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Abstract
Unproctored Internet testing (UIT) is commonly used in employment test administration. When the
test is high stakes, the International Guidelines on Computer-Based and Internet-Delivered Testing
recommend to follow up the results with a confirmation test in a controlled setting. This article pro-
poses and compares two methods for detecting whether a test taker’s original UIT responses are
consistent with the responses from a follow-up confirmation test. The first method is a fixed length
adaptive confirmation test using the likelihood ratio (LR) test to evaluate cheating and the second
method is a variable length adaptive confirmation test using an extension of the stochastic curtailed
truncated sequential probability ratio test (SCTSPRT) to evaluate cheating. Simulation studies indi-
cated that the adaptive confirmation test using the SCTSPRT was almost four times shorter while
maintaining the same detection power. The study also demonstrated that cheating can have a detri-
mental effect on the validity of a selection procedure and illustrated that the use of a confirmation
test can remedy the negative effect of cheating on validity.
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Introduction

The increase in computer availability and the widespread use of the Internet have led to an increased

application of unproctored tests that can be administered at any place and time via the World Wide

Web. Unproctored Internet testing (UIT) is Internet-based testing of a candidate without a traditional

human proctor. Although definitive usage data are lacking, it is probable that UIT accounts for the

majority of individual employment test administrations that currently take place in the U.S. private

sector (Pearlman, 2009). Fallaw, Solomonson, and McClelland (2009) found that more than two

thirds of the employers who conduct testing for selection are already engaging in UIT.
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The flexibility of Web-based test administration is attractive because it limits the resources

necessary for administering tests, meaning that test proctors need not be hired, trained, or sent to

testing locations; testing equipment does not have to be purchased, distributed, or maintained; and

job candidates do not have to travel to testing locations. UIT also allows continuous access to assess-

ments and limits the time it takes to process candidates.

The primary disadvantage of UIT stems from the many forms of cheating that are possible such as

assistance from others who have knowledge of the items before the test, assistance from others dur-

ing the test, or the substitution of test takers (Tippins, 2009). There is evidence that cheating is wide-

spread in unproctored as well as proctored settings. Automatic Data Processing Inc. (2008) reports

data indicating that 45% of job applicants falsify work histories. These applicants would presumably

be willing to cheat if given the opportunity. Cizek (1999) and Whitley (1998) found that approxi-

mately half of all college students report cheating on an exam at least once during their college edu-

cation. There is also abundant literature motivated by the concern that applicants may fake their

responses in occupational testing in an attempt to obtain employment (e.g., Anderson, Warner, &

Spector, 1984; LaHuis & Copeland, 2009; Ones, Viswesvaran, & Reiss, 1996). It is likely that cheat-

ing in UIT is particularly widespread because proctoring is the primary means by which cheating is

curtailed (Arthur, Glaze, Villado, & Taylor, 2009). In fact, Chapman and Webster (2003) describe

cheating as one of the most common reasons that human resources professionals are hesitant to

implement UIT.

Some possible solutions for limiting the detrimental effects of cheating in a high stakes unproc-

tored Internet ability test are to use a speeded test (e.g., Arthur et al., 2009; Nye, Do, Drasgow, &

Fine, 2008) or to have a two-step testing process where a confirmation test is used to verify the

results of the first test (e.g., Beaty, Dawson, Fallaw, & Kantrowitz, 2009; Burke, van Someren, &

Tatham, 2006).

Nye et al. (2008) did not detect any differences due to cheating when comparing proctored and

unproctored test results for a perceptual speed test in a selection setting. Similarly, Arthur et al.

(2009) concluded that a speeded test format appears to reduce the prevalence of cheating. However,

more research is needed before a conclusion about the validity of using a speeded test format without

a verification test for UIT can be made.

Currently, the International Guidelines on Computer-Based and Internet-Delivered Testing

(2005), developed by the International Testing Commission, explicitly stipulate the need for verifi-

cation testing. Guideline 45.3 states:

For moderate and high stakes assessment (e.g., job recruitment and selection), where individ-

uals are permitted to take a test in controlled mode (i.e., at their convenience in non-secure

locations), those obtaining qualifying scores should be required to take a supervised test to

confirm their scores. Procedures should be used to check whether the test-taker’s original

responses are consistent with the responses from the confirmation test. Test-takers should

be informed in advance of these procedures and asked to confirm that they will complete the

tests according to instructions given (e.g., not seek assistance, not collude with others, etc.).

This agreement may be represented in the form of an explicit honesty policy which the

test-taker is required to accept.

The most commonly used method for conducting a confirmation test is the test–retest approach.

With this approach, an unproctored test is used as a prescreen, followed by a proctored administra-

tion of the same or a parallel version of the test in a proctored setting. Variations are to use rando-

mized item selection (e.g., Burke et al., 2006) or computerized adaptive testing (CAT).

There are many statistical methods available for detecting forms of cheating such as collusion in

proctored settings, including Angoff’s b index (Angoff, 1974), error similarity analysis (Belleza &
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Belleza, 1989), and the Z index (van der Linden & Sotaridona, 2002). There is also research

investigating how to identify respondents who distort their responses in personality scales when they

are used for personnel selection (e.g., Drasgow, Levine, & Zickar, 1996; LaHuis & Copeland, 2009).

However, studies describing the statistical methods used in UIT confirmation testing or literature

comparing the efficiency of different methods are still lacking. This is surprising, given the wide-

spread use of UIT and the well-documented criterion validity evidence of ability tests used for per-

sonnel selection (e.g., Schmidt & Hunter, 1998).

The problem with current confirmation test approaches is that they largely undermine the purpose

and attractiveness of UIT in the first place, which is to have a quick, seamless, automated, and

candidate-friendly application-selection process that will reduce cost by limiting on-site or proctored

testing. This is the case because most confirmation tests are unnecessarily long due to suboptimal

designs. The lack of short confirmation tests means that many possible UIT benefactors discard

or partially discard using UIT (Kaminski & Hemingway, 2009). Therefore, research is needed to

investigate whether efficient follow-up testing is possible and to find effective methods of detecting

suspicious test responses.

This study is designed to fill the gap in the literature by identifying a psychometric method for

developing a confirmation test designed to verify the veracity of unproctored ability test results

as efficiently (in terms of the number of items administered) as possible. Thus, a confirmation test,

as it is investigated in this article, is used exclusively to confirm or reject the result from the unproc-

tored test and is not intended to be used as a supplement to the unproctored test result.

An effective framework for developing such a confirmation test is to use CAT combined with

item response theory (IRT). CAT has the advantage over traditional tests that the test can be tailored

to the individual respondent, ensuring a precise result as quickly as possible. The use of CAT has

been found to increase the efficiency of classification decisions in classification testing (Eggen &

Straetmans, 2000; Rudner, 2002) by decreasing the number of items necessary for making an accu-

rate decision without compromising precision. In classification testing, the goal of the examination

is to classify respondents into a limited number of categories based on cutoff points selected on an

ability scale. Confirmation testing can be considered a special form of classification testing, where

the goal of the test is to classify each respondent by either accepting or rejecting the hypothesis that

they have the same ability level in the controlled proctored condition as they did in the unproctored

setting. The fundamental difference between confirmation and classification testing is that a unique

cutoff point is used for each respondent in a confirmation test, whereas a classification test uses a

general cutoff point for the whole sample. This difference is essential and implies that the methods

used in classification testing cannot be applied directly to confirmation testing and that extensions of

these methods are required.

Consequently, the design of the algorithm for an adaptive confirmation test could take the form of

a classification CAT where the result from each respondent’s unproctored test is used as a unique

classification cutoff point in the confirmation test. This presents a challenge because the unproctored

test result is an ability estimate and not a fixed point. In the following sections, we explore and test

the consequences of using adaptive confirmation test methods for verifying unproctored test results,

and propose a means of generalizing the methods used in classification testing to the present context,

with the intention of identifying a way of increasing the efficiency of confirmation tests compared to

those currently being used.

The article is organized as follows: The IRT model is presented in the next section. This is followed

by an introduction of a statistical test that can be used in a fixed length confirmation test. The subse-

quent section covers two sequential procedures for conducting a classification test: the truncated

sequential probability ratio test (TSPRT) and the stochastically curtailed TSPRT (SCTSPRT) and pre-

sents a method for generalizing these procedures to the current context. This is followed by an outline

of the research questions in the study, and a description of the simulation studies designed to answer

610 Organizational Research Methods 14(4)

610



these questions. The final section provides an overview of the results including benefits and limitations

of using the proposed methods for confirmation testing, as well as future research possibilities.

The IRT Model

The proposed methods are defined in the framework of IRT. The fundamental concept of IRT is that

each test item is characterized by one or more parameters and each test taker is characterized by a

single ability parameter. The probability that a given test taker answers a given item correctly is

given by a function of the test taker’s ability level y and the item parameters. Conditional on those

parameters, the response on one item is assumed independent of the responses to other items. The

IRT model used is the 2-Parameter Logistic, or 2-PL model, where the probability of a correct

response is given by

PiðyÞ ¼
1

1þ expð�aiðy� biÞÞ
ð1Þ

(Birnbaum, 1968). Here, Pi(y) is the probability of a correct response for item i, y is the test taker’s

ability, and ai and bi are item parameters. Furthermore, ai is called the discrimination and bi the dif-

ficulty parameter. It is common to scale ability levels to have a mean of 0 and a standard deviation of 1.

The item difficulty parameter represents the point on the ability scale at which the probability of

answering the item correctly equals .5. Higher discrimination parameters indicate that the probability

of answering an item correctly rises dramatically with small changes in ability in the region of the item

difficulty.

Alternative IRT models that might be considered are the 1- and 3-Parameter Logistic models

(1-PL and 3-PL models). In the first model, also known as the Rasch model (Rasch, 1960), the a

parameters of all items are considered equal. This model was not pursued here, because it is often

too restrictive to obtain acceptable model fit. In the 3-PL model (Birnbaum, 1968), a guessing para-

meter is added as a third item parameter to model guessing. This model was not pursued in this arti-

cle because many authors report identification problems with the model (see, for instance, Luecht,

2006 or Partchev, 2009). Luecht (2006, p. 578) remarks that attempting to estimate stable item para-

meters in small samples can be extremely challenging and that the estimation problems include non-

convergence of the numerical estimation solutions from ill-conditioned likelihood functions and

empirical underidentification of the model parameters leading to large error covariances of the para-

meter estimates. In addition, we focus on adaptive testing where the items are tailored to the ability

level of the respondents, y is usually close to bi, and the probability of a correct response converges

to .5. Therefore, there is little information in the data to support the estimation of a guessing para-

meter on one hand and, on the other hand, a guessing parameter adds little to the precision of the

estimate of y.

What differentiates CAT from a classical linear test is that an item selection function is used to

optimally select the next item in the test. A selection function that is often used is Fisher’s informa-

tion function. For dichotomously scored items, the information function has the following form:

IiðyÞ ¼
P0iðyÞ

2

PiðyÞQiðyÞ
; ð2Þ

where Pi
0(y) is the first derivative of Pi(y) with respect to y, and Qi (y)¼ 1 � Pi(y). The next item is

selected that has the maximum information in the item pool at y ¼ y*, where y* is the current esti-

mate of the ability of the test taker. CATs can also be used to classify examinees into a limited num-

ber of categories, by evaluating a hypothesis that y is above or below a cutoff point on the ability
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scale. These algorithms usually select the next item with maximal information at the cutoff point,

rather than at the current ability estimate.

The efficiency (in terms of the number of items administered) of CAT in classification testing can

be improved by adjusting the decision method and the termination criteria, as well as the item selec-

tion method that is used. Different item selection methods are discussed later in this article. In the

sequential procedures used in classification testing, the response pattern is analyzed after the admin-

istration of each item to determine whether there is sufficient information to make a classification

decision without administering unnecessary extra items. However, the test length requirements for a

confirmation test are more stringent than those for a classification test. Therefore, it is not certain

that a sequential procedure will increase the efficiency of the confirmation test without severely

decreasing the decision accuracy. The following sections describe both fixed length and sequential

procedures for developing a confirmation test used for validating UIT.

Fixed Length Confirmation Test

A hypothetical job candidate will be used to illustrate the confirmation testing procedures used in this

article; we will call this candidate C. Upon applying for a job, C is typically administered an initial

unproctored online test that he can take at his convenience. If his result meets the criteria for selection,

he is then offered a follow-up confirmation test under supervised conditions. A fixed length confirma-

tion test consists of a fixed number of items. After the administration of all of the items in the test, a

statistical test is used to evaluate the hypothesis that C’s ability level is significantly lower than his

unproctored test score. If C’s confirmation test score is not significantly lower than his unproctored

test score, then his unproctored test result is accepted and this score is used in making a selection deci-

sion. Note that the score from the confirmation test is not used to supplement C’s unproctored score; it

is simply used to confirm or reject the unproctored score. The example of C will be used again later in

this article. We will now explain the fixed length confirmation test in more technical detail.

The LR test can be used to identify aberrant response patterns in a fixed length test. The LR test

uses the ratio of the maximum likelihood under two different hypotheses. In the current context, the

null hypothesis is that one ability parameter is sufficient to describe the response pattern in the two

tests. This hypothesis represents the assumption that the respondent has the same level of ability in

both tests. The alternative hypothesis is that two ability parameters are necessary to describe the

response pattern: one for the unproctored test and one for the confirmation test. This represents the

situation where the respondent’s score has changed from the unproctored to the confirmation test.

Investigating the log-likelihood of each model compares the two models under the two hypoth-

eses. The log-likelihood function of the ability parameter y, given a response pattern x on a test of

N items is given by

Log Lðy;xÞ ¼ log
YN
i¼1

PiðyÞxið1� PiðyÞÞ1�x1

" #
; ð3Þ

where Pi(y) is the item response function from the 2-PL model given in equation 1, xi ¼ 1 for a cor-

rect response and xi ¼ 0 for an incorrect response to item i. The LR statistic for the test of the null

hypothesis that the unproctored test is valid is given by

LR ¼ Lðy;x1;x2Þ
Lðy1;x1Þ Lðy2;x2Þ

; ð4Þ

where x1 and y1 are the response pattern and estimated ability from the unproctored test and x2 and

y2 are the response pattern and estimated ability from the confirmation test. L(y1; x1) and L(y2; x2)

are the likelihood of the unproctored and confirmation test, respectively, and L(y; x1, x2) is the

612 Organizational Research Methods 14(4)

612



likelihood of one single y computed using the responses of the unproctored and confirmation test

concurrently. The LR statistic has a chi-square distribution with degrees of freedom equal to the

number of parameters in the unrestricted model minus the number of parameters in the restricted

model. This difference is one in the current context.

In confirmation testing, the one-sided test is used because the only matter of interest is if the esti-

mate for the unproctored test is significantly higher than the estimate for the confirmation test,

because this would suggest that there is a possibility that the respondent has cheated.

The one-sided version of the null hypothesis of the LR test is

H0 : y1 � y2: ð5Þ

The decision to reject (Decision ¼ r) the null hypothesis is made if the LR test is significant and the

unproctored test score (y1) is higher than the confirmation test score (y2). Otherwise, the null hypoth-

esis that the result from the unproctored test is valid, is accepted (Decision ¼ a).

Sequential Confirmation Tests

An organization that is interested in hiring C (the hypothetical job candidate introduced earlier) may

want to reduce the resources necessary for test administration by reducing assessment time. In this

situation, a sequential confirmation test could be used. In a sequential confirmation, test items are

administered to C one at a time. After his response to each item, the decision algorithm evaluates

if there is enough information available to accept or reject the null hypothesis that C’s unproctored

test result is valid. If a decision can be made to accept or reject C’s unproctored test score at this

point, then the test is terminated. If there is not enough information available to make a decision,

then an additional item is administered. Additional items are administered until a decision is made

or until the maximum number of items is reached, in which case a statistical test similar to the fixed

length confirmation test is used to determine the decision. Two methods for conducting a sequential

confirmation test are explored in this article: the TSPRT and the SCTSPRT.

The TSPRT is a method that is commonly used for classifying respondents in computerized clas-

sification testing (Eggen, 1999; Eggen & Straetmans, 2000; Reckase, 1983). The TSPRT offers sub-

stantially shorter tests than a conventional full-length fixed-form test, while maintaining a similar

level of classification accuracy (Eggen & Straetmans, 2000; Rudner, 2002). The SCTSPRT is an

extension of the TSPRT that can be used to shorten testing even further, without substantially com-

promising error rates (Finkelman, 2003, 2008).

The TSPRT and the SCTSPRT cannot be applied directly to the context of confirmation testing,

because the hypothesis tested in this context is based on the change between two testing sessions,

rather than the comparison of an estimate to one or more fixed cutoff points, which is the basis for

the hypotheses tested in classification testing. Therefore, confirmation testing is fundamentally dif-

ferent from other applications where the TSPRT and the SCTSPRT are used. The following sections

outline the TSPRT and the SCTSPRT as they are used in computerized classification testing. This is

followed by an extension of these tests to confirmation testing.

TSPRT

The sequential probability ratio test (SPRT) is a sequential procedure used to make classification

decisions in computerized classification testing. In applied conditions, a maximum for the number

of items to be administered is usually set (e.g., Eggen & Straetmans, 2000; Jiao, Wang, & Lau,

2004). This is a truncation of the SPRT labeled TSPRT.

When implementing the TSPRT, first a cutoff point (yo) on the y scale is selected, followed by a

small region on each side of the point. The combination of the two regions of size d > 0 is referred to
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as the indifference zone. The indifference zone serves the purpose of identifying two points on the

ability scale that can subsequently be used to calculate the LR. The statistical hypotheses are formu-

lated as

H0 : y2 � yo þ d ¼ yþ against HA : y2 � yo � d ¼ y�: ð6Þ

After the administration of the kth item (1 � k < N, where N is the maximum number of items in the

test), the following statistic is used to make a decision to accept or reject H0:

LRk ¼ Lk yþ; xð Þ=Lk y�; xð Þ ¼ log Lk yþ; xð Þ � log Lk y�; xð Þ; ð7Þ

where Lk(yþ;x) and Lk(y�;x) are the likelihoods, yþ is the model under the null hypothesis and y� is

the model under alternative hypothesis, both given the response pattern observed up to the kth item.

The log-likelihood ratio of the values yþ and y� after k observations represents the relative strength

of evidence for selecting yþ and y� as the correct decision. High values of the ratio indicate that the

examinee’s ability is above the cutoff point and low values indicate that their ability is below the

cutoff point. Note that no estimation of y is involved. Decision error rates are specified as

P accept H0jH0 is trueð Þ � 1� a; and P accept HAjHA is trueð Þ � b; ð8Þ

where a and b are small constants that can range from .01 to .4. Furthermore, we define A ¼ a/(1 �
b), and B ¼ (1 � a)/b. The TSPRT uses the following procedure after each item has been

administered:

Continue sampling if : log A < LRk < logB; and k < N ; ð9Þ

AcceptH0 jDecision ¼ a; if : LRk � log B; ð10Þ

RejectH0 jDecision ¼ r; if : LRk � log A: ð11Þ

If the maximum number of items in the test is reached (that is, if k¼ N), an additional decision rule is

implemented:

Accept H0 jDecision ¼ a; if : LRk � log C; ð12Þ

RejectH0 jDecision ¼ r; if : LRk < log C: ð13Þ

Here, C is a constant satisfying A� C� B; its selection is an important factor in the error rates of the

TSPRT. Spray and Reckase (1996) proposed using the relation log C ¼ (log A þ log B)/2, which

would result in log C ¼ 0, whenever A ¼ 1/B.

The SCTSPRT

An alternative to the TSPRT used to shorten testing without substantially compromising error rates

is the SCTSPRT (Finkelman, 2003, 2008). Often, the TSPRT is inefficient because an extra item is

presented even though the classification decision for the respondent can no longer be changed. The

SCTSPRT stops testing once the decision cannot be altered on the basis of the remaining items in the

test. This is called curtailment. The SCTSPRT also stops testing in cases in which the probability of

changing the classification decision is smaller than a predefined value (y).

To evaluate the probability that the decision will change, it is first necessary to define what the

current decision is, based on the k responses so far. Dk* represents the tentative decision at stage k;

where k < N. Finkelman (2008) suggests using the following definition: Dk*¼ a, if LRk� log C and

Dk* ¼ r otherwise. The probability of changing decisions depends on the probabilities of the

response pattern of future items starting at stage k þ 1, which in turn depends on y. Therefore, a
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value for y must be selected for evaluating the probability that the decision will change between

stage k and N, that is, evaluating whether Dk* 6¼ DN, where DN is the decision at stage k ¼ N.

A conservative option is to use the conditional power approach by Jennison and Turbull (2000).

The conditional power approach implies setting y ¼ y� when Dk* ¼ a, and y ¼ yþ when Dk* ¼
r (Finkelman, 2008).

The stochastic curtailed TSPRT is defined as the following sequential rule.

If k < N, set k ¼ N and D ¼ a if

log LRk � log Bf g or log LRk > log C and Py� DN ¼ ajLRkð Þ � yf g; ð14Þ

and set k ¼ N and D ¼ r if

log LRk � log Af g or log LRk < log C and Pyþ DN ¼ rjLRkð Þ � y0f g; ð15Þ

If k ¼ N ; set D ¼ a if and only if log LRk � C; ð16Þ

where y and y0 are thresholds along the probability scale, which take values between .5 and 1. In

particular, they determine how high the probability of retaining the current decision must be for the

test to be stopped early. That is, the statement Py�(DN ¼ a|LRk)� y in equation 14 specifies that the

probability of event DT ¼ a, given log LRk, must be greater than or equal to y under y� for the cri-

terion to be satisfied. Similarly, the statement Pyþ(DN¼ r|LRk)� y0 in equation 15 specifies that the

probability of the event DT ¼ r, given log LRk, must be greater than or equal to y0 under yþ for the

criterion to be satisfied.

Setting y ¼ y0 ¼ 1 results in a test that has the same error rates as the TSPRT with the possibility

of reducing the number of items. The stochastic curtailed SPRT is straightforward when all items

that will be administered are known and k is close to N. Finkelman (2008) uses an approximation

of the probabilities Py�(DT¼ a|LRk), and Pyþ(DN¼ r|LRk) in equations 14 and 15 when the remain-

ing items in the test are unknown. Applying Finkelman’s approximation in the current context is not

straightforward, so we approximate these probabilities by simulation as a computational method.

A simulation of the remaining item responses in the test at point k can be applied to calculate the

probability of retaining the current decision at point k ¼ N. The simulation uses the conditional

power approach described above for selecting y at point k. The remaining item responses from point

k to k ¼ N can then be generated by replicating a number of CATs given yþ or y� 100 times. The

probability of retaining the decision is computed by adding up the number of times the decision

remains unchanged in the 100 replications.

Extending the SPRT Framework to Computerized Confirmation Testing

The SPRT framework cannot be applied directly to confirmation testing because the cutoff point is

not a fixed point but varies over respondents based on their unproctored test result. Therefore, an

extension of the SPRT framework is needed where the cutoff point is defined at the level of the indi-

vidual based on the unproctored test result. Defining the cutoff point based on the unproctored test

result presents a further challenge because the unproctored test result is an estimate, which contains

error, and is not a fixed variable. A solution is to develop a test taking into account the sampling

distribution of the estimate. Using a cutoff point from the sampling distribution, the probability

of exceedance or significance probability can be determined.

When using the SPRT framework for a confirmation test, the selection of the cutoff point

determines the ratio of Type I and Type II error rates in the test. Decreasing the Type I error rate

automatically means an increase in Type II error; therefore, a prioritization of the two is important.

Incorrectly rejecting a respondent who has completed the unproctored test without cheating (a Type

I error) can have serious ethical and possible legal consequences. Burke et al. (2006) provide a good
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overview of considerations that are important in handling such respondents, which can be demanding

in terms of required resources for those administering the test. Alternatively, the cost of committing a

Type II error includes hiring the incorrect applicant, which can result in negative organizational con-

sequences and negative consequences for the applicants who were not selected. In the current context,

raising questions about someone’s integrity usually outweighs the negative consequences of a Type II

error. Therefore, the development of a confirmation test method that controls for the Type I error rate

is prioritized in this article.

The cutoff point for the confirmation test can be established using the lower limit of the confi-

dence interval for the ability estimate in the unproctored test. This confidence level would hold for

the Type I error rate in the confirmation test, if the confirmation test had perfect precision. In prac-

tice, a more conservative value is needed because the error is compounded due to a combination of

the error in the two tests. One method for establishing the Type I error rate for the confirmation test-

ing procedure is to take the error of both tests into account with the following equation:

y0 ¼ y1 � SE y1ð Þ þ gð Þ; ð17Þ

where y1 and SE(y1) are the ability estimate and standard error obtained from each respondent’s

unproctored test, respectively, and g is a positive constant representing a combination of the antici-

pated error in the confirmation test and the desired Type I error rate of the test.

The SPRT requires a predefined cutoff point before the confirmation test begins; therefore, the

exact value of g that corresponds to a specific Type I error rate cannot be obtained because it will

depend on the items that are administered in the confirmation test. However, a value of g can be

chosen in such a way that the Type I error rate aggregated over respondents is close to a predefined

overall nominal Type I error rate. The choice of g only takes the characteristics of the confirmation

test into consideration; the error in the unproctored test is already included in equation 17. Therefore,

one value of g would result in a stable Type I error rate, regardless of the precision of the unproctored

test. The value of g that corresponds to a Type I error rate can be obtained by conducting an a priori

simulation of the confirmation test.

In summary, the purpose of the proposed method is to set a cutoff point at some position below

the y estimate in the unproctored test, to take into account the error in the unproctored test and antici-

pated error in the confirmation test with the intention of controlling the Type I error rate in the con-

firmation test.

Research Questions

There are four main research questions in this study: Which item selection method performs best in

fixed length and sequential confirmation testing procedures? What are the benefits of using a

sequential confirmation test, rather than using a fixed length confirmation test based on efficiency

in terms of the number of items administered and the power to identify cheaters? What are the ben-

efits of using the stochastic curtailed version of the TSPRT compared to using the TSPRT? Does a

confirmation test decrease the effect of cheating on the validity of a selection procedure?

Simulation Studies

The research questions outlined above were investigated by means of simulation studies. The first

simulation study was designed to compare different methods for conducting a fixed length confirma-

tion test. The second study was used to define the cutoff points that correspond to nominal Type I error

rates for a sequential confirmation test and to test whether the empirical Type I error rates matched the

nominal Type I error rates. The third study explored different options for conducting a TSPRT for

sequential adaptive computerized confirmation testing. This study also compared the results for the
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fixed length adaptive confirmation test with those of the TSPRT to investigate if the TSPRT improved

the efficiency of the fixed length adaptive confirmation test. The fourth study investigated the possi-

bility of shortening the confirmation test even further using the SCTSPRT procedure. Finally, a selec-

tion procedure was simulated to test the utility of the computerized adaptive confirmation test for a

personnel selection procedure.

The simulation studies were programmed in Digital Visual FORTAN 6.0 for Windows. The abil-

ity estimation methods used in the fixed length confirmation test can also be calculated using stan-

dard IRT software packages such as Parscale (Muraki & Bock, 1996) or ConQuest (Wu, Adams,

Wilson, & Haldane, 2007). It was assumed that during the unproctored test, a respondent who had

cheated had another y value than during the confirmation test. This was simulated by drawing y from

a standard normal distribution for the confirmation test. The y value in the unproctored test was set to

y¼ yþ D, where D represented the effect of cheating. Three groups of respondents were simulated.

The first was non-cheaters: Here, the effect of cheating was 0 (D ¼ 0). The next group represented a

moderate cheating effect of one standard deviation unit (D ¼ 1). This means that all of the respon-

dents in this group had a true ability level that was one standard deviation unit higher in the unproc-

tored test compared to the confirmation test. The final group represented a large cheating effect of

two standard deviation units (D¼ 2). In this group, all of the respondents had a true ability level that

was two standard deviation units higher in the unproctored test compared to the confirmation test.

The values of D were selected based on previous literature. Burke et al. (2006) report values of D¼ 2

in testing the efficiency of a confirmation test used for high stakes occupational ability testing. van

Krimpen-Stoop and Meijer (2000) use values of D ¼ 1 and D ¼ 2 in investigating non-fitting

response behavior in the second half of a CAT. These values are large; however, in this context, they

are appropriate because the consequences of rejecting an unproctored test score are serious and

would only be considered when the effect of cheating is large. In addition, the type of cheating

expected in an unproctored test, such as the substitution of test takers, would likely lead to greater

effect size differences than the cheating that is widespread in proctored settings.

An item bank was simulated by drawing item difficulty parameters from a standard normal dis-

tribution and item discrimination parameters from a lognormal distribution with an expectation of 1.

The item responses were generated according to the 2-PL model in equation 1. This was repeated for

each respondent, both for the unproctored test and for the confirmation test. The unproctored test had

a fixed length where the first 3 items were selected with maximum information for y ¼ 0 and the

remaining items were administered by selecting the item with maximal information at the current

y estimate. The estimation of y was done with either maximum likelihood estimation (MLE) or

weighted likelihood estimation (WLE; Warm, 1989). Each condition was repeated for 10,000

respondents.

Items in the confirmation test were administered according to one of 3 item selection procedures:

random (RAN), maximum information at the cutoff point (MIC), and maximum information at the

current y estimate (MIE). The first procedure randomly selects the next item from the available item

bank, excluding items used before. This selection method is similar to a nonadaptive confirmation

test (e.g., Burke et al., 2006). The other two procedures select the next item maximizing the item

information in equation 2. In the MIC item selection algorithm, the next item is selected to maximize

the information for the cutoff point. In MIE, the next item selected is the item for which the infor-

mation at the current ability estimate is maximal. The MIE item selection algorithm was initiated

after 3 items had been administered in the confirmation test to ensure that a fairly stable ability esti-

mate had been established. The item with maximum information at the cutoff point was adminis-

tered up to this point. MIC has been found to obtain comparable power with fewer items than

MIE in computerized classification testing (Eggen, 1999; Spray & Reckase, 1994); however,

MIE item selection is favored when the purpose of the test is to estimate the ability of an examinee

(Thissen & Mislevy, 2000).
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Study 1: Fixed Length Confirmation Test Using the LR Test

The first simulation study was designed to answer two research questions: Which of the three item

selection methods described above is the most efficient? Can ability estimation using WLE increase

classification accuracy over the more commonly used MLE? The second question was motivated by

research that has found that ability estimation accuracy can be increased using alternative estimation

algorithms compared to MLE (e.g., Warm, 1989). The questions were investigated for adaptive

unproctored tests consisting of 10, 30, and 50 items, and fixed length confirmation tests consisting

of 5, 10, and 20 items for item bank sizes of 100, 200, and 400 items. The outcome variable was the

proportion of correct classifications.

The results of the first simulation study did not vary by size of the item bank so only the results for

an item bank consisting of 200 items are presented in Table 1. The table reports the percentage of

respondents in each condition who had their unproctored test score rejected.

Table 1. Percentage of Aberrant Response Classifications for a Fixed Length Confirmation Test Using the LR
Test With a Significance Level of 5%

Test length D

MLE
Length of unproctored test

10 items 30 items 50 items

RAN MIC MIE RAN MIC MIE RAN MIC MIE

5 0 2.28 0.88 1.09 1.60 0.81 0.50 1.37 0.32 0.70
1 9.88 1.04 4.57 11.07 8.65 7.47 11.09 4 .14 8.23
2 19.21 1.32 9.36 33.46 6.08 13.19 35.83 23.71 20.20

10 0 6.67 10.45 9.71 3.28 5.02 5.45 2.93 4.23 4.09
1 22.55 32.03 29.19 26.96 38.84 37.97 27.07 37.36 40.73
2 35.72 32.83 36.52 62.05 58.00 60.07 65.22 65.58 67.13

20 0 13.06 16.49 15.72 5.48 7.86 7.75 4.30 5.73 5.42
1 39.98 56.60 54.02 45.80 64.03 64.76 47.45 65.05 67.30
2 59.88 65.07 65.55 81.57 88.09 87.63 88.57 92.34 93.44

WLE
Length of unproctored test

10 items 30 items 50 items

Test length D RAN MIC MIE RAN MIC MIE RAN MIC MIE

5 0 3.99 6.43 6.63 3.18 4.80 3.84 3.04 4.12 4.06
1 18.46 27.70 25.04 16.91 24.55 28.14 17.01 28.03 27.05
2 43.42 57.70 61.20 45.11 66.59 64.17 45.79 57.48 66.33

10 0 6.30 10.13 8.94 4.15 4.79 5.57 3.97 3.84 3.92
1 29.89 44.97 43.73 27.99 42.39 45.21 28.38 43.07 45.43
2 66.04 81.37 81.28 68.30 87.25 89.02 70.82 88.65 89.84

20 0 9.73 13.72 15.13 5.17 6.77 6.81 4.25 4.95 5.89
1 44.84 59.23 60.50 47.33 64.79 64.69 45.82 64.89 65.26
2 82.32 92.30 94.14 87.47 96.52 97.79 89.51 98.02 98.90

Note: D ¼ cheating effect in standard deviation units; LR¼ likelihood ratio; MIC ¼ optimal item selection at the cutoff point;
MIE ¼ optimal item selection at the current ability estimate; MLE ¼ maximum likelihood estimation; RAN ¼ random item
selection; WLE ¼ weighted likelihood estimation.
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The number of accurate classifications was higher when using WLE compared to MLE for

cheaters (D¼ 1 andD¼ 2), while both methods maintained similar Type I error rates for confirmation

test lengths of 10 and 20 items.

The item selection algorithm also had an effect on the efficiency of the confirmation test.

Although, there was not a great difference between MIC and MIE item selection procedures, both

performed better than random item selection (RAN) across most conditions. In fact, MIC and MIE

item selection methods performed similar to random item selection with half the number of items in

the confirmation test (e.g., 10 instead of 20), when WLE was the estimation method. An unproctored

test length of 10 items resulted in high Type I error rates in the confirmation test due to a lack of

precision in the unproctored test.

The results of the first simulation study suggest that the most effective method for constructing a

fixed length confirmation test is to use WLE for ability estimation and MIC or MIE for item selec-

tion. With these methods, a confirmation test length of 10 items was necessary before the confirma-

tion test obtained acceptable power. Additionally, the confirmation test performed best when the

unproctored test was at least 30 items.

Study 2: Defining the Cutoff Points That Correspond to Nominal Type I Error Rates for a
Sequential Confirmation Test

The second simulation study was used to define the cutoff points that correspond to nominal

Type I error rates for a sequential confirmation test and to test whether the empirical Type I

error rates matched the nominal Type I error rates. The decision algorithm for the sequential

confirmation test procedures requires a cutoff point from equation 17 before testing begins. The

algorithm uses the cutoff point to test the probability that the respondent’s ability based on the

confirmation test response pattern is above or below that point. Equation 17 includes y and the

standard error obtained from the unproctored test, as well as g, which is a constant depending

on a combination of the anticipated error in the confirmation test and the desired Type I

error rate for the combined testing procedure. The value of g is obtained by simulating the con-

firmation test a number of times for a representative sample of respondents. Therefore, a simu-

lation of the values of g that correspond to particular Type I error rates based on the

characteristics of the confirmation test was necessary before a sequential confirmation test

could be performed.

The choice of g only takes the characteristics of the confirmation test into consideration; there-

fore, one value of g should result in a stable Type I error rate, regardless of the precision of the

unproctored test. Precision in the unproctored test was varied in the current example by varying

the length of the unproctored test. Table 2 compares the empirical and nominal Type I error rates

across several conditions to test the empirical consequences of using g in equation 17 to set a

cutoff point for a sequential confirmation test. The optimal values of g that correspond to Type

I error rates of .10, .05, and .01 are reported. To estimate the Type I error rates under optimal

conditions, a conservative critical value of a ¼ b ¼ .01 and an indifference zone of .1 were set

for this simulation so all respondents were administered all (N ¼ 10 or N ¼ 20) items in the

confirmation test.

The table provides optimal values of g, for setting the Type I error rate in the sequential con-

firmation test; these are used in the remainder of the article. The difference between empirical

and nominal Type I error rates in Table 2 appear to be due to random error and do not provide

evidence for systematic differences. Therefore, this method is acceptable for selecting a single

value for g that maintains a consistent Type I error rate independent of the precision of the

unproctored test.
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Study 3: Sequential Confirmation Test Using the TSPRT

There were two main objectives for conducting the third simulation study. The first was to establish

an effective method for using a TSPRT for sequential confirmation testing. The second was to eval-

uate if a sequential procedure could reduce the number of items needed in the confirmation test while

maintaining the same level of classification accuracy. A maximum number of items administered in

the test was set at N¼ 10. In addition to the number of correct classifications, the average number of

items needed to make a classification was used as a criterion to measure the increased efficiency of

the procedure compared to the fixed length test. Varying the following variables assessed the most

effective method of conducting a confirmation test using the TSPRT:

a) Item selection procedure: RAN, MIC, and MIE.

b) Unproctored test length: 10, 30, and 50.

c) Cheating effect in the unsupervised test: D ¼ 0, 1, and 2.

d) Critical value for the LR test: a ¼ b ¼ .01, .05, .1, .2, and .4.

e) Indifference zone: d ¼ .1 to .3 in increments of .05.

The results of the third simulation study are presented in Table 3 for an item bank size of 200 items;

similar findings were obtained with different size item banks. To save space, only the results for an

indifference zone of d ¼ .25 are presented in Table 3. d ¼ .25 is larger than the indifference zone

typically used in classification testing; however, it produced the best results in the current context.

This is a consequence of a short maximum test length because small values of d resulted in nearly all

tests progressing until the maximum number of items had been reached. Eggen (1999) reported a

slight decrease in the percentage of correct decisions when increasing d; however, the decrease in

precision was not evident until d ¼ .3 in this study. Therefore, a value of .25 will be used in the

remainder of this article. Similarly, the results for critical values of a ¼ b ¼ .01 and .05 were too

conservative for the current context because the test was never terminated before the maximum

number of items had been reached. Therefore, less conservative critical values of a ¼ b ¼ .1, .2,

Table 2. Theoretical and Empirical Type I Error Rates for an Adaptive Confirmation Test Using the Truncated
Sequential Probability Ratio Test (TSPRT) for Different Values of the Constant g

Nominal
Type I error

Item selection
method

Confirmation
test length ¼ 10

Confirmation
test length ¼ 20

Unproctored
test Length

Unproctored
test Length

g 10 30 50 g 10 30 50

.10 RAN 0.80 0.088 0.102 0.102 0.55 0.950 1.010 0.980
MIC 0.50 0.091 0.097 0.110 0.35 0.097 0.089 0.102
MIE 0.50 0.093 0.098 0.104 0.35 0.099 0.100 0.103

.05 RAN 1.20 0.053 0.056 0.051 0.85 0.520 0.490 0.520
MIC 0.75 0.052 0.050 0.045 0.55 0.054 0.049 0.048
MIE 0.75 0.055 0.055 0.051 0.55 0.055 0.049 0.048

.01 RAN 3.00 0.023 0.022 0.017 1.50 0.008 0.007 0.009
MIC 1.30 0.010 0.004 0.007 0.95 0.016 0.075 0.072
MIE 1.30 0.013 0.008 0.010 0.95 0.015 0.082 0.080

Note: g ¼ constant representing a combination of the anticipated error in the confirmation test and the desired Type I error
rate for the combined testing procedure; MIC ¼ optimal item selection at the cutoff point; MIE ¼ optimal item selection at
the current ability estimate; RAN ¼ random item selection.
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and .4 are reported in Table 3. The table reports the percentage of respondents who had their unproc-

tored test result rejected (C) and the average number of items used in the confirmation test (K) for

each condition.

The results of the TSPRT indicate that the MIC and MIE item selection procedures performed

similarly in terms of classification accuracy. The MIC procedure used an average of .1 fewer items

to obtain a similar level of accuracy. Both MIC and MIE outperformed random item selection in

terms of power and efficiency across all conditions. These item selection methods increased the per-

centage of cheaters identified by approximately 20% over random item selection, while maintaining

a similar Type I error rate. Changing the critical value from a ¼ b ¼ .1 to .2 led to a similar number

of correct classifications with fewer items. The use of the critical value a ¼ b ¼ .4 led to inflated

Type I error rates and decreased the power in the test. Therefore, a critical value of a ¼ b ¼ .2

obtained the best results and will be used in the remaining simulations.

The results from the sequential and fixed length tests can be compared for a confirmation test

consisting of 10 items and an unproctored test of 30 items because the Type I error rate was approx-

imately 5% for both methods. The sequential adaptive confirmation test using the TSPRT resulted in

a greater number of correct classifications for the MIC and MIE item selection methods compared to

the fixed length tests. The sequential method was also more efficient and saved an average of 1.9

items with the MIC item selection method, 1.8 with the MIE method, and 0.6 with random item

selection method when averaging across the three cheating effects.

Using a single value for g in equation 17 has the disadvantage that the Type I error rate applies to

the entire distribution and is not defined conditionally at each point on the ability scale. Therefore,

an analysis of classification accuracy across ability levels was done to assess whether the probability

of being classified as a possible cheater depended on the respondent’s ability. The conditional pre-

cision was simulated in exactly the same way as in the previous simulation; however, 10,000

response patterns were simulated for each of the following y values: �2, �1, 0, 1, and 2. Table 4

presents the conditional precision of the confirmation test using the TSPRT.

Table 3. Percentage of Aberrant Response Classifications and Average Number of Items for a Sequential
Adaptive Confirmation Test Using the Truncated Sequential Probability Ratio Test (TSPRT)

a ¼ b

Unproctored test Unproctored test Unproctored test
length ¼ 10 length ¼ 30 length ¼ 50

RAN MIC MIE RAN MIC MIE RAN MIC MIE

D C K C K C K C K C K C K C K C K C K

.1 0 5 9.7 5 9.2 5 9.3 5 9.8 5 9.5 5 9.7 6 9.9 4 9.4 5 9.6
1 22 10.0 34 9.8 34 9.8 27 10.0 44 9.9 43 10.0 28 10.0 47 9.9 48 10.0
2 53 10.0 76 9.6 74 9.8 67 10.0 90 9.6 89 9.8 72 10.0 93 9.6 93 10.0

.2 0 5 8.5 5 7.1 5 6.9 5 8.7 4 7.5 5 7.5 5 8.8 5 7.9 6 7.9
1 22 9.4 34 8.6 34 8.6 26 9.7 44 9.1 45 9.3 29 9.8 48 9.2 48 9.3
2 57 9.7 75 8.4 76 8.5 69 9.7 91 7.8 90 7.9 72 9.7 93 7.8 93 7.7

.4 0 6 3.9 9 2.5 9 2.4 8 4.2 11 2.6 10 2.8 7 4.2 10 2.5 12 3.1
1 24 4.8 38 3.1 38 3.1 29 5.0 46 3.1 47 3.3 32 5.2 49 3.1 49 3.3
2 55 5.0 72 2.9 73 2.8 67 5.1 84 3.0 83 3.1 70 5.0 87 3.0 87 2.9

Note: Type I error ¼ 5%; a ¼ b ¼ values that determine the required magnitude that the likelihood ratio (LR) test must
surpass to stop the confirmation test early;D¼ cheating effect in standard deviation units; C¼ percentage of aberrant response
classifications; K ¼ average test length; MIC ¼ optimal item selection at the cutoff point; MIE ¼ optimal item selection at the
current ability estimate; RAN ¼ random item selection.
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For random item selection, the empirical Type I error rate (displayed in the columns labeled C)

ranged from 2% to 19% across ability levels. The Type I error rate ranged from 4% to 6% and from

4% to 7% for MIC and MIE item selection methods, respectively. The deviation from the nominal

Type I error rate of 5% was greatest for the lowest ability level of y¼�2. The power of the MIC and

MIE methods at detecting cheaters was also relatively consistent for ability levels y¼�2,�1, and 0

and only became lower at ability levels y¼ 1 and 2. Therefore, it is justifiable to use a single value of

g in equation 17 with MIC and MIE item selection. For random item selection, the percentage of

aberrant response classifications was far less stable across values of y. For instance, for y ¼ �2, the

percentage was 19, while it was 3 for y ¼ 2. So, this method leads to local bias and should not be

used with random item selection.

Study 4: Sequential Confirmation Test Using the SCTSPRT

The main purpose of the fourth simulation study was to check if the SCTSPRT could be used to

shorten the TSPRT in computerized adaptive confirmation testing. An SCTSPRT was developed

based on the most effective method identified in Study 3. The SCTSPRT halts testing in cases in

which the probability of a change of the classification decision is smaller than the predefined value

y from equations 14 and 15. Therefore, y was varied from .75 to 1 in intervals of .05.

The results of the fourth simulation study are presented in Table 5. To save space, results for only

a selection of the values of y are presented.

As expected, Table 5 indicates that the accuracy of the confirmation test decreased as the value of

y decreased. The Type I error rate was maintained as long as y � .95; however, the empirical Type I

error rate was above the nominal Type I error rate, for y � .9. Therefore, values of y � .95 would be

suggested for designing a confirmation test with a predefined Type I error rate. The detection accu-

racy was only .02% lower for y¼ .95 compared to y¼ 1 when averaging across MIC and MIE for all

conditions of D. However, there was a decrease in the number of items necessary for making a deci-

sion from 5.96 to 5.4 items for MIC and from 6.07 to 5.5 items for MIE. These results suggest that

the SCTSPRT with y ¼ .95 is the most efficient (in terms of the number of items used), yet accurate

Table 4. Conditional Precision of the Sequential Adaptive Confirmation Test Using the Truncated Sequential
Probability Ratio Test (TSPRT) With an Unproctored Test of 30 Items

D

y ¼ �2 y ¼ �1 y ¼ 0 y ¼ 1 y ¼ 2

C K C K C K C K C K

RAN
0 19 9.8 8 9.3 3 8.5 2 8.1 3 8.9
1 36 9.9 30 9.8 25 9.6 23 9.7 23 9.9
2 72 10.0 73 9.7 72 9.6 64 9.8 52 10.0

MIC
0 6 7.8 5 7.7 5 7.4 4 7.6 5 8.0
1 46 9.3 46 9.1 46 9.1 41 9.1 36 9.1
2 93 7.9 92 8.0 91 8.1 87 8.5 78 8.9

MIE
0 7 8.7 4 7.5 5 7.8 5 7.7 5 7.9
1 45 9.6 47 9.4 45 9.2 42 9.3 40 9.2
2 92 7.8 92 8.2 91 7.9 88 8.4 80 8.9

Note: Type I error¼ 5%; D: cheating effect in standard deviation units; C¼ percentage of aberrant response classifications; K
¼ average test length; MIC ¼ optimal item selection at the cutoff point; MIE: optimal item selection at the current ability
estimate; RAN ¼ random item selection.
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(in terms of correct classifications), method for conducting a computerized confirmation test. The

accuracy of the MIC and MIE item selection methods was virtually identical; however, the MIC

used an average of .1 fewer items when averaging across all conditions for y� .95. The Type I error

rate was consistent across unproctored test lengths; however, the power of the test increased as the

length of the unproctored test increased.

A comparison of the two sequential confirmation test methods, the TSPRT and the SCTSPRT,

showed that both tests retained similar precision; however, the SCTSPRT led to classifications with

fewer items than the TSPRT. The SCTSPRT led to an average decrease of 2.2 and 2.1 items for the

MIC and MIE item selection methods, respectively, when y was set to 1; and of 2.8 and 2.7 when y

was set to .95. This represents a reduction of over 25% of the items in the confirmation test.

Study 5: A Simulated Personnel Selection Procedure

So far, we have discussed the accuracy of a confirmation test in terms of classification accuracy.

However, we were also interested in the effect of cheating and the returns obtained from using the

sequential adaptive confirmation test for a selection procedure where those candidates who obtain

the highest score on a test are hired for a job. A sample of 10,000 job candidates was generated with

a normal distribution with a mean of 0 and a standard deviation of 1 representing their true ability.

Cheating was defined in the same way as in the previous simulations with the cheating effect (D) ¼
0, 1, and 2 standard deviation units in the confirmation test. The proportion of cheaters in the sample

was varied as 0%, 10%, and 20%. Candidates were assigned randomly to a cheating or honest con-

dition. Based on research findings presented in Cizek (1999), assignment to the cheating condition

was also based on an assumed correlation between ability and the propensity to cheat of �0.3. The

selection ratio for the example presented below was 50%, although other ratios were also explored.

Table 5. Percentage of Aberrant Response Classifications and Average Number of Items for a Sequential
Adaptive Confirmation Test Using the Stochastic Curtailed Truncated Sequential Probability Ratio Test
(SCTSPRT)

Length of the unproctored test

10 items 30 items 50 items

MIC MIE MIC MIE MIC MIE

y D C K C K C K C K C K C K

1.00 0 4 4.0 5 5.0 5 5.9 4 5.3 4 5.3 5 5.6
1 32 6.3 34 6.6 45 7.1 48 7.3 45 7.0 46 7.5
2 77 6.3 75 6.2 91 5.6 91 5.7 93 6.1 93 5.4

.95 0 5 4.5 5 4.2 5 4.2 5 5.0 5 5.1 5 5.2
1 34 6.1 34 6.2 43 6.4 41 6.2 48 6.3 48 6.7
2 78 5.6 77 5.9 91 4.9 90 5.3 93 5.5 93 4.8

.90 0 6 4.1 7 4.3 6 4.4 6 4.7 6 4.8 6 4.6
1 34 5.4 34 5.7 44 6.1 43 6.3 50 6.0 47 6.2
2 73 5.2 75 5.1 88 4.3 88 4.7 92 5.2 92 5.2

.80 0 7 3.9 7 3.9 8 3.9 8 4.1 7 4.2 7 4.3
1 36 4.9 36 5.0 43 4.9 45 4.8 47 5.4 48 5.1
2 75 4.6 74 4.7 87 4.3 87 4.3 90 4.5 91 4.4

Note: Type I error¼ 5%; y¼ determines how high the probability of retaining the current decision must be for the test to be
stopped early; D¼ cheating effect in standard deviation units; C¼ percentage of aberrant response classifications; K¼ average
test length; MIC ¼ optimal item selection at the cutoff point; MIE ¼ optimal item selection at the current ability estimate.
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The benefits ratio of the test is measured as the ratio of correct selections to incorrect selections.

Table 6 presents the benefits ratio based on the cross-classification of true and reported scores for the

unproctored test, without a confirmation test. As a more traditional validity measure, Table 6 also

presents Pearson’s correlation coefficient between the true ability and the unproctored test score for

all 10,000 job candidates.

The benefits ratio of the unproctored test alone, when there was no cheating, was 4,507:493 or

9.14 correct selections for each incorrect selection. The effect of cheating decreased the benefits

ratio of the test to 5.8 with 10% cheaters and 4.13 with 20% cheaters, when the cheating effect was

moderate. The decrease was even larger when the effect of cheating was large; 5.78 with 10% chea-

ters and 3.75 with 20% cheaters. The correlation between the true ability and the unproctored test

score was 0.95, when there was no cheating in the sample of job candidates. The correlation was

reduced to 0.90 and 0.80, respectively, for moderate and large cheating effects when 10% of the can-

didates in the sample were cheaters. The correlation became 0.87 and 0.72, respectively, for mod-

erate and large cheating effects when 20% of the candidates in the sample were cheaters.

Table 7 presents a continuation of the selection procedure presented above where the candidates

who were selected based on their unproctored test result were administered an adaptive confirmation

test using the SCTSPRT as a follow-up. The table illustrates a cross-classification of the candidates’

true ability and the decision based on the confirmation test. A benefits ratio of the combination of the

unproctored test and the confirmation test is presented based on the candidates whose unproctored

test result was accepted. The table also presents Pearson’s correlation coefficient between the true

ability and the unproctored test score, after eliminating the candidates who had their unproctored test

score rejected in the confirmation test. The last two columns of Table 7 present a cross-classification

of candidates’ true condition (honest/cheater) and their confirmation test result.

The addition of the confirmation test in the selection procedure only slightly increased the ben-

efits ratio of the selection procedure from 9.14 to 9.90 (4,274:432) when there was no cheating. The

increase occurred because a larger percentage of falsely selected candidates (14%) had their unproc-

tored test result rejected compared to the group of respondents that was correctly selected (5%). This

occurred because the unproctored test score was inflated based on random error for the falsely

selected candidates. This finding illustrates that the use of a confirmation test also helps detect can-

didates who are falsely selected even when the source of the inflated unproctored test result is not

due to cheating. The benefit of using the confirmation test increased as the percentage of cheaters in

the applicant pool increased. When the effect of cheating was moderate, the increase in benefits ratio

went from 5.80 to 8.24 with 10% cheaters and from 4.13 to 6.28 with 20% cheaters. The benefits

ratio increased from 5.78 to 14.73 with 10% cheaters and from 3.75 to 19.44 with 20% cheaters

Table 6. Selection Accuracy for an Unproctored Adaptive Test of 30 Items: Selection of the Top 5,000
Candidates Based on the Unproctored Test Score in a Sample of 10,000 Applicants

Candidate’s true ability

Cheating % D False selections Correct selections Benefit ratio

Correlation between
true ability and unproctored
test score

0% 0 493 4,507 9.14 0.95
10% 1 735 4,265 5.80 0.90
10% 2 738 4,262 5.78 0.80
20% 1 974 4,026 4.13 0.87
20% 2 1,053 3,947 3.75 0.72

Note: D ¼ cheating effect in standard deviation units.
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when the effect of cheating was high. This occurred because the proportion of respondents who had

cheated became larger in the sample of selected candidates. Therefore, the benefit of using the con-

firmation test was larger because the percentage of cheaters who were identified by the confirmation

test increased. The benefit of using a confirmation test was also larger when the ratio of the candi-

dates who were selected became smaller because the proportion of cheaters in the group of selected

candidates increased.

A comparison of the correlation between the true ability and the unproctored test score in Tables

6 and 7 gives an indication of the impact of the confirmation test in terms of a correlation coefficient.

The correlation remained unchanged at .95 when there was no cheating. The inclusion of a confir-

mation test increased the correlation coefficient from .90 to .93 and from .80 to .93, for moderate and

large cheating effects, respectively, when 10% of the candidates had cheated. The correlation

between the true ability and the unproctored test score increased from .87 to .91 and from .72 to

.93, for moderate and large cheating effects, respectively, when 20% of the candidates had cheated

on the unproctored test.

Discussion

With the increased need for flexible selection procedures, we foresee an increased use of UIT in the

future. This study showed that cheating can have a detrimental effect on the validity of a selection

procedure and the possibility of using a confirmation test can decrease this effect. In addition, there

is evidence that a significant number of test candidates would cheat in an unproctored high stakes

test; therefore, confirmation testing is important for validating UIT results. The article investigated

four research questions related to the problem of verifying unproctored Internet test results by means

of a short confirmation test. The research questions are repeated below with conclusions and

practical considerations based on the results of the study.

Table 7. Selection Accuracy for an Unproctored Test of 30 Items With a Follow-Up Stochastic Curtailed
Truncated Sequential Probability Ratio Test (SCTSPRT) Confirmation Test

Candidates true ability
Candidates

true condition

Cheating
% D

Decision from
confirmation
test

False
selections

Correct
selections

Benefit
ratio

Correlation
between

true ability
and UIT
scorea Cheater Honest

0% 0 a 432 4,274 9.90 0.95 4498
r 61 233 286

10% 1 a 458 3,773 8.24 0.93 476 3,755
r 277 492 478 291

10% 2 a 245 3,608 14.73 0.93 75 3,778
r 493 654 921 226

20% 1 a 535 3,360 6.28 0.91 980 2,915
r 439 666 866 239

20% 2 a 147 2,896 19.44 0.93 150 2,893
r 906 1,051 1801 156

Note: D ¼ cheating effect in standard deviation units; a ¼ accept UIT score; r ¼ reject UIT score.
aCorrelation between true ability and unproctored test score after eliminating the candidates who had their unproctored test
score rejected in the confirmation test.

Makransky and Glas 625

625



Which item selection method performs best in fixed length and sequential confirmation testing

procedures? The results illustrated that adaptive selection methods were more powerful than random

item selection in terms of accurately classifying respondents as honest or cheaters and were more

efficient in terms of the number of items required to make a decision in the sequential procedures.

A comparison of the two adaptive methods led to the conclusion that maximum information at the

cutoff point (MIC) was slightly more efficient than maximum information at the current y estimate

(MIE) for the sequential procedures. This is consistent with previous findings from adaptive classi-

fication test literature (e.g., Eggen, 1999; Spray & Reckase, 1996). However, this difference was

small and may not have practical significance in applied settings.

What are the benefits of using a sequential confirmation test, rather than using a fixed length con-

firmation test based on efficiency in terms of the number of items administered and the power to

identify cheaters? Regarding this research question, we first discuss the benefits in terms of effi-

ciency. The primary advantage of using the sequential methods was that they required fewer items

to obtain a similar level of power. The SCTSPRT method required one half of the items compared to

the fixed length procedure using the WLE for ability estimation; and approximately one fourth com-

pared to using the MLE for ability estimation. One of the criticisms of UIT has been that it lacks a

quick method for verifying unproctored test results. This improvement will make it more attractive

to take advantage of the benefits of UIT because it provides a quick testing process that can reduce

cost by limiting on-site or proctored testing. An additional advantage was that the sequential meth-

ods provide the option of controlling the Type I error rate in the test. This allows the test users to set

the error rate according to their particular needs. Although the sequential procedures were more effi-

cient than the fixed length confirmation test methods, there may be applications where a fixed num-

ber of items are desired. When a fixed length confirmation test was used, the results showed that

ability estimation using WLE increased classification accuracy compared to the more commonly

used MLE.

The power of the sequential confirmation test methods introduced in this article is directly related

to the characteristics of the test and the degree of cheating. The adaptive SCTSPRT method resulted

in over 90% accurate detection of cheaters when the unproctored test length was at least 30 items and

the respondent’s cheating effect was large (two standard deviation units). The power of the test was

lower for short unproctored test lengths and for moderate cheating effects (one standard deviation

unit). It is expected that an unproctored test length of 30 items is acceptable for most applied settings

because the flexibility of UIT allows the respondent to take the test at their convenience. The prac-

tical consequences of the lower power for moderate cheating effects will vary based on the intended

use of the test for the particular testing organization. The item bank in the confirmation test can be

expanded, if the power of the test is not sufficient in certain situations. Other alternatives, such as a

long supervised test that counts as the result of record could also be considered. The SCTSPRT

method proposed in this study provides the option of increasing power by increasing the Type I error

rate in the test; however, this results in an increase in the number of false positives, which can lead to

a number of negative ethical and possible legal consequences.

What are the benefits of using the stochastic curtailed version of the TSPRT compared to using

the TSPRT? The stochastically curtailed version of the TSPRT led to a reduction in test length of

over 25% or over 2 items compared to the TSPRT. Therefore, the effect of using the stochastically

curtailed version of the TSPRT for confirmation testing is even larger than what has been reported

for computerized classification testing (e.g., Finkelman, 2008).

Does a confirmation test decrease the effect of cheating on the validity of a selection procedure?

The simulation study demonstrated that cheating could have a detrimental effect on the validity of a

selection procedure and illustrated that the use of a confirmation test could hinder the negative effect

of cheating on validity. The advantage of using a confirmation test increased when the effect of

cheating increased and as the number of cheaters in the applicant pool increased.
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Limitations

The confirmation test methods proposed in this article are limited to the context of knowledge

and ability tests and are only applicable to situations in which the unproctored test score is used

as the operational score. A further limitation is that the SCTSPRT is a CAT/IRT-based confirma-

tion test approach that demands a large item bank, which requires considerable resources to

develop. Many developments in CAT research have been focused on decreasing the resources

required for CAT item bank development. Advances such as automatic calibration procedures

(e.g., Kingsbury, 2009; Makransky & Glas, 2010) and automated item generation (e.g., Glas

& van der Linden, 2003; Glas, van der Linden, & Geerlings, 2010) provide options for decreasing

the resources required for developing an adaptive test; however, the cost is still higher than the

price of developing a traditional test. A related issue is that an adaptive approach requires com-

puter access at the supervised testing location and relies on fast and reliable Internet access to

allow communication between the local computer and the decision algorithm. These technologi-

cal limitations are no longer as prominent in most testing locations, but they may still be promi-

nent in others.

An additional limitation to using the SCTSPRT for confirmation testing is that this method is

designed to test the hypothesis that the result in the first test is valid. Therefore, it does not add

to the reliability of the ability estimate. Another disadvantage to using the SCTSPRT is that it is

an adaptive procedure, which means that respondents are administered a different number of items

depending on their responses. This can result in perceptions of injustice, specifically for respondents

who have their UIT score rejected after the administration of few items. However, in practice, CAT

procedures prove easy to explain to respondents. Some test administrators may also want to know

the number of items that will be administered so that they can plan the assessment in relation to other

activities such as interviews. Therefore, it is conceivable that these practitioners may prefer a fixed

length test even though it is less efficient.

Finally, the SCTSPRT method for confirmation testing proposed in this article takes into account

the Type I error in the test but not the Type II error. This limits the generalizability of the method to

contexts where the importance of Type I error outweighs the importance of Type II error. The gen-

eralization of the method to control the Type II error would be straightforward and would consist of

setting a less conservative cutoff point with the consequence of increasing the number of false posi-

tives. A related issue is the modest power of this method for detecting moderate cheating effects.

Although the SCTSPRT method represents an improvement compared to existing methods, the lack

of power for detecting moderate cheating effects continues to be a challenge for confirmation

testing.

A general challenge for practitioners using a confirmation test is the issue of how to deal with UIT

scores that are rejected by the confirmation test. The International Guidelines on Computer-Based

and Internet-Delivered Testing (2005) provide a good outline of the procedures that should be in

place before conducting a confirmation test. Burke et al. (2006) also offer a detailed description

of a procedure that can be followed when a UIT score is rejected. One suggestion is to provide the

possibility of taking a full-length supervised test to respondents who have their unproctored score

rejected.

Future Research

We anticipate several future research directions related to confirmation testing, the application of the

SCTSPRT, and UIT in general. The first is to add to the results of the current study by incorporating

practical constraints such as content balancing and item exposure control. In addition, methods for

controlling the Type I and Type II error rates simultaneously might be investigated. The current
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article generalized research from classification testing to the context of confirmation testing. Future

research could investigate other approaches for verifying UIT results to explore if there are alterna-

tive methods that can increase the power to detect cheaters while maintaining test efficiency.

Another area of research is related to candidate’s perceptions of confirmation tests and UIT in gen-

eral. Different methods for processing UIT scores that are rejected could be investigated.

A further line of future research is related to methods of proctoring online tests. Biometric authen-

tication systems are currently used together with online proctoring through the use of webcams or a

confirmation test (e.g., Foster, 2009). Online proctoring can limit the flexibility of the test and can be

expensive. Therefore, future research and technological advances could investigate ways to make

these methods cheaper and more widely available.

Finally, the adaptive confirmation test using the SCTSPRT was applied specifically to the veri-

fication of UIT in this article. However, there are many assessment applications where the goal of

the examination is to evaluate if there has been a change on the latent trait. Some examples could be

to assess change: after a training program, after administering a drug in clinical trials, or after admin-

istering a test at two different time points. In these applications, the fundamental objective is not to

reassess the position of the individual on the latent trait, but alternatively to measure if a change on

the position of the latent trait has taken place. Future research could investigate the possibility of

using the SCTSPRT in these contexts.
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