.0

−0.5

0

0.5

1.0

Figure 21. (Colour online) Vertical velocity profile for an impacting disk at Fr =5.1 taken at
t = 0.074 along the axis of symmetry shows that the flow inside the jet (above z0) is completely
disconnected from the stagnation point at zclosure = 0, which is the vertical coordinate where
the cavity splits in two.

4. Comparison with a hyperbolic flow pattern
In this section we will compare the Worthington jets after solid object impact

with two important results described in the literature: the hyperbolic flow patterns
around a stagnation point, which have been shown to lead to jet formation in various
situations, as well as the Dirichlet hyperboloids, which have been used to describe
the flow pattern inside the jet itself.

At the moment of cavity collapse, the pinch-off location turns into a stagnation
point: due to symmetry the radially inward-rushing fluid must be deflected vertically
to form a hyperbolic flow around this stagnation point. Such a flow pattern has been
inferred to be responsible for jet formation in many physical situations such as the
bursting of bubbles (Boulton-Stone & Blake 1993; Duchemin et al. 2002; Georgescu,
Achard & Canot 2002; Liger-Belair et al. 2008) or bubble collapse near a free surface
(Blake & Gibson 1981; Longuet-Higgins 1983). In this scenario the vertical velocity
would be expected to increase linearly from the stagnation point into the jet.

Figure 21 shows that we do not observe such a flow pattern in our system. Clearly,
the high velocities inside the jet arise – far away from the stagnation point – in the
acceleration region described in § 3.1.

Next, we will compare the flow pattern inside the jet (in the ballistic region) with
the Dirichlet hyperboloids used to describe jets formed after bubble collapse near a
free surface by Longuet-Higgins (1983). This theory assumes that the velocity field
within the jet is a purely extensional flow of the type

u =
Ȧ(t)

A(t)
z, v = − Ȧ(t)

2A(t)
r, (4.1)

where dots indicate time derivation and A(t) is a time-dependent function which is
determined by imposing that the jet free surface is at constant pressure. Making use
of (3.5) and (3.8) in Longuet-Higgins (1983), the following equation for the axial
strain rate S0 = Ȧ/A can be easily derived:

T Ȧ

A
= ts0 =

T

T0α
√

1 − α−3
, (4.2)



Worthington jets after cavity collapse. Part 1 313

−4.0 −3.5 −3.0 −2.5 −2.0 −1.5 −1.0

log10 t

s0.t

0

0.5

1.0

1.5

Simulation

LH

2.0

2.5

3.0

Figure 22. (Colour online) Comparison of the time evolution of the dimensionless strain rate
t s0 calculated using the numerical values in figure 20(a) (blue) with those obtained using
Longuet-Higgins’ theory given by (4.2) in red.

where T/T0 is given by

T

T0

=

∫ α

1

√
1 − (α∗)−3 dα∗, (4.3)

where α is the dimensionless counterpart of A(t) and T0 is a characteristic time,
not specified in Longuet-Higgins (1983). Note that, by means of comparison with
numerical results, we choose to derive here (4.2) since the quantity t so does not
depend on the way lengths and time are made dimensionless.

Figure 22 shows a comparison between the numerical value of t s0, obtained from
figure 20(a), and that predicted by (4.2) when α is varied from a value very close to 1
to around 30. This figure shows that, despite the constant T0 being chosen to maximize
the agreement of the theory in Longuet-Higgins (1983) with the numerical results, we
observe that there exists a large deviation between the computed and the analytical
results. The fact that the type of Worthington jets under consideration here cannot be
described through the theory in Longuet-Higgins (1983) can further be appreciated
in figure 23, which shows the vertical velocities within the jet as a function of the
axial coordinate at two different instants in time. The acceleration region, extending
from z = zb to z = z0, is clearly differentiated from the ballistic region z > z0. From this
figure, note that vz = (ts0)/tz – with ts0 given by (4.2) – deviates from the numerical
results despite the fact that the constant T0 has been arbitrarily chosen to maximize
the agreement with the numerics. However, the vertical velocities calculated using
(3.1) with the velocity at the end of the acceleration region as initial condition is in
fair agreement with the numerically computed velocities.

The reason why the theory on hyperbolic jets in Longuet-Higgins (1983) is unable
to describe the type of Worthington jets studied here is because the time-dependent
function A(t) in (4.1) is calculated assuming that the time evolution of the flow field
within the jet is determined by the flow field in the jet itself. However, as clearly shown
in figure 23, the liquid velocity field within the ballistic region is imposed by the axial
velocities u0(t) at the boundary z0. Since, as discussed in the previous section, u0 is
a function of the velocity field in the outer region of the jet, the whole velocity field
within the Worthington jet is determined, at each instant in time, by the flow field
existing in the outer region of the jet, and not by the flow field in the jet itself.
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Figure 23. (Colour online) (a, b) Numerically computed vertical velocities (blue circles, taken
on the jet surface), compared with the prediction in Longuet-Higgins (1983) (solid green line)
and with the model (red crosses) presented in § 3.2, which is integrated using the values of
the axial velocity u0 at the beginning of the ballistic region, at two different instants in time.
This figure shows that fluid particles conserve the velocities they possess at the end of the
acceleration region.

5. Estimation of the jet shape and tip velocity using quantities before pinch-off
In this section we will show how our previous modelling efforts can be combined

to yield predictions about the shape of the ejected Worthington jets as well as the jet
tip velocity and, anticipating results from the accompanying paper Gordillo & Gekle
(2010), the size of the first droplet ejected after jet breakup. The first prediction only
requires knowledge of the cutoff radius rmin as well as the sink strength distribution
qc(z) before pinch-off, which is obtained from the numerics as discussed in § 2.3. The
second prediction about the jet tip velocity requires, next to rmin , only the sink strength
at pinch-off at the height of closure qc(z = 0). This latter quantity can be obtained
from descriptions of cavity collapse available in the literature such that a complete
analytical prediction is possible. Clearly, since rmin in our description is an imposed
ad hoc quantity, our predictions for the velocities and the sizes of the drops in a real
experiment will be accurate only if rmin coincides with the experimental value.

5.1. Jet shape

The liquid velocity field as well as the shape of the jets can be calculated by making
use of only the numerical value of qc(z) and rmin at pinch-off (as well as the order-
unity constants C and Csink ). The first step is to obtain the dynamics of the jet base
rb(t) and zb(t) through the model in § 2.3. In the second step we use these results to
calculate the axial velocity at the beginning of the ballistic region as u0 � Bqb/rb, with
the sink strength at the base qb(t) = qc(zb(t)) and B the Froude-dependent constant
depicted in figure 19.

Then both the flow field and the jet shape within the ballistic region can
be computed from the integration of (3.1) and (3.2) using, as initial conditions,
r0(τ ) = 0.5 rb(τ ), u0(τ ) = Bqb(τ )/rb(τ ) and z0(τ ) = zb(τ ) + 0.5rb. The comparison
between the jet shape calculated numerically and that obtained from the model
is depicted in figure 24, and reasonable agreement is found.

5.2. Tip velocity and drop size

Gekle et al. (2009b) found that during the largest part of cavity collapse, the behaviour
of the minimum cavity radius can be approximated by a power law with an exponent
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Figure 24. (Colour online) Comparison between the jet shape calculated using the
boundary-integral code (black line) and that obtained integrating (3.1) and (3.2) using the
values of rb and zb given by the model described in § 2.3.
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Figure 25. Numerical values of the function Ac(Fr) in (5.1). Observe that Ac(Fr) hardly
varies over a range of almost four decades in Fr .

αc that represents a time average of a time-dependent local exponent:

rc = Ac(Fr) ταc

p with αc(Fr) � 1

2

ln(K) + ln(Fr)

ln(K) + ln(Fr) − 1
→ αc(Fr) > 0.5, (5.1)

with τp = − t and the function Ac(Fr) given in figure 25. The value of the constant
K was erroneously given as K = 0.46 in Gekle et al. (2009b) and should correctly
be K = 66. We note here that the precise values Ac and αc may change when
air effects (Gekle et al. 2010) are considered. Therefore, since the transition from
the purely axisymmetric collapse to the jet ejection process occurs at rc = rmin , the
(dimensionless) sink strength at the height and moment of pinch-off is given as

qc(z = 0) = −rmin ṙmin = Aα−1
c

c αc r
2−α−1

c

min . (5.2)

We recall here that the liquid velocity at the entrance into the ballistic region is
given by u0 = Bqb/rb and that axial velocities in the ballistic region are conserved.
Furthermore, the behaviour of the jet tip is determined by the pinch-off moment
where rb = rmin and qb = qc(z = 0). Then we can write the tip velocity Vtip and the
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initial strain rate S0(t = 0) as

Vtip ∼ VDu0 = VDB
qc(z = 0)

rmin

∼ 3 VD A
α−1

c
c αc

r
α−1

c −1
min

,

S0(t = 0) =
VD

RD

s∗
0 (t = 0, Fr)

qc(z = 0)

r2
min

∼ 0.5
VD

RD

Aα−1
c

c αc r
−α−1

c

min ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.3)

respectively, with α−1
c − 1 > 1 and where we have taken B =3 and s∗

0 (t = 0) = 0.5 from
figures 19 and 20.

Moreover, we have found in Gordillo & Gekle (2010) that the breakup time Tbreak

and the equivalent radius of the drop ejected are given by

(T So)break = 2.75 We2/7
S and Req = 0.95R0 We−1/7

S , (5.4)

respectively, where WeS = ρ R3
0 S2

0/σ and R0 = 0.5 RD rmin . Thus, the substitution of
S0(t = 0) given in (5.3) into (5.4) yields the following expressions for both the breakup
time and the drop size of axisymmetric jets ejected after the impact of a circular disk:

(T So)break ∼ We2/7
(
Aα−1

c
c αc r

−α−1
c

min

)4/7

r
6/7
min ,

Rdrop

RD

∼ 0.75We−1/7
(
Aα−1

c
c αc r

−α−1
c

min

)−2/7

r
4/7
min .

⎫⎪⎬
⎪⎭ (5.5)

These equations constitute one of the main results of the present contribution.

6. Worthington jets observed in other systems
6.1. Jets created from a pressure pulse

In § 1, we enumerated a large number of physical situations which give rise to
the emergence of high-speed Worthington jets out of a free surface. All of these
situations share the common feature that liquid inertia dominates over viscous forces
and that, for the jet to be created, there must exist a large axial pressure gradient
concentrated at the spatial location where the jet is ejected. However, the origin
of this axial pressure gradient differs from one physical situation to another. Let
us illustrate this point using the type of purely inertial jets studied by Antkowiak
et al. (2007), which are representative of a broader type of high-speed jets, such as
those created by bubbles bursting at a free surface (Boulton-Stone & Blake 1993).
In Antkowiak et al. (2007), it is shown that the sudden deceleration of a liquid mass
creates a high-speed jet emerging out of the interface if the interface is curved. Indeed,
after the liquid decelerates, the interface geometry forces the impulse pressure levels
to concentrate near the surface minimum, creating large axial pressure gradients.
Moreover, Antkowiak et al. (2007) show that the axial impulse pressure gradient is
proportional to the product of the impact velocity times the aspect ratio of the cavity.
Since this aspect ratio is of order unity, the ratio of the jet velocity to the impact
velocity is of order unity in this type of jets. Consequently, when the impact velocity is
∼5 m s−1, Antkowiak et al. (2007) measure in their setup jet speeds close to 10 m s−1,
with drop sizes of the order of 1 mm. Note also that the large impulse pressure
gradient which gives rise to the emergence of the jet is created at one instant in time:
just after the sudden deceleration of the liquid mass.

In our case, the axial pressure gradient is caused by the radial deceleration of the
liquid which is flowing towards the axis. This process, which takes place at the jet base,
creates pressure gradients of the order of ρV 2/(RD rb) ∼ ρV 2

D/RDq2
b/r3

b , a quantity
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(a) (b) (c) (d)

Figure 26. Experiment showing bubble pinch-off from an underwater nozzle. The scale bar
(a–d) is 5 mm. Image courtesy of Rocı́o Bolaños-Jimenez, Alejandro Sevilla and Carlos
Martı́nez-Bazán.

which can be huge if rb, which is a length scale that is determined by the dynamical
deceleration process as described in § 2.3, is sufficiently small. As a consequence of
this, jet velocity is proportional to the impact velocity divided by a non-trivial power
of the minimum radius of the cavity, as expressed in (5.3). Because of the smallness of
rmin , jet velocities can also be of the order of 10 m s−1 or larger (see Appendix A), but
these jet velocities can be reached with impact velocities smaller than 1 m s−1. Most
importantly, this pressure gradient is created continuously, while the two cavities
formed after pinch-off keep on collapsing towards the axis. Note also that, since the
source of pressure gradient is caused by the deceleration of a liquid mass that moves
in one direction to be deflected in another direction, the type of Worthington jets
studied here shares some similarities with the ejection of liquid sheets observed after
the impact of drops on surfaces (see Yarin 2006 for a complete review on the subject).

6.2. Jet ejection after bubble pinch-off from an underwater nozzle

There is a physical situation (besides solid-body impact) which can be described using
the results of the previous sections. Indeed, the type of Wortington jets created after
the pinch-off of a bubble from an underwater nozzle, a process which is illustrated
in figure 26, shares many similarities with the case studied in the previous section.
In this case, air is injected into a stagnant liquid pool and a bubble starts to grow
from the nozzle end. Then, buoyancy makes the bubble rise, elongating its neck, and
when the bubble volume reaches the critical (Fritz) volume, capillarity will cause
the pinch-off of the bubble (Longuet-Higgins et al. 1991; Oguz & Prosperetti 1993;
Burton et al. 2005; Keim et al. 2006; Gordillo et al. 2007; Thoroddsen et al. 2007a ,
2008; Bolanos-Jiménez et al. 2008; Burton & Taborek 2008; Gordillo 2008; Schmidt
et al. 2009). Figure 26 shows that, as a consequence of bubble pinch-off, a jet shoots
upwards from the pinch-off location. Since these jets also arise as a result of the
collapse of a cavity, we shall show next that they are very similar in nature to the
Worthington jets observed after solid object impact.

To simulate this system numerically, the potential flow approach will also be
applied. This simplification is justified in view of the results of Oguz & Prosperetti
(1993) and Bolanos-Jiménez et al. (2008), who show that, down to length scales of
the order of 10 µm, both boundary-integral simulations and the inviscid theory of
Gordillo (2008) reproduce the experiments. In this case, the minimum radius will also
be fixed to rmin = 0.01 and, again, the cutoff radius will be relevant only for the tip
region of the jet, as discussed at length in Appendix A. Here, distances are made non-
dimensional using the nozzle radius RN as the characteristic length scale; moreover,
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Figure 27. (Colour online) (a) Time evolution of jets formed after the collapse of gas bubbles
injected into a quiescent liquid pool through a nozzle (red line), showing the ejection of the
first drop, for Bo =2.1. (b) The shapes show good overlap when distances are normalized
using rb .
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Figure 28. (Colour online) Dynamics of the jet base after the pinch-off of an air bubble
grown from an underwater nozzle. The model with C = 4 and Csink = 0.61 (solid blue line)
reproduces very well the numerical results (dashed magenta line) shown in figure 27.

the prescribed gas flow rate Qg is used to derive the typical time scale TN = (πR3
N )/Qg .

For the quasi-static injection conditions considered here, the relevant dimensionless
parameter characterizing this physical situation is the Bond number Bo = ρR2

Ng/σ

(Longuet-Higgins et al. 1991; Oguz & Prosperetti 1993; Bolanos-Jiménez et al. 2008),
which in the case presented here is Bo = 2.1. More details of our simulation method
are given in Appendix B and in Gekle et al. (2009b).

In order to check whether these types of jet are describable using the results of
the previous sections, we first check if rb is the relevant length scale of the problem.
Figure 27(b) shows that, indeed, the different shapes nearly collapse onto the same
master curve when distances are normalized using rb. Further evidence indicating that
these jets are similar in nature to those ejected after solid-body impact is depicted
in figure 28, where the time evolutions of both rb and zb calculated using the model
reviewed in § 2.3 are compared with the numerical results extracted from figure 27.

In fact, the only difference between these jets and those described in the previous
sections is depicted in figure 29(a): in the present case, the local Weber number
evaluated at the beginning of the ballistic region is ∼O(10), whereas in the case
of Worthington jets ejected after the impact of a solid body against a free surface,
We0 � 103. As a consequence of this, the total length at breakup of the jets ejected
after bubble pinch-off is ∼O(10rb) (see figure 27b), i.e. much shorter than the length
of the Worthington jets in § 3.
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Figure 29. (Colour online) (a) Time evolution of the local Weber number for the jet shown
in figure 27. (b) Time evolution of the normalized strain rate ŝ0 = s0/(u0/r0) at the beginning
of the ballistic region for the same case as in (a).
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Figure 30. (a) Axial and radial velocities evaluated at the jet interface for the case shown
in figure 27. In analogy with figure 18, both the acceleration and ballistic regions are clearly
identified: the modulus of the radial velocities decreases from r = rb to become negligibly small
for r/rb � 0.5. (b) The same as in (a), but with velocities scaled with qb/rb . Because the Weber
number is considerably smaller in this case than for the impacting disk, the jet tip region can
be seen in this figure as the multivalued part of the curves u and v for r/rb � 0.4.

Such comparatively low values of the local Weber number indicate that surface
tension must have an effect in the description of the jet. This is clearly shown in
figure 30, where the collapse onto each other of the normalized time evolutions of
the axial and radial velocity components evaluated at the free surface (u and v

respectively) is also somewhat deteriorated when compared with the case shown in
figure 18. Nevertheless, the acceleration and ballistic regions are clearly differentiated
in figure 30 and, in addition, the normalization of the interfacial velocities with qb/rb

leads to a reasonable collapse onto a single master curve (see figure 30). Consequently,
since the ballistic region is also present in these types of jets, it is expected that the
model developed in § 3.2 for the jet shape is also applicable to this case, which is
confirmed in figure 31.

Finally, we define – in analogy to the case of the impacting disk – the ratio between
the velocity at the end of the acceleration region u0 and the typical velocity at the
base qb/rb as the function B(t) = u0/(qb/rb). As shown in figure 32(a), the averaged
value of B(t) is around B ≈ 2.7, similar to the case of the impacting disk. Finally, we
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Figure 31. (Colour online) Comparison between the numerical jet shape and that obtained
from (3.5) for the jet ejected from the underwater nozzle depicted in figure 27(b). The solid
black line is the simulation and the dashed red line is the analytical model. The input values of
r0(t), z0(t) and u0(t) for the jet stretching model are taken from the simulations. Note that since
surface tension is not included in this model, the tip of the jet requires a separate treatment as
described in Part 2 (Gordillo & Gekle 2010).

0 2 4 6 8

(×10−4)

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

t
2 3 4 5 6 7

(×10−4)t

Bt

0

0.2

0.4

0.6

0.8

1.0
 s

*  
=

 s
0/

(q
b/

r b
2 )

(a) (b)

Figure 32. (Colour online) (a) The rescaled velocity at the end of the acceleration region for
the underwater nozzle shows similar values as for the impacting disk in figure 19. (b) The
rescaled strain rate is similar in both cases.

show in figure 32(b) the function s∗ defined in figure 20 which again shows similar
values for both systems.

6.2.1. Estimation of tip velocity of jets formed after bubble collapse using quantities
before pinch-off

It is our purpose here to extend the analysis of § 5 to predict the jet tip velocity
as well as the sizes of the drops obtained after bubble pinch-off as a function
of the nozzle size and the material properties of the liquid. In order to take
advantage of the expressions for Vtip and S0 in (5.3), we have integrated the pair
of equations in Gordillo (2008) using, as initial conditions, the experimental data
given in Bolanos-Jiménez et al. (2008). Then, we have expressed the time evolution
of the minimum radius of the bubble as rb = Abτ

αb
p . In this case, both Ab and αb

depend on the two dimensionless parameters characterizing this physical situation
namely, the Bond number Bo and the Weber number based on the gas flow rate
Qg , WeQ = ρQ2

g/(πσR3
N ). Nevertheless, the values of WeQ in the experiments of
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Figure 33. Numerical values of the functions αb(Bo) (a) and Ab(Bo) (b) when the integration
of the pair of 2-D Rayleigh-like equations in Gordillo (2008) with the initial conditions
given by the experimental data in Bolanos-Jiménez et al. (2008) is adjusted to a function of
the type rb(τp) =Ab(Bo)ταb(Bo)

p . Observe that αb(Bo) hardly varies with Bo and τp and thus
that αb(Bo) � 0.575 is a good approximation for the whole range of Bo and τp considered.
However, Ab slightly varies with Bo and τp and reasonable approximations to this function
are A(Bo = 0.09) � 1.05, A(Bo = 0.36) � 0.98, A(Bo = 0.63) � 0.85, A(Bo = 1.28) � 0.96.

Bolanos-Jiménez et al. (2008) are so small that Ab and αb are expected to depend
significatively only on Bo and on time, as depicted in figure 33. However, from
this figure note also that good approximations for both αb and Ab are αb � 0.575,
with relative errors of ∼2 % and Ab � 1, with relative errors of the order of 10 %.
Therefore, since in this case velocities are made dimensionless using the capillary
velocity Vc = (σ/ρ RN )1/2, both Vtip and S0 can be expressed as

Vtip ∼ 1.5

(
σ

ρRN

)1/2

A
α−1

b

b αb r
1−α−1

b

min ,

S0(t = 0) ∼ 0.5

(
σ

ρR3
N

)1/2

A
α−1

b

b αb r
−α−1

b

min .

⎫⎪⎪⎬
⎪⎪⎭ (6.1)

Thus, similar to the case of the impacting disk considered in § 5, the breakup time
and the size of the drops can be approximated by

(T So)break ∼
(
A

α−1
b

b αb r
−α−1

b

min

)4/7

r
6/7
min ,

Rdrop

RN

∼ 0.75
(
A

α−1
b

b αb r
−α−1

b

min

)−2/7

r
4/7
min .

⎫⎪⎬
⎪⎭ (6.2)

7. Conclusions
Using detailed boundary-integral simulations together with analytical modelling, we

have studied the formation and breakup of the high-speed Worthington jets ejected
either after the impact of a solid object on a liquid surface or after the pinch-off of a
gas bubble from an underwater nozzle. To describe the phenomenon as a whole we
divided the flow structure in two parts separated by the jet base (rb, zb): the outer
region for r > rb, z < zb and the jet region, extending from the jet base to the axis,
i.e. r < rb and z � zb. The jet region is further divided into three subregions: the
axial acceleration region, where the radial inflow induced by the cavity collapse is
decelerated radially and accelerated axially; the ballistic region, where fluid particles
are no longer accelerated vertically and thus conserve the axial momentum they
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possess at the end of the acceleration region; and the tip region, where the jet
breakup process occurs.

The axial acceleration region of characteristic length O(rb) � zb is where the fluid is
decelerated in the radial direction, which causes an overpressure that accelerates
the fluid vertically. Hence this is a very narrow region, localized near the jet
base, of crucial importance for the jet ejection process since it is where the fluid
particles transform their radial momentum into axial momentum. We have found the
important result that both radial (v) and axial (u) velocities, when normalized with
qc(z = zb)/rb(t) = qb(t)/rb(t), with qc(z) as the sink distribution at pinch-off, nearly
collapse onto the same master curves for both the disk and the underwater nozzle.
Therefore, the values of the rescaled velocities (u, v)/(qb/rb) are almost constant in
time for a fixed value of the rescaled position r/rb < 1. We have also found that
v/(qb/rb) � 0 for that part of the jet surface whose radius is smaller than r0 = 0.5 rb.
Therefore, since the source of axial acceleration – radial deceleration of the fluid –
is no longer active when r < r0, the corresponding vertical position z0 constitutes the
upper boundary of the acceleration region.

In the slender ballistic region both the axial and radial pressure gradients are
negligible since v � 0 and surface tension forces can be neglected. Therefore, we have
developed a 1-D model assuming that fluid particles conserve their vertical velocities
along the ballistic portion of the jet that accurately predicts both the shape and the
velocity of the jet calculated numerically. A consequence of the fact that fluid particles
are not accelerated in the ballistic region is that these types of jets cannot be described
using the theory by Longuet-Higgins (1983), which is based on the assumption that
the flow field within the jet is a purely axial straining flow.

Most interestingly, since we have linked the flow within the jet with the sink
distribution at pinch-off, we provide closed-form expressions for the velocities and
the sizes of the drops obtained as a function of the radius of the impactor RD , the
impactor’s speed VD and the cutoff radius rmin at which the topological transition
between the continuous cavity into two separate cavities occur. The expressions for
the jet tip velocity in (5.3) and (6.1) reveal that the large velocities usually encountered
in these systems are intimately related to the smallness of rmin , which is the minimum
length scale at which the radial inertia of the liquid can be focused. Moreover, the
results obtained for Worthington jets ejected after solid impact on a free surface have
been extended to the case of jets generated after bubble pinch-off from an underwater
nozzle.

In summary, our modelling of Worthington jets allows one to predict the jet base
dynamics, the jet shape, and even the size of the ejected droplets based only on the
knowledge of quantities before pinch-off.
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Figure 34. (Colour online) (a, b) Jet shapes for the disk impact at Fr = 5.1 at two different
instants in time, t = 10−4 (a) and t = 3.2 × 10−3 (b), for three different values of the cutoff
radius, rmin = 0.005 (blue), rmin = 0.01 (red) and rmin = 0.02 (black). Note that in (b) all three
lines overlap. It is evident that the effect of varying the cutoff is significant only in the very first
instants after pinch-off and at the very tip of the jet. (c, d ) Jet shapes for the underwater nozzle
at t = 0.0003 (c) and t = 0.004 (d ) (here the simulations are extended beyond the ejection of
the first droplet) for four different values of the cutoff radius, rmin = 0.005 (blue), rmin = 0.01
(red), rmin = 0.02 (black) and rmin = 0.05 (green). The Bond number in the simulations is
Bo = ρgR2

N/σ = 2.1.

Appendix A. The cutoff radius rmin and its relation with azimuthal distortions
As numerically simulated Worthington jets are formed after the closure (pinch-off)

of the cavity, it seems natural that the cutoff radius at which the topological transition
from the cavity collapse to the disjoint collapse is imposed should play an important
role in the subsequent formation of the jet. However, as we have shown in Gekle
et al. (2009a), the velocity field in the largest part of the jet is determined only by
the local flow around the jet base and not by the pinch-off singularity. We show here
that, except for the very tip, the evolution of the jet can be well described without
a precise knowledge of the cutoff radius rmin . Indeed, in order to show that the
present axisymmetric simulations are able to describe the real jet, we have decided
to numerically vary rmin within reasonable bounds and to analyse carefully this effect
on the subsequent time evolution of the jet. It can be clearly seen in figure 34 that
differences in the simulations can be observed in both the jet base and tip region
just after pinch-off occurs. However, as soon as the jet radius at its base becomes of
the order of the maximum value of rmin explored, differences in the jet base region
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Figure 35. (Colour online) (a) Time evolution of jets formed after the collapse of gas bubbles
injected into a quiescent liquid pool through a nozzle (red line) when rmin =0.05, showing the
ejection of the first drop. (b) A close-up of the jet region in (a). The colours correspond to
different dimensionless times: t = 0 (blue/grey), t = 0.0014 (black) and t = 0.0027 (green/light
grey). Bo = 2.1.
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Figure 36. (Colour online) (a) Time evolution of the local Weber number for the jet shown
in figure 35. (b) Time evolution of the normalized strain rate ŝ0 = s0/(u0/r0) at the beginning
of the ballistic region for the same case as in (a).

disappear and only remain appreciable in the jet tip region. Physically, this means
that the effect of varying rmin will only be felt at the highest part of the jet, which
represents only a very small fraction of both the total volume and the total kinetic
energy of the jet.

However, (5.3) and (6.1) show that the value of rmin does influence the jet tip
velocity. This is illustrated in figures 35 and 36, where it is shown that the Weber
number of the jet is noticeably smaller when rmin = 0.05 than when rmin = 0.01 (see
figure 29). Note that the results in figures 29 and 36 imply that, since the jet radius
of curvature at the tip increases with rmin , the jet tip velocity increases when rmin

decreases.
Experimentally, the velocity at which the jet is ejected strongly varies from one

experiment to another and this is due to the fact that, in a real situation, there also
exists an unknown cutoff radius. Indeed, besides effects such as air flow (Gordillo et al.
2005, 2007; Gekle et al. 2010), asymmetries influence the radial flow focusing effect
on the central axis even before the actual cavity closure (Burton et al. 2005; Bartolo
et al. 2006; Keim et al. 2006; Schmidt et al. 2009; Turitsyn, Lai & Zhang 2009).
Thus, azimuthal distortions triggered by the gas shear (Leppinen & Lister 2003) or
geometrical asymmetries (neither of them captured by our axisymmetric simulations)
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Figure 37. (a–i ) Smooth cavity formed after the normal impact of a polished brass disk with
sharp edges against a water interface. The disk, 22 mm in diameter and 4.7 mm in height,
weighs 14 × 10−3 kg. The trajectory of the disk is forced by letting the disk fall by gravity
inside a wet tube – with an internal diameter only slightly larger than that of the disk – which
is aligned vertically. This forces the impact to be very nearly perpendicular to the interface.
The impact velocity is Vimpact = 1.5 m s−1. The time lapse between the different frames with
respect to the impact time is −15, 14, 86.08, 86.71, 88.49 and 98.34 ms. Note that, while the
time between impact and cavity closure is roughly 85 ms, the upward jet reaches the free
surface in less than 3 ms, indicating that the jet velocity is much larger than the impactor’s
velocity. Indeed, the initial velocity of the tip of the jet, measured from detailed images of the
type in (g–i ), is larger than 18 m s−1 and thus larger than 10 times the disk velocity. The huge
velocities reached by the liquid jet can also be seen by a comparison with the velocity of the
drops formed in the corona splash which hardly change their position between the third and
sixth frames. Note that the initial impact dynamics could be influenced by the fact that the
surface of the brass disk is wet. The scale bar is 22 mm.

lead to a decrease of the liquid acceleration towards the axis before pinch-off, reducing
the speed of the ejected jet, which is thus fixed when azimuthal asymmetries become
of the order of the minimum radius of the cavity. Because the amplitude of these tiny
asymmetries is almost impossible to control, the jet tip velocity will vary from one
experiment to another.

For the purpose of illustrating the previous assertion, figures 37 and 38 show the
cavity formation and jet ejection processes when either a brass disk (smooth surface)
or a golf ball (structured surface) impact perpendicularly on a quiescent pool of
water. Despite the fact that both the velocity and the diameter of the ball are larger
than those of the disk, the maximum jet velocity is larger for the disk case. Indeed,
while the shape of the cavity in figure 37 is smooth, the cavity interface in figure 38
clearly already exhibits asymmetric modulations just after the impact (which – in
addition to the rough surface structure – may in part also be due to a rotation of
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Figure 38. (a–f ) Cavity formation caused by a golf ball with a diameter of 42.75 mm and a
mass of 46.5 × 10−3 kg impacting with a velocity of 2.3 m s−1. Compared with figure 37 the
surface shape is visibly distorted due to the rough surface structure of the ball. Nevertheless,
it can be inferred from a detailed image analysis that the jet velocity is again much larger
than the ball’s velocity. However, in spite of both the impact velocity and the ball diameter
being larger than those of the disk, the maximum velocity of the jet is only Vtip � 17.5 m s−1

and thus, the ratio between the jet speed and the impact speed is smaller than that for the
disk.

the ball). Consequently, since the self-acceleration of the liquid towards the axis is
lost when the amplitude of azimuthal disturbances is similar to the radius of the
cavity, the maximum velocity reached during the collapse process decreases when the
cavity interface is not smooth. Note that figures 37 and 38 are representative of an
exhaustive set of experiments. The analysis of the whole experimental data has shown
that the tip velocity varied from one experiment to another for both the golf ball and
the disk. However, on average, the largest jet speeds are measured when throwing the
disk.

Therefore, we can conclude that although the jet tip is where the highest velocities
are reached, it is also the least reproducible one from an experimental point of
view since it strongly depends on the precise details of pinch-off. Thus, regarding
experimental reproducibility, our study will be valid for accurate description of the
most robust part of the jet. As emphasized above, this is because the flow within
the jet – except at its tip – is not determined by the velocity field at the pinch-off
location, but by the time-dependent local flow field surrounding the jet base (Gekle
et al. 2009a).
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Appendix B. Numerical methods
In this paper we have used two types of boundary-integral simulations which model

the normal impact of a disk on a free surface (see § 3) and the pinch-off of a bubble
from an underwater nozzle, respectively (see § 6.2).

B.1. Disk impact simulations

The numerical calculations are performed using an axisymmetric boundary-integral
method as described by Bergmann et al. (2009). As the dynamics of air (Gekle et al.
2010; Gekle & Gordillo 2010) only negligibly influences the jet, we choose to run
single-phase simulations, neglecting the influence of the air.

Our simulations are based on describing the velocity field as the gradient of a
scalar potential. In the axisymmetric geometry the surface integrals arising in the
boundary-integral formulation reduce to 1-D line integrals (Oguz & Prosperetti 1993;
Pozrikidis 1997) which are evaluated with eight-point Gaussian quadrature. Known
quantities, i.e. the flow potential φ over the free surface and its normal derivative φn

over the disk, are interpolated using cubic splines, while for the unknown quantities
linear interpolation is used. The discretization of the boundary-integral equation
using collocation results in a linear system of equations which is solved by LU
decomposition.

The time evolution of the free surface is given by the kinematic and dynamic
boundary conditions

dr
dt

= v (B 1)

and
Dφ

Dt
=

1

2
|v|2 − Fr−1z − We−1κ, (B 2)

respectively, with κ as the local curvature of the surface and the other quantities
as defined in the main text. For time stepping, an iterative, second-order accurate
Crank–Nicolson scheme is employed with time steps determined by the condition
that neighbouring nodes may not ‘cross’, i.e.


t = f min(tnode) (B 3)

with tnode = D/vnode, where D is the distance to the neighbouring node and vnode is the
local velocity. The safety factor f is chosen to be 5 %.

The node density changes in both space and time with the nodes being redistributed
over the surface every n time steps (with 2 � n � 8 depending on the simulation).
For this, the distance between neighbouring nodes is taken inversely proportional to
the local curvature and the regridding algorithm furthermore ensures that density
gradients do not exceed 10 % from one segment to the next. For the jet itself we use
a slightly adapted version which ensures that there is a sufficiently high resolution
around the jet base and tip, but at the same time does not put an unnecessarily large
number of nodes along the smooth part of the jet. To avoid numerical disturbances,
we employ a regridding scheme in which at every mth time step (2 � m � 6) the
surface nodes are completely redistributed, placing the new nodes exactly half-way
between the old nodes (Oguz & Prosperetti 1993).

Three-dimensional boundary-integral methods have the advantage that
contributions of surfaces far away from the region of interest decay to zero, provided
that the potential there tends to a constant (which is the case in our setup). Therefore,
the free surface is cut off at 100 disk radii away from the axis of symmetry and the
outer walls of the container are not considered.
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Small droplets which are ejected just after impact in the ‘crown splash’ are discarded,
as described by Gekle & Gordillo (2010).

B.2. Bubble pinch-off from an underwater nozzle

The boundary-integral method used for these simulations is identical to the one
described above. The only additional feature is the gas pressure inside the bubble
which is considered uniform (i.e. inertial effects of the gas are neglected). The inflow
of gas from the reservoir is modelled as described by Oguz & Prosperetti (1993) and
the auxiliary material of Gekle et al. (2009b).

B.3. Surface reconnection

It is not possible to numerically solve in a continuous manner the transition from a
single, axisymmetric cavity into two cavities. This is because radial velocities become
larger and larger as the symmetry axis is approached and, consequently, it is necessary
to impose an ad hoc cutoff radius that avoids solving length scales smaller than rmin .
Thus, during bubble collapse we track the radial position ri of node i which is the
node closest to the axis. When ri < rmin a change in surface topology takes place. The
single bubble surface is replaced by two separated surfaces out of which the upper
and lower jets emerge. Numerically, this is achieved by shifting the neighbouring
nodes i ±1 to the axis of symmetry, conserving their vertical positions as well as their
potentials. Node i is discarded.

Then, cubic splines are fitted through nodes 0 . . . i − 1 and i +1 . . . N to obtain the
shape of the new surfaces. Along these splines new nodes are placed such that the jets
can be resolved with a significantly higher resolution than the original bubble surfaces.
We checked carefully that the involved numerical parameters do not influence the
long-term jetting behaviour (except possibly rmin which may influence the tip of the
jet, see Appendix A).
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