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a b s t r a c t

Direct numerical simulations (DNS) are performed to study the behavior of a swarm of rising air bubbles
in water, employing the front tracking method, which allows to handle finite-size bubbles. The swarms
consist of monodisperse deformable 4 mm bubbles with a gas fraction of 5% and 15%. This paper focuses
on the comparison of the liquid energy spectra and bubble velocity probability density functions (PDFs)
with experimental data obtained by phase-sensitive constant-temperature anemometry (CTA) and three-
dimensional particle tracking velocimetry (PTV), respectively.

The numerical simulations confirm that the spectra of the velocity fluctuations driven by the rising
bubbles follow a power law with slope close to �3, supporting the idea that the dissipation of the bubble
wake is the origin of this spectral scaling, as previously proposed by Lance and Bataille.

The computed PDFs of the bubble velocity show non-Gaussian features, as is also observed in the
experiments. The agreement with experimental measurements is especially good in the peak region,
whereas the tails of the experimental PDFs show more intermittency in comparison to the numerical
results. This can be explained by the lack of large-scale flow structures in the simulations, and by the
large difference in measurement time.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Bubble columns are gas–liquid contacting devices frequently
used in the (bio)chemical, and metallurgical industries. Detailed
knowledge on the behavior and interaction of both phases is essen-
tial for a proper design and optimization, in which numerical mod-
eling at different scales can play a crucial role (Deen et al., 2004).
As bubbles rise through the liquid column, they induce liquid fluc-
tuations which are referred to as pseudo-turbulence. A correct
understanding of the pseudo-turbulence is critical for the simula-
tion of bubbly flows, since it influences momentum, heat, and mass
transfer rates.

The characteristics of these turbulent fluctuations in the liquid
are reflected in the energy spectrum. It has been shown that the
energy cascade of pseudo-turbulence behaves differently from
homogeneous single-phase turbulence, and hence deserves special
attention in large-scale models. Lance and Bataille (1991) studied
bubbles rising through an imposed turbulent flow. They measured
the energy spectrum of the fluctuations and found a power law
ll rights reserved.

: + 31 40 247 5833.
scaling with a slope of about �8/3, in contrast to the classical
�5/3 for homogeneous single-phase turbulence. They explained
the change of the slope as a wake dissipation effect. Their scaling
argument gives an exponent of �3, close to the experimentally
found value. The value �3 has also been obtained by Risso
(2011), arguing that the signals from the wake of the rising bubbles
would be viewed as a sum of localized random bursts with statis-
tically independent strength and size.

In contrast, in the numerical work on pseudo-turbulence by
Mazzitelli and Lohse (2009) a slope of �5/3 of the energy spectrum
was observed together with a stable inverse energy cascade, where
the energy input occurs on the small scales (i.e. rising bubbles). En-
ergy is then transferred to large scales, building up large-scale mo-
tion. However, in those simulations bubbles were approximated as
point-like particles, thus disregarding finite-size effects and capil-
lary phenomena. As Mazzitelli and Lohse (2009) mentioned in their
paper, the ‘‘wrong’’ �5/3 scaling cannot be the signature of real
(experimental) bubble columns.

Indeed, the experimental work of Martínez Mercado et al.
(2010) found a scaling of the energy spectrum close to �3 for var-
ious gas fractions in the very dilute regime. These results were
obtained by single-point measurements in flows with gas fractions
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ranging from a = 0.8–2.2%, using a phase-sensitive CTA probe.
Furthermore, in the work by Riboux et al. (2010) energy spectra
were measured with PIV in the wake of a bubble swarm (because
PIV measurements could not be done within the swarm due to the
light reflection at the bubbles’ interface). Their results confirmed a
scaling close to �3 for length scales larger than the bubble diame-
ter. For smaller length scales their measurements recovered the
�5/3 slope. The scaling was independent of bubble diameter and
bubble concentration. Numerically, Bunner and Tryggvason
(2002b) computed the power spectrum for a swarm of ellipsoidal
bubbles employing the front tracking method and found a slope
of �3.6. They also observed a strong anisotropic flow, in contrast
to Lance and Bataille (1991). They explained the difference by
arguing that a large-scale convection pattern, induced by the bub-
bles, was present in the experiments.

The PDF of bubble velocities provide useful information for
modeling force correlations used in bubbly flow simulations. Bun-
ner and Tryggvason (2002b, 2003) and Esmaeeli and Tryggvason
(2005) numerically obtained PDFs of the bubble velocity for non-
deformable and deformable bubbles. For the case of non-deform-
able spherical bubbles, the PDFs have a Gaussian distribution
whereas for ellipsoidal deformable bubbles the PDFs deviated from
Gaussian at low void fractions, recovering Gaussianity only as the
bubble density increases. Experimentally, PDFs of bubble velocity
have been measured by Zenit et al. (2001) and Martínez Mercado
et al. (2007). Their measurements were carried out using an intru-
sive technique and the number of data points used for the PDFs
was not sufficient to determine a well defined distribution.

In this work, in an attempt to improve on the point-bubble sim-
ulations of Mazzitelli and Lohse (2009), we carry out DNS of bubble
swarms with a Front Tracking model aiming at resolving the bub-
bles’ wake. With this approach both finite-size and shape deforma-
tions (by tracking the bubbles’ interface) can be taken into account.
In this manner it will be possible to quantify whether bubble wake
phenomena influence the energy spectrum scaling. We will pro-
vide a direct comparison of our numerical energy spectra and other
statistical properties like PDFs of the bubble velocity with the
experimental results by Martínez Mercado et al. (2010) and discuss
the differences. Of particular interest are air bubbles in water. That
implies that we use a density ratio of qg/ql = O(1000) and a viscos-
ity ratio of lg/ll = O(100).

One of the strongest advantages of numerics is the non-intru-
sive access to velocities and velocity-derived quantities in the
whole numerical domain. Besides that, the void fraction can be
considerably larger as compared to experiments which rely on
optical techniques, which are restricted to very dilute bubbly
flows, such as PTV (Martínez Mercado et al., 2010) or laser doppler
anemometry (LDA) (Risso and Ellingsen, 2002; Mudde et al., 1997).
On the other hand, due to computational restrictions, the simu-
lated domain sizes and times are much smaller than those typically
used in experiments, leading to poor statistics in the simulations.

This paper starts with a short description of the Front Tracking
model, including details on the data sampling by our numerical
probes. Then results of energy spectra of the liquid fluctuations
and bubble velocity distributions are presented and compared to
experimental results. The last section summarizes and discusses
the present work.
Table 1
Physical properties for the air–water simulations.

Viscosity (gas phase) lg 1.8 � 10�5 (mPas)
Density (gas phase) qg 1.25 (kg/m3)
Viscosity (liquid phase) ll 0.001 (mPas)
Density (liquid phase) ql 1000 (kg/m3)
Surface tension coefficient r 0.073 (N/m)
Gas fraction a 0.05–0.15 (–)
2. Numerical method

2.1. Front tracking

Direct numerical simulations are performed using a full three-
dimensional Front Tracking model (based on the method by Unver-
di and Tryggvason (1992) and Tryggvason et al. (2001)). Details on
the actual implementation are given in Dijkhuizen et al. (2010b),
while validation with experiments using single rising bubbles is gi-
ven in van Sint Annaland et al. (2006) and Dijkhuizen et al. (2010a).
Furthermore, we have favorably compared the velocity of a single
rising bubble, with the results presented in Bunner and Tryggvason
(2002a).

The model solves the incompressible Navier–Stokes Eq. (1)
using a one-fluid formulation on a Eulerian grid using a source-
term Fr to account for the surface tension force at the interface:

q
@u
@t
þ qr � ðuuÞ ¼ �rp�r � sþ qgþ Fr; ð1Þ

r � u ¼ 0: ð2Þ

The equations are solved using a 2-step projection-correction meth-
od, firstly resolving the momentum equations with semi-implicit
shear stress terms (projection), followed by a pressure-correction
step. Both iterative approaches use an incomplete Cholesky conju-
gate gradient (ICCG) matrix solver on a single CPU.

The interface between the phases is tracked using Lagrangian
marker points (control points). These control points are intercon-
nected, forming a triangular mesh, from which the surface tension
force Fr can be calculated. This force is mapped back to the Euleri-
an grid at the location of the interface, using mass-weighing. After
calculation of the flow field, the marker points are moved with the
interpolated fluid flow, which eventually may result in edges of the
triangular mesh varying in size. A remeshing procedure assures
that the size of these edges is kept within predefined limits, e.g.
by removing or adding marker points.

The flow field has periodic boundaries in all three directions. In
order to prevent the system from energetically diverging due to the
buoyancy force (see e.g. Calzavarini et al., 2006), the net average
fluid flow velocity (volumetric flux) is subtracted from each veloc-
ity vector every time step.
2.2. Typical conditions

The bubbles are initially spherically shaped and placed ran-
domly throughout the cubic uniform computational domain. The
fluid flow velocity is set to zero. Our base-case is air-water (with
a Morton number Mo ¼ gl4

l ðql � qgÞ=ðq2
l r3Þ ¼ 2:5� 10�11). Table

1 shows the physical parameters for the air–water case. We adjust
the size of the computational domain to obtain the desired void
fraction. Using 20 Eulerian cells in a bubble diameter db ensures
accurate results while keeping the computation time as short as
possible—using db = 4 mm, the grid cell size is 2 � 10�4 m. A num-
ber of Nb = 16 bubbles are used. With this choice of Nb, our results
are independent of the number of bubbles. This was checked by
comparing bubble rise velocities in simulations varying Nb be-
tween 4 and 32. Moreover, Bunner and Tryggvason (2002a) men-
tioned that at least 12 bubbles should be used. The bubble
Reynolds number Reb = qlubdb/ll is of order O(1000). The Eötvös
number is Eo ¼ gd2

bðql � qgÞ=r ¼ 2:15.
The simulation time is 4 s and we use a time step of 5 � 10�5 s.

In Dijkhuizen et al. (2010a), it was shown that using a time step of
10�4 s provides same averaged results as a time step of 10�5 s for a
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Fig. 1. The transient period of 4 mm bubbles in a swarm (top) is much smaller (less
than 0.2 s) than that of a single rising bubble in an ‘‘infinite’’ liquid (bottom).
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Fig. 2. Typical velocity and indicator function signals. The solid line shows the
vertical fluid velocity, the dashed line the phase fraction (0: liquid, 1: bubble).
Upper figure: single numerical probe for a low void fraction simulation. Lower
figure: experimental phase-sensitive CTA probe. Note that the phase fraction of the
simulation is twice as high as in the experiments.
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single rising bubble. Reducing the time step is done for stability
purposes and not for accuracy.

2.3. Data acquisition

To exclude transient effects of the initially quiescent liquid and
bubbles, the interval of 0.0–0.2 s is discarded for the analysis. In
Fig. 1 it is shown that for bubbles in a swarm, the transient period
is actually much shorter (less than 0.2 s) than for single rising bub-
bles in an infinite liquid. The bubbles in a swarm start to interact
with each other very soon, whereas for a single rising bubble the
transient lasts longer and its ‘‘wobbling’’ profile oscillates steadily
only after 0.5 s. The bubble velocities are sampled each 1 � 10�4 s,
as the velocity of the center-of-mass of the bubble, which is deter-
mined from the location of the marker points on the interface
mesh.

For the energy spectra calculations numerical probes were used.
These probes register the phase fraction and the fluid velocity vec-
tor in the computational cell at each time step (typically
5 � 10�5 s), providing a signal very similar to the signal from the
experiments. Also, the size of the computational cells is compara-
ble to the experimental probe. Hence, these probes are the numer-
ical equivalent to the phase sensitive CTA as described in van den
Berg et al. (2011) and Martínez Mercado et al. (2010). An array of
3 � 3 � 3 probes was located throughout the computational
domain.

Due to the staggered discretization of the velocity field, a linear
interpolation from the cell edges was performed for the phase frac-
tion and velocity at the cell center. Fig. 2 shows both a typical sig-
nal for the phase fraction and velocity from numerics and those
obtained with a phase-sensitive CTA probe by Martínez Mercado
et al. (2010).

There are some slight differences with the experimental probes,
however. Because the velocity of both phases is defined on a single
velocity field, the signal is continuous even when an interface
crosses the probe. In addition, the phase is represented as a frac-
tion (i.e. the gas fraction in the computational cell) instead of a bin-
ary phase indicator.

3. Energy spectra

For the calculation of the energy spectra of liquid fluctuations
we follow the method described in Martínez Mercado et al.
(2010). Since the numerical phase indicator is not binary as in
the experimental data, we set it to zero if the cell contains only li-
quid. Therefore, we have a collection of segmented velocity signals
in time for each numerical probe. For each probe we calculate the
power spectrum density of the segments larger than 256 data
points and average over all segments. Finally, an ensemble average
over all the 27 probes is done to obtain the final power spectrum.
Experimentally, in Martínez Mercado et al. (2010) the liquid veloc-
ity fluctuations were measured with a cylindrical hot-film probe
with its axis oriented along the (horizontal) x direction. Hence,
their spectra accounted for fluctuations in the y and z directions.
For this reason, we also report the energy spectrum considering
the fluctuations of these components of the velocity (Eyz), which
give the same result as compared to Exz as can be seen in Fig. 3.
We stress the key role that the simulation time plays to achieve
statistical convergence of the spectrum for all the numerical
probes. If the simulation time is not long enough, each spectrum
obtained from the numerical probes will depend strongly on its
location. For an air–water system, we have found that at least 4 s
of simulation time is needed. Fig. 4 shows the spectra of each of
the 27 probes for a 4-second air–water simulation with a = 5%.
All curves have the same behavior, reflecting the good conver-
gence. We mention that we have also run simulations with more
concentrated bubble swarms and with higher-viscosity liquids.
Within 2 s of simulation time, full convergence of the spectra of
the individual probes is not achieved for these cases.

We therefore focus on the fully converged case of the air–water
simulation with a = 5%. Fig. 5 shows the averaged spectrum of all
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is independent of the probe location. The spectra of half as long simulations do not
show this good convergence yet, neither do simulations with increased viscosity.
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Fig. 5. The energy spectra of the simulation is compared to experimental results.
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simulation case with a = 15% and with 2 s simulation time, which is not yet fully
converged.
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27 numerical probes together with the experimental data by
Martínez Mercado et al. (2010). The simulation shows a good
agreement, having a slope close to �3 in the frequency range of
20–200 Hz. The scaling frequency range for the numerics is shorter
as compared to the experimental case due to the difference in sim-
ulation and measurement time. Risso and Ellingsen (2002) pointed
out that the power spectra are not influenced by a, based on their
experimental findings. In spite of a shorter simulation time and the
above discussed convergence problems, in Fig. 5 we also show the
spectra for a case with a = 15%. Due to the smaller signal segments,
caused by the smaller distance between the bubbles at higher gas
loadings, the �3 scaling range shrinks to less than a decade.

4. Bubble velocity distribution

Fig. 6 shows the (logarithm of the) PDFs of the bubble velocity
normalized by their standard deviation. As it is very difficult either
in numerics to reduce a without exponentially increasing the re-
quired computation time or to increase a in experiments due to
the optical restriction that PTV imposes for detecting single parti-
cles, for the experimental case we picked the most concentrated
flow which could be measured using three-dimensional PTV in
Martínez Mercado et al. (2010), namely a = 0.74%. For the numer-
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a Gaussian distribution with the same mean and width as in experiments. The
upper figure shows the horizontal velocity components. �: vx and h: vy. The lower
figure shows vz.
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ical simulations we picked a = 5% instead, where (i) we have the
best statistics and (ii) which still can be considered as dilute.

Fig. 6 shows the results for the horizontal and for the vertical
components. In spite of the difference in bubble concentration,
the PDFs agree reasonably well in the velocity range where we
can numerically determine it. We point out that the central part
of the PDFs are on top of each other and have a probability 1000
times higher than the events in the tails. Note that the measuring
time in experiments is longer, so there is a larger chance of detect-
ing the rare events leading to the pronounced tails of the PDFs. It is
not possible to detect them numerically, due to CPU time limita-
tions. In addition, large-scale structures do occur in the flow in
the experimental water channel, which are not seen in our simula-
tions due to the different boundary conditions. The deviation from
Gaussianity can be observed in both cases, even in the central
region, as the dashed line in Fig. 6 suggests. For a fair comparison
of the flatness value, from the experimental results we have only se-
lected velocities which are in the central part of the PDF, i.e.
�4 < (v � vmean)/vrms < 4, which results in a flatness of around 4–5
for the horizontal components and flatness around 5.5 for the ver-
tical velocity. From numerics, at a = 5% we get values around 3 for
the horizontal components and 3.8 for the vertical component.

An investigation of the flatness as a function of the gas fraction
using the numerical data shows that also for larger gas fractions
a > 5% the flatness of the z-component is higher than that of the
horizontal components, which is consistent with the Gaussian case
with flatness equals to 3.
5. Discussion and conclusions

Results from Front Tracking DNS of a swarm of deformable air
bubbles in water have been analyzed. We have compared the
power spectrum of bubble induced turbulence (pseudo-turbu-
lence) and bubble velocity distributions with experimental data
of a bubble column.

We have shown that the liquid energy spectrum follows a
power law with a slope close to �3, which agrees with the exper-
imental results in the frequency range 20–200 Hz. Our finding
gives additional support to the idea that this particular power
law scaling in pseudo-turbulence is related to the wake of the bub-
bles. Whether the actual mechanism is dissipiation or transfer
should be further investigated. Mazzitelli and Lohse (2009) per-
formed pseudo-turbulence simulations with point-particle bub-
bles, they found the classical Kolmogorov �5/3 power law, as the
point-particle approach cannot resolve the wakes of the bubbles.
Experiments by Roig and de Tournemine (2007) and Risso et al.
(2008), and theoretical arguments by Lance and Bataille (1991)
and Risso (2011) have also indicated the importance of bubbles’
wake phenomena. Hence, the finite-size leading to wake formation
accounts for the pseudo-turbulence �3 spectrum measured by
Lance and Bataille (1991) and Martínez Mercado et al. (2010).

The bubble velocity PDFs show a good agreement with experi-
ments. Both experimental and numerical data deviate from a
Gaussian distribution. Experimental data show larger tails than
the numerical results due to the relatively short simulation time
(because of the computational cost), but also because of the peri-
odic boundary conditions used in the model. When using periodic
boundary conditions, the possibility of occurrence of large scale
patterns and rare velocity events is reduced. We do however ob-
serve a similar trend concerning the flatness of the PDFs: the ver-
tical velocity distributions have a higher flatness than the
horizontal components. We expect that if modifying the boundary
conditions and longer simulation times were possible, the inciden-
tal high velocities in the tails of the distributions will also occur in
the numerical simulations.
Another consequence of the periodic boundary conditions in the
numerics is that the spatial structure of the bubbles cannot be cor-
rectly captured. We have analyzed clustering effects on the numer-
ical data by calculating the angular pair correlation function G(h),
the probability density function of the angle between the vertical
axis and the vector connecting the centroids of two bubbles. In
Fig. 7 numerical and experimental results are shown (details on
G(h) can be found in Martínez Mercado et al., 2010), where the
numerical simulation contains a gas fraction of 5% which is the
closest to the gas hold-ups used in experiments. However, the ra-
dius used in the simulations (normalized by the bubble diameter)
is slightly larger due to the domain size. The preferential vertical
clustering as found in the experiments by Martínez Mercado
et al. (2010) was not observed in the numerical results. We attri-
bute this to the lack of large-scale flow circulations due to the lim-
ited size of the computational domain and absence of walls in the
domain. Instead, strong diagonal clustering effects are observed.
More simulations using larger domains with walls will be required
to further elucidate this issue. The domain size (and the closely re-
lated number of bubbles) and boundary conditions are very impor-
tant for the spatial orientation of the bubbles, whereas the
influence of these parameters is of less importance for the energy
spectra calculations.
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