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Contact anisotropy and coordination number for a granular assembly: A comparison
of distinct-element-method simulations and theory
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We study an ideal granular aggregate consisting of elastic spherical particles, isotropic in stress and anisotropic
in the contact network. Because of the contact anisotropy, a confining pressure applied at zero deviatoric stress,
produces shear strain as well as volume strain. Our goal is to predict the coordination number k, the average
number of contacts per particle, and the magnitude of the contact anisotropy ε, from knowledge of the elastic
moduli of the aggregate. We do this through a theoretical model based upon the well known effective medium
theory. However, rather than focusing on the moduli, we consider their ratios over the moduli of an equivalent
isotropic state. We observe good agreement between numerical simulation and theory.
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I. INTRODUCTION

Granular materials show interesting behavior and special
properties, different from classical fluids or solids [1,2]. Non-
linearity, dilatancy, loading history dependence, anisotropy
[3–5], among many others, are typical features of the behavior
of a granular aggregate. In this paper, we devote our attention
to anisotropy because of its central role in a proper comparison
between theoretical models and physical experiments. For
example, when a laboratory test on sand is carried out,
the stress-strain response is, in general, far from isotropic.
Anisotropy is, typically, created during the preparation of the
sample [6–20]. That is, preferential directions appear due to
the depositional process used to prepare the sample (inherent
anisotropy) or induced by the strain (induced anisotropy).
In particular, inherent anisotropy is associated with the
orientation of the network of contacts [7], while induced
anisotropy may be characterized by two distinct effects:
contact anisotropy and anisotropy in the stress distribution
(e.g., Refs. [21,22]).

We restrict our attention to situations in which geometric
anisotropy is dominant, while stress anisotropy is negligible.
However, while there is abundant evidence of such anisotropy
in physical experiments (e.g., Refs. [23–28]), a paucity of data
is available from numerical simulations (e.g., Ref. [29]). This
is because most of the numerical simulations involve periodic
boundary conditions that eliminate preferential contact direc-
tions. In addition to a theoretical model, we consider numerical
simulations in which anisotropy is present.

We attempt to model a granular material characterized
by a contact anisotropy. We do this in the context of
micromechanics. While there is abundant evidence of the
impact of such anisotropy on the constitutive behavior, it
remains a challenging task to take the anisotropic effects into
account in an analytical model. This is an essential issue for
a proper analysis of the aggregate. For example, predictions
of the elastic moduli of an isotropic aggregate have been
made in the context of effective medium theory (EMT) where
particles move according to the average deformation [30,31]
or within a more sophisticated theory where fluctuations are
included in the description of the kinematics of contacting
particles [32,33]. In both cases, given the confining pressure

and the porosity, the response depends only on the coordi-
nation number (the average number of contacts per particle).
However, when we deal with an anisotropic aggregate, we
expect that both contact anisotropy and coordination number
characterize the microstructure of the sample and its response.

We present an analysis based upon EMT in which both
the coordination number k and the magnitude of the contact
anisotropy ε are predicted from the knowledge of the effective
moduli of an anisotropic aggregate. EMT has been applied
already to derive the elastic moduli of a transversely isotropic
aggregate (e.g., Refs. [12,34–36]). In Ref. [35], the variation
in the elastic constants is given for different values of ε,

but a comparison with numerical simulations or physical
experiments is not made. On the other hand, in Ref. [36],
the theoretical model is a function of three parameters
associated with the orientation of the contact forces, particle
rotation, deletion, and anisotropy. A comparison with physical
experiments is given and shows good agreement only for some
particular values of these parameters. In Ref. [20], EMT also
is adopted to compare theory and physical experiments on
glass beads in an oedometric test. The anisotropy is induced
by the uniaxial compression, but an inherent anisotropy also is
present because of the preparation process and the boundary
conditions of the sample. Stress and contact anisotropy are not
distinguished in the model. With this hypothesis, the agreement
between theory and physical experiments is good when a high
coordination number is considered.

Here, we use EMT analysis in a slightly different way.
Instead of considering the effective moduli themselves, we
focus on their ratios over those of an isotropic state. We
show that, while the prediction of the effective moduli based
upon the EMT fails, the prediction of the ratios is in better
agreement with numerical simulations. In order to support this,
we develop a numerical tool to generate contact anisotropy
and compare the model against numerical simulations. It is a
nontrivial task to create a dense anisotropic numerical state
under a given pressure p and zero deviatoric stress q. To our
knowledge, numerical simulations of granular material have
dealt with anisotropy only when a deviatoric stress and/or
gravity are present. Here, neither deviatoric stress nor gravity
has been employed, and a particular loading path has been
developed to generate a sample characterized only by contact
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anisotropy. Despite the simplicity of the model, we find good
agreement between the simulation and the EMT ratio. This
is interesting because so simple a theory may provide insight
into the microstructure parameters of real granular aggregates
when acoustic measurements are available.

In this paper, we introduce a procedure to create numerical
samples characterized only by geometrical anisotropy under
different confining pressures with q = 0. Because of the
preparation process, the aggregates are transversely isotropic;
each one has a different coordination number k and a different
degree of anisotropy ε. For each packing, the effective moduli
are inferred. Next, we derive k and ε from the EMT ratios
and compare the theoretical prediction with the numerical
simulation.

II. NUMERICAL SIMULATION

In recent years, theoretical models and experiments have
been complemented by numerical simulations. However,
simulations have concentrated on stress anisotropy rather
than geometric anisotropy [37] or on conditions in which
both are present. This makes their individual contributions
indistinguishable [38]. The geometric anisotropy is isolated
from that of the stress [27,28], and it can be shown that
the two phenomena are independent. Our goal is to create
numerical samples in which the geometric anisotropy is
isolated from the stress in order to understand the effect of
the fabric alone on the elastic behavior of a granular sample.
We use distinct element method (DEM) simulations ( [39]) on
random assemblies of identical frictional elastic spheres. Our
numerical experiments consider N = 2000 particles, each with
diameter D = 0.2 mm, randomly generated in a periodic cubic
cell of approximately 3 mm on a side. We employ material
properties typical of glass spheres: shear modulus μ = 29 GPa
and Poisson’s ratio ν = 0.2. The interaction between particles
is given by a noncentral contact force F where the normal
component follows the nonlinear Hertz law. The tangential
component is bilinear: an initial elastic displacement followed
by Coulomb sliding (e.g., Ref. [40]). We want to create dense
packings with a given confining pressure p characterized by
stress isotropy and geometrical anisotropy. To achieve these
complex configurations, the properties are set in different
phases during the loading path.

A. Contact anisotropy

It is difficult to create geometrical anisotropy in a numer-
ical specimen with periodic boundary conditions. Here, we
consider a particular protocol to obtain very dense packings
characterized by a contact anisotropy. The goal is to reproduce

the consolidation process that occurs before any test when
a laboratory sample is filled with a granular material and is
confined under a given pressure.

After random generation in a periodic box, gravity-free
particles are compressed isotropically from an initial gas to
the desired solid volume fraction. In order to reach this final
dense state, the friction between particles is removed. The
compression is stopped when the sample has reached a solid
volume fraction φ = 0.607. Then, the particles are allowed to
relax. At the end of this relaxation process, both pressure and
coordination numbers are zero. This is the reference state for
the sample

We label, with e1, e2, and e3, the three orthogonal vectors of
a coordinate system; a quasistatic uniaxial compression along
e3 is applied with particle friction coefficient μ1 = 0.1 and
the stresses are set to σ11 = σ22 = σ33 = 50 kPa. This stress-
controlled deformation is carried out using a servomechanism
that constantly adjusts the applied strain rate according to
the difference between the desired stress state σ ∗

ij and the
measured stress state σij . At each time step, the strain rates ε̇ij

are adjusted to the value,

ε̇s
ij = ε̇ij + g(σij − σ ∗

ij ), (1)

where g is a gain factor that is tuned to achieve equilibrium in
an optimal way. At this point, we change the particle friction
coefficient from μ1 to μ2 and additional servocontrolled cycles
are applied at a constant volume. μ2 assumes different values
as reported in Table I, and, for each μ2, different samples, each
with different micromechanical characteristics, are obtained
(S1,S2,S3,S4). Finally, we remove the servomechanism, fix the
friction coefficient at a very high value for all packings (μf =
10.0), and let the grains relax to equilibrium. The solid volume
fraction reaches φ = 0.635, slightly lower than random close
packing (φRCP � 0.64 for monodisperse aggregates [41]). In
Table I, we report the macroscopic and micromechanical
properties of the four samples obtained by this process under
a confining pressure of 50 kPa.

Each of the four packings (S1,S2,S3,S4) is isotropically
compressed to p = 100, p = 250, and p = 500 kPa with the
deviatoric stress q = 0. The compression is carried out with
a friction coefficient μ2, which is different for each packing,
as previously underlined. In so doing, we obtain 16 packings
under different confining pressures, each with zero deviatoric
stress and an anisotropic distribution of contacts, characterized
by a preferential direction e3.

B. Microstructure and elastic moduli

We use a DEM simulation to scrutinize the contact network
of our numerical samples. We focus on the coordination

TABLE I. Macroscopic and micromechanical properties of the numerical samples at a confining pressure of 50 kPa.

Samples μ1 μ2 σ11 σ22 σ33 k L11 L22 L33 φ

S1 0.1 0.05 49.99 49.98 49.99 5.58 0.330 0.329 0.341 0.636
S2 0.1 0.10 50.03 49.99 49.94 5.27 0.328 0.326 0.346 0.636
S3 0.1 0.30 50.00 50.01 50.00 4.87 0.321 0.323 0.356 0.636
S4 0.1 0.15 50.02 50.03 50.05 4.95 0.324 0.323 0.353 0.636
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FIG. 1. (Color online) Evolution of the deviatoric fabric with
pressure for the anisotropic states.

number and the fabric tensor [7,8] defined as

Lij = 1

Nc

Nc∑
p=1

d̂
p

i d̂
p

j , (2)

where Nc is the total number of contacts in the aggregate and
d̂

p

i are direction cosines of the pth contact. The second order
tensor L is symmetric, and its trace is equal to 1. While k is
a measure of the contacts density in the aggregate, the fabric
tensor L provides information on the spatial distribution of
the contact vectors through its eigenvalues. We calculate the
eigenvalues Lii in the various states to show the degree of
anisotropy in the aggregates, and we verify that fabric and
strain are almost collinear in the applied range of deformation
(the off-diagonal components of the fabric are orders of
magnitude less than the diagonal terms).

All the states are characterized by stress isotropy and an
anisotropic distribution of contacts. Due to the initial uni-
axial compression, the states are transversally isotropic with
L11 � L22. In Fig. 1, we plot a measure of the deviatoric fabric,

LD = L33 − L11 + L22

2

versus the pressure. Packings created with higher μ2 (see
Table I) have a lower coordination number k and are more
anisotropic, i.e., show a higher deviatoric fabric. When the
pressure increases for a given initial state, the geometric
anisotropy is almost constant.

We next study the influence of the geometric anisotropy on
the elastic properties of the granular assembly. For each state,
we apply an incremental strain to the sample, we allow it to
relax toward an equilibrated state, and we measure the effective
moduli of the aggregate [40,42]. The friction coefficient is set
at a very high value to prevent sliding between the grains.
For each elastic response, we perform the calculation under
different strain amplitudes to identify the linear regime. We
note that solid volume fraction and coordination number do
not vary during the applied increment of deformation and
the subsequent relaxation toward the equilibrium. In Fig. 2,
we plot the two shear moduli. Both G12 and G13 increase
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FIG. 2. (Color online) Evolution of the axial and transversal shear
moduli with pressure for the anisotropic states.

with pressure and coordination number. The shear stiffness is
different in the transverse and axial directions and, because
the stress is isotropic, we deduce that the fabric affects the
load-carrying behavior: The difference G12 − G13 depends on
the geometric anisotropy. We also notice that G12 and G13

increase with increasing pressure and constant LD . This is
because increasing the pressure with identical deviatoric fabric
induces an increase in shear strain γ . Both LD and γ are
sources of anisotropy.

With this information about micro- and macroproperties of
the aggregate, we next focus on the theoretical model.

III. THEORY

The magnitude of anisotropy in a granular aggregate often
is associated with macroscopic measurements, such as the
difference between Ḡ13 and Ḡ12 or between the Young
moduli in the axial and the radial directions [36]. We develop
a theoretical model to characterize the microstructure of
the sample in terms of contact anisotropy and coordination
number.

We consider an ideal granular material made of a random
aggregate of identical elastic glass spheres with diameter D.
Following the main assumption of the EMT, we assume that
the contact displacement u between particles is given in terms
of the average strain E,

ui = D

2
Eij d̂j , (3)

where d̂ is the unit contact vector whose components are
(sin θ cos ψ, sin θ sin ψ, cos θ ) and θ is the polar angle from
the axis of symmetry. In the case of homogeneous deformation,
we employ the expression for the stress in terms of the contact
force and the orientational distribution function [43],

σij = −nD

2

∫
	

A(d̂)Fid̂j d	, (4)

where n is the number of particles per unit volume, A(d̂) is the
distribution function for contact orientations, defined so that
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its integral over the entire solid angle 	 is given by∫
	

A(d̂)d	 = k, (5)

and F is the contact force as previously defined. Following
Ref. [44], we introduce the geometric anisotropy through the
unit vector h in the direction of the axis of anisotropy and
the strength ε of the anisotropy. The approximation of the
distribution function is [45,46]

A(d̂) = k

4π
[(1 − ε) + 3ε(hid̂i)

2]. (6)

A. Isotropic compression

As in the DEM simulations, we consider a stress-controlled
isotropic test for the anisotropic aggregate in which we
control the confining pressure p = −σkk/3 with the condition
that the deviatoric stress q = −(σ33 − σ11) is maintained at
zero. Because of the anisotropy, when an isotropic pressure
is applied, with zero deviatoric stress, both shear strain
γ = − (E11 − E33) /2 and volume strain � = −(2E11 + E33)
(positive in compression) occur. Therefore, γ is a measure
of the anisotropy. We also recall that the confining pressure
is applied to a very dense state in which the solid volume
fraction is about 0.64. Under these circumstances, particles
are in contact and, with increasing pressure, we assume an
elastic response and neglect particle sliding and deletion.

B. Incremental response

For any of these anisotropic states, we consider the elastic
response to increments in strain. That is, we exclude sliding
and deletion between particles, and we determine the effective
moduli. This assumption is not strictly true as numerical
simulations show the presence of both deletion and sliding
[47]. Both mechanisms, however, involve a small percentage
of weakly loaded contacts, and consequently, their contribution
can be neglected.

The incremental contact force is written in terms of the
contact stiffness KN and KT ,

Ḟi = [KNd̂j d̂i + KT (δij − d̂j d̂i)]u̇j , (7)

with

KN = 23/2μD1/2

1 − ν
δ1/2, (8)

and

KT = 25/2μD1/2

2 − ν
δ1/2, (9)

in which δ = −D(Eij d̂j d̂i)/2 is the normal component of the
contact displacement. During the isotropic compression, γ is
typically small compared to � [48]. Therefore, if we write the
strain as the sum of its isotropic and deviatoric parts,

Eij = −�

3
δij + Êij ,

with Êkk = 0, and

Êij = − 2
3γ δij + 2γ hihj ,

we can derive, by retaining only terms that are linear in the
ratio of the deviatoric to the isotropic strain, the expression for
the normal component of the contact displacement,

δ1/2 �
(

D�

6

)1/2 (
1 − 3

2

Êij d̂j d̂i

�

)
. (10)

In this way, the reference state enters in the stiffness through
Eq. (9) and is a function of both � and γ . This is impor-
tant because micromechanical models applied to anisotropic
aggregates neglect the contribution from γ . The incremental
stress-strain relation is simply

σ̇ij = nD

2

∫
	

A(d̂)KT u̇i d̂j d	, (11)

where a simplification has been adopted. In fact, because we
refer to an aggregate of glass beads (ν = 0.2), we neglect
terms proportional to the difference in the stiffness KN −
KT ∼ ν/[(1 − ν)(2 − ν)] with respect to those proportional to
KT ∼ 2/(2 − ν). This assumption has been tested, and we
avoid reporting the results for the sake of simplicity. After we
carry out the integral (the results are given in Appendix A),
Eq. (11) can be written in a compact form as

σ̇ij = BijklĖkl, (12)

with

Bijkl = ψ1hihjhkhl + ψ2δij δkl + ψ3(δikδjl + δilδjk)

+ψ4(δklhihj + hlhkδij )

+ψ5(δikhjhl + δjlhkhi + δilhjhk + δjkhihl),

where the ψ are the five independent elastic moduli for a
transversely isotropic material,

ψ1 = nD3μk

4 − 2ν

(
�

3

)1/2 (
4ε

5
− a

28 + 16ε

35

γ

�

)
, (13)

ψ3 = nD3μk

4 − 2ν

(
�

3

)1/2 (
1

3
− 2

15
ε + 14 − 20ε

105

γ

�

)
,

(14)

ψ5 = nD3

2

μ

2 − ν

(
�

3

)1/2

k

(
1

3
− 2

15
ε + 14 − 20ε

105

γ

�

)
a,

(15)

and

ψ2 = ψ4 = 0,

with

a =
4ε
5 − (

16
35ε + 4

5

)
γ

�

4
3 + 4

15ε − (
128
105ε + 4

15

)
γ

�

.

These expressions clearly show how the two anisotropic terms
ε and γ , along with k and �, enter in the macroscopic response
of the aggregate. A relation among the ψ , the two Young’s
moduli, the shear moduli, and the Poisson ratio can easily
be obtained. However, our goal is not to compare the elastic
moduli derived by the theoretical model with those inferred
from numerical simulations. It is known, in fact, that the
EMT overpredicts the elastic response of the aggregate with
respect to numerical simulation [40,47,49]. Here, we attempt
to predict k and ε of a transversely isotropic aggregate by
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TABLE II. Deviatoric over volumetric strain of the numerical
samples S1–S4 for different values of the confining pressure in the
reference state.

Sample 50 kPa 100 kPa 250 kPa 500 kPa

S1 −0.0623 −0.0603 −0.0577 −0.0545
S2 −0.0730 −0.0711 −0.0678 −0.0643
S3 −0.0759 −0.0745 −0.0719 −0.0691
S4 −0.0763 −0.0750 −0.0724 −0.0695

assuming that the ratios of the elastic moduli, rather than the
moduli themselves, are captured by so crude a theory. We
consider the two shear moduli Ḡ13,Ḡ12 and the bulk modulus

̄ani of the anisotropic aggregate and the elastic moduli of an
equivalent isotropic state (with ε = 0, γ = 0) Ḡ and 
̄ (see
Appendix A). The equivalence between an anisotropic and an
isotropic state is based upon the assumption that both states
have the same pressure and volume but may have different
coordination numbers, respectively, k and k̂. The result is


̄ani


̄
= k

k̂

[
(3 + 2a)

(
1

3
− 2

15
ε + 14 − 20ε

105

γ

�

)

+
(

2ε

5
− a

14 + 8ε

35

γ

�

)]
, (16)

Ḡ12

Ḡ
= k

k̂

(
1 − 2

5
ε + 14 − 20ε

35

γ

�

)
, (17)

and

Ḡ13

Ḡ
= k

k̂

(
1 − 2

5
ε + 14 − 20ε

35

γ

�

)
(1 + a), (18)

where the unknowns are k̂, k, and ε, given the elastic moduli
and the ratio γ /�. γ and � are measured in the numerical
simulations with respect to the reference state defined in
Sec. II A (see Table II). In Appendix B, we provide more
details of the normalization adopted here.

IV. COMPARISON OF THEORY AND SIMULATION

We first derive the strength of the anisotropy of numerical
samples. We employ a continuous version of Eq. (2), and from
Eq. (6) , normalized by k, we obtain

Lij =
∫

	

1

4π
[(1 − ε) + 3ε(hkdk)2]d̂i d̂j d	, (19)

or, after we carry out the integration,

Lij = 1

2

[(
2

3
− 4

15
ε

)
δij + 4

5
εhihj

]
. (20)

Knowledge of the fabric components from the numerical
simulations allows us to determine ε through Eq. (20). The
results are reported in Table III under the column εsim.

In Eqs. (16)–(18), we know Ḡ13,Ḡ12,
̄
ani from numerical

simulations, and for Ḡ and 
̄, we take the expressions obtained
by fitting numerical data in Fig. 8 of Ref. [42] with k̂ > 4.8,

Ḡ = α(k̂ + β)p1/3, (21)

TABLE III. Micromechanical properties of the samples S1–S4

from simulations and theory. Here, we report the mean values of k

and ε.

Samples p (kPa) ksim kEMT kratio k̂ εsim εratio

S1 50 5.58 0.31 5.73 5.63 0.030 0.016
100 5.65 0.41 5.78 5.77 0.030 0.012
250 5.74 0.58 5.89 5.87 0.030 0.025
500 5.84 0.75 6.00 5.94 0.029 0.039

S2 50 5.27 0.27 5.44 5.31 0.046 0.031
100 5.37 0.36 5.55 5.44 0.051 0.039
250 5.48 0.52 5.68 5.58 0.050 0.047
500 5.59 0.69 5.79 5.73 0.048 0.044

S3 50 4.87 0.18 4.92 4.49 0.084 0.171
100 4.98 0.26 5.11 4.73 0.080 0.168
250 5.11 0.41 5.31 4.99 0.080 0.154
500 5.25 0.56 5.47 5.22 0.077 0.120

S4 50 4.96 0.19 5.03 4.63 0.072 0.153
100 5.05 0.28 5.21 4.87 0.076 0.142
250 5.19 0.43 5.37 5.19 0.071 0.094
500 5.31 0.59 5.56 5.31 0.073 0.112

and


̄ = ρ(k̂ + ζ )p1/3, (22)

with α = 170, β = −3.66, ρ = 75, ζ = −0.5, and Ḡ, 
̄,
and p expressed in megapascals. At this point, with Eqs. (21)
and (22) in Eqs. (16)–(18) and the knowledge of γ /�, we
derive k̂, k, and ε. The results are plotted in Figs. 3 and 4
and are summarized in Table III. In particular, in Fig. 3, we
compare the coordination number of the numerical simulations
ksim to that of the theory based upon the ratio kratio and
that of the simple EMT kEMT. In Fig. 4, we compare the
ε obtained in numerical simulations with the results of the
model. In this case, both the EMT and the EMT ratio give
the same value, although the model takes the presence of
γ in the reference state into account. Figure 3 shows the
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FIG. 3. (Color online) Evolution of the coordination number with
increasing pressure for the anisotropic states. See Table II.
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FIG. 4. (Color online) Evolution of the magnitude of anisotropy
with increasing pressure for the anisotropic states. See Table II.

relevant improvement introduced by the EMT ratio, although
there is still a slight difference. In Fig. 4, it appears that ε is
sometimes overpredicted; however, for most of the samples,
the comparison is reasonable. In the case of ε, the dependence
of the stiffness upon γ , see Eqs. (9) and (10), seems to be
necessary to achieve good agreement between theory and
simulation. In Table III, we report the coordination number
k̂ of the equivalent isotropic aggregate. It is interesting that
k̂ may differ from k as anisotropy develops in the aggregate;
this is an important point to take into account when comparing
theory, simulation, and physical experiments. For example,
in Refs. [20,47], it is assumed that an anisotropic aggregate
has the same coordination number as an isotropic sample. We
believe that this assumption should be tested.

V. CONCLUSION

Starting from the well known EMT, a tool has been de-
veloped to explore the microstructure of a granular aggregate.
Instead of focusing on the moduli of a transversely isotropic
aggregate, we have considered their ratios over those of
an equivalent isotropic aggregate. These ratios provide the
relations between the elastic moduli, the coordination number,
and the strength of the contact anisotropy. At the same time,
we have designed a proper numerical protocol to create
granular packings characterized by only contact anisotropy.
The coordination number and the strength of anisotropy of the
aggregates can be measured in DEM simulations. Comparison
of the EMT ratio theory with numerical simulations show that
both parameters are rather well predicted. This indicates that
EMT employed in so simple a model may still be used to
obtain interesting information about the micromechanics of a
granular material.
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APPENDIX A

The incremental relation for the stress is

σ̇ij = nD

2

∫
	

A(d̂)KT u̇i d̂j d	,

or, with Eqs. (9) and (10), and the incremental displacement,

u̇i = D

2
(Ėik + Ẇik − 	̇ik)d̂k,

we obtain

σ̇ij = nkD3

4π

μ

2 − ν

(
�

3

)1/2 ∫
	

(1 − ε + 3εd̂q d̂lhqhl)

×
(

1 − 3

2

Êms

�
d̂md̂s

)
d̂j d̂kd	(Ėik + Ẇik − 	̇ik).

It is necessary to distinguish between the incremental average
rotation based upon the displacements of the particle centers Ẇ
and the incremental average spin about the centers �̇ because,
as anisotropies develop in the state of the material, these
need not be equal. Their difference then is determined by
the requirement that the stress be symmetric (e.g., Ref. [34]).
We carry out the integration using the following identities:

∫
	

d̂i d̂l d̂kd̂j d	 = 4π

15
Xilkj ,

and ∫
	

d̂q d̂l d̂zd̂s d̂j d̂kd	 = 4π

105
Yqzslkj ,

with

Xilkj = δilδkj + δikδlj + δij δkl,

and

Yqzslkj = δqzXslkj + δqsXzlkj + δqlXszkj

+ δqkXzslj + δqjXzslk.

We obtain

σ̇ij = nkD3

2

μ

2 − ν

(
�

3

)1/2 [
2

3
(1 − ε)(Ėij + Ẇij − 	̇ij )

− (1 − ε)
Êzs

�

1

5
Xzsjk(Ėik + Ẇik − 	̇ik)

+ 2ε

5
Xqljkhqhl(Ėik + Ẇik − 	̇ik)

− 3

35
εhqhl

Êzs

�
Yqlzsjk(Ėik + Ẇik − 	̇ik)

]
.
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The symmetry of the stress requires

εmij σ̇ij = 0,

or

0 =
[
εmij

2

3
(1 − ε)(Ėij + Ẇij − 	̇ij )

− (1 − ε)
2Êjk

�

1

5
εmij (Ėik + Ẇik − 	̇ik)

+ 2ε

5
εmijXqljkhqhl(Ėik + Ẇik − 	̇ik)

− 3

35
εhqhl

Êzs

�
Yqlzsjkεmij (Ėik + Ẇik − 	̇ik)

]
.

The solution of this is

Ẇik − 	̇ik = aεiqkεqtzhshzĖts ,

with

a =
4ε
5 − (

16
35ε + 4

5

)
γ

�

4
3 + 4

15ε − (
128
105ε + 4

15

)
γ

�

.

The appropriate incremental symmetric stress is then,

σ̇ij = nkD3

2

μ

2 − ν

(
�

3

)1/2 [
2

3
(1 − ε)δjt δisĖst

+ 2

3
(1 − ε)aεiqj εqtzhshzĖts + 2ε

5
XqljkhqhlĖik

+ 2εa

5
XwljkhwhlεiqkεqtzhshzĖts

− (1 − ε)
Êzs

�

1

5
XzsjkĖik

− (1 − ε)
Êzw

�

a

5
XzwjkεiqkεqtzhshzĖts

− 3

35
εhqhl

Êzs

�
YqlzsjkĖik

− 3a

35
εhwhl

Êmp

�
YwlmpjkεiqkεqtzhshzĖts

]

or

σ̇ij = nkD3

2

μ

2 − ν

(
�

3

)1/2

×
[ (

5 − 2ε

15
+ 14 − 20ε

105

γ

�

)
(δisδkj + δsj δki)

+
(

5 − 2ε

15
+ 14 − 20ε

105

γ

�

)
a

× (δishjhk + δsjhihk + δjkhihs + δikhshj )

+
(

4ε

5
− (1 − ε)4γ

5�
a − 44εγ

35�
a

)
hjhkhshi

]
Ėks .

In the case of an isotropic aggregate, Ê = 0, ε = 0, and the
elastic moduli are

Ḡ = nμD3

4 − 2ν

k̂

3

(
�0

3

)1/2

,

and


̄ = nμD3

4 − 2ν

2k̂

9

(
�0

3

)1/2

.

APPENDIX B

Here, we provide more details about the ratio in Eqs. (16)–
(18). In Ref. [33], it is shown that the difference between the
EMT prediction and the numerical simulation is a fluctuation
that should be added to the average deformation to properly
describe the kinematics of contacting particles. In particular,
when a perturbation in shear is considered, fluctuations in spin,
rather than fluctuations in particle translation, are crucial. On
the other hand, when a perturbation in pressure is considered,
for example, in the case of the bulk modulus, fluctuations
in spin are negligible, and a small fluctuation in translation
occurs. The nature of the response of the aggregate makes it
reasonable to normalize the shear moduli of an anisotropic
aggregate by the shear modulus of an equivalent isotropic ag-
gregate. The same applies to the bulk modulus. That is, a proper
normalization mitigates the influence of the fluctuations.
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