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Air-induced inverse Chladni patterns
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When very light particles are sprinkled on a resonating horizontal plate, inverse
Chladni patterns are formed. Instead of going to the nodal lines of the plate, where
they would form a standard Chladni pattern, the particles are dragged to the antinodes
by the air currents induced by the vibration of the plate. Here we present a detailed
picture of the mechanism using numerical simulations involving both the particles and
the air. Surprisingly, the time-averaged Eulerian velocity, commonly used in these type
of problems, does not explain the motion of the particles: it even has the opposite
direction, towards the nodal lines. The key to the inverse Chladni patterning is
found in the averaged velocity of a tracer particle moving along with the air: this
Lagrangian velocity, averaged over a vibration cycle, is directed toward the antinodes.
The Chladni plate thus provides a unique example of a system in which the Eulerian
and Lagrangian velocities point in opposite directions.
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1. Introduction
A classic way of visualizing two-dimensional standing waves is by sprinkling

coarse particles (such as sand grains or salt) on a horizontal plate and bringing it
into resonance using, e.g., a violin bow. The particles will move to the nodal lines,
giving rise to the well-known Chladni patterns, a standard high school demonstration
experiment (Chladni 1802, 1809; Stöckmann 2006, 2007). The technique was
developed by Ernst Chladni in 1787 who actually became quite famous with it
and toured extensively throughout Europe. In 1809, he was invited to perform his
experiment before Napoleon, who was so pleased with it, that he awarded Chladni
6000 francs. Napoleon also promised 3000 francs to anyone who could provide the
mathematical theory for the sound figures. This sum was awarded to Sophie Germain
in 1816 (Stöckmann 2007), who described the eigenmodes of a square plate (with
boundary conditions liberally different from those in Chladni’s experiment, just like in
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the present work) and identified the nodal lines as the regions towards which the sand
particles would move.

Much less known, and not mentioned in Germain’s account, is that very light
particles will move to the antinodes, although also this was already noted by Chladni
himself, who observed that tiny hair shavings from his violin bow were carried to
the antinodes. In 1831, the effect was studied more systematically by Faraday with
the use of lycopodium powder (Faraday 1831). He and others showed that the inverse
Chladni patterning of fine particles is due to air currents induced by the vibrating
plate (Faraday 1831; Waller 1955; Dorrestijn et al. 2007), dragging along the fine
particles to the antinodes. The mathematical explanation for these air currents was first
provided by Lord Rayleigh in 1884 (Rayleigh 1884, 1894) and the phenomenon is
therefore often referred to as Rayleigh streaming or, since much of the early research
was concerned with air currents induced by sound waves, acoustic streaming. This last
term, however, is less appropriate for the particular streaming that causes the inverse
Chladni patterns since here the compressibility of the air plays no significant role. In
this paper we use the term ‘steady streaming’ (Riley 2001). It should be noted that the
inverse Chladni patterns discussed here are also distinctly different from the granular
streaming patterns described by Savage (1988), since those arise from dissipation in
the interior of the granular material.

Despite all of the experimental and theoretical investigations it has instigated, a
detailed picture of the intricate dynamics of the air and the particles in Chladni’s
classic experiment is still lacking. The purpose of the present paper is to provide
exactly such a picture. We do this by means of direct numerical simulations
(introduced in § 2) that allow us to follow the air currents and all particle trajectories
during an entire vibration cycle, which is hard to accomplish, if not impossible, in
experiments or in a purely analytical approach. The result is a particularly clear
illustration of the physical mechanisms at work on the Chladni plate. Among other
things, in § 3 we show that the Lagrangian velocity field (the velocity of tracer
particles following the flow of the air) is much more relevant for explaining the
inverse Chladni patterns than the more common Eulerian velocity field (as measured
by probes at fixed points in space). In fact, it turns out that the two velocities point
in opposite directions, which makes the Chladni plate a prototypical example for
demonstrating the difference between Lagrangian and Eulerian streaming. In § 4 we
put the above results (pertaining to the classic experiment of Chladni and Faraday) in a
broader context by discussing the effects of varying the three dimensionless parameters
that govern the system. Here, among other things, we use our simulation to follow
the transition from inverse to regular Chladni patterning by gradually increasing the
density of the particles. Finally, § 5 contains our main conclusion.

The paper is accompanied by two appendices in which we discuss (A) the
mathematical modelling of streaming and (B) the difference between the steady
streaming discussed in the present paper and the phenomenon of acoustic streaming.

2. Numerical model

The simulated system consists of a flexible rectangular plate (40 × 40 mm2) on
which 80 000 beads with a diameter d = 0.075 mm are uniformly distributed. The
particles have a density ρ which constitutes our main control parameter in this study.
The plate is flexible and pinned along its outer rim. We excite the 2 × 2 natural mode
depicted in figure 1. Ignoring the additional bending of the plate due to gravity, the
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FIGURE 1. (a) Side view of the simulated set-up: a flexible plate of dimensions 40× 40 mm2

resonating in its 2 × 2 mode. On this plate we can sprinkle 80 000 particles (see figures 3
and 9) of variable density. Also included in the simulation is the air above the plate, which
is set into motion by the plate’s vibration (see figures 2, 5–8); the system is covered by
an immobile top lid at a height z = 2 mm above the equilibrium position of the plate.
The vertical deflection of the plate, described by (2.1) with amplitude a = 0.075 mm, is
exaggerated 40 times for clarity. The plate is depicted at time t = 0 s (mod T), where
T = 0.005 s is the period of vibration. (b) Top view of the set-up: the dashed lines, together
with the edges of the plate, denote the nodal lines of the 2× 2 mode; the asterisks indicate the
position of the antinodes.

vertical deflection at any point (x, y) is then given by

z(x, y, t)=−a sin
2πx

L
sin

2πy

L
cos(ωt), (2.1)

where ω = 2πf = 2π 200 s−1 is the natural frequency of the particular eigenmode
of the plate, a = 0.075 mm the amplitude of the vibration (corresponding to a
dimensionless acceleration Γ = aω2/g = 12.1) and L = 40 mm determines the size
of the plate. At a height H = 2 mm above the flexible plate, the system is covered
by a rigid lid. The height H (2 mm) is chosen such that it is one order of
magnitude larger than the thickness of the boundary layer δ ≈ √2ν/ω = 0.17 mm,
with ν = 1.52 × 10−5 m2 s−1 the kinematic viscosity of air (i.e. the dimensionless
Womersley number α = H

√
ω/2ν is of order 10). This is sufficiently large to not

affect the streaming which takes place within and just above the boundary layer.
For our simulation we use the coupled granular dynamics (GD) – computational

fluid dynamics (CFD) code described in van der Hoef et al. (2006, 2008), in which
the oscillating rectangular plate is implemented as a time-dependent solid surface,
impermeable for gas. The GD code calculates the particle trajectories from Newton’s
law, with the particle–particle interactions being given by a three-dimensional soft
sphere collision model including tangential friction. This model uses a Hookean spring-
dashpot model in the normal and tangential direction with the dissipation set by the
normal (en) and tangential (et) restitution coefficients. If the ratio of the tangential
and normal forces exceeds the static friction coefficient µ, the contact will become
sliding with dissipation set by a dynamic friction coefficient which is taken to be
equal to the static friction coefficient. In our simulations we have taken values that
are typical for silica beads: en = 0.90, et = 0.33 and µ = 0.20. The results presented
in this paper only mildly depend on the precise values taken for the above parameters;
especially where we use particles with a density close to that of lycopodium powder,
the dynamics is almost exclusively dominated by the particle–air interaction. The CFD
code evaluates the full Navier–Stokes equations by a finite difference method on a
fixed, rectangular grid (Deen, van Sint-Annaland & Kuipers 2004). There is a full
two-way coupling with the GD part of the code, i.e. the reaction from the drag and
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pressure forces on the solid particles is included in the momentum equation for the
gas phase. This is done through drag relations which depend on the cell-averaged local
porosity of the granular material, based on the Ergun and Wen-Yu relations (Beetstra,
van der Hoef & Kuipers 2007). For the interaction between the vibrating plate and
the gas phase we use the immersed boundary method (Peskin 2002; Uhlmann 2005),
especially adapted to the case of the resonating surface. In this method, the plate is
randomly covered with marker points with a surface density of the order of a few
points per δl2, where δl is the grid size of the CFD model. Each of these marker
points exerts a force on the fluid, and the corresponding force density is included in
the hydrodynamics equations of the gas phase, and thus also included the CFD scheme.
The magnitude of this force can be tuned such that the gas-phase velocity vanishes at
the location of the marker point, thereby modelling ‘no-slip’ boundary conditions (van
Gerner 2009). For the granular particles the plate is treated as a moving solid wall
with which the particles collide, using the same three-dimensional soft sphere collision
model and the same collision parameters as for the particle–particle interactions. A
more detailed account of the simulation method can be found in the supplementary
material (available at journals.cambridge.org/flm).

The simulated system is divided in 60 CFD cells along each side of the plate and
110 cells in the vertical direction in order to accurately capture the boundary layer
above the plate. The time step used for the flow solver is 5 × 10−5 s, so that there
are 100 time steps per vibration cycle. Since the particles used in the simulation only
have a small influence on the gas flow above the vibrating plate (owing to the low
particle volume fraction) we use one-way coupling, i.e. the flow field is calculated for
one vibration cycle (without particles present) and subsequently used for all vibration
cycles to act upon the particles. With our numerical code it would also be possible to
calculate the flow field during all vibration cycles and include the two-way interaction
with the particles. However, this would lead to extremely long CPU times and the
results would be practically identical.

The flow field of the air above the flexible plate at time t = 0.25T (with
T = 0.005 s−1 the vibration period) is shown in figure 2. Note that a similar velocity
profile is obtained at t = 0.75T , with the signs of ux and uy (the horizontal components
of the air velocity) reversed, i.e. the air moves to-and-fro between the antinodes. At
the vertical walls, periodic boundary conditions are used.

The response of a particle to the vibrating plate and the induced air flow is
determined by the ratio of the forces it experiences from drag and gravity. The
drag force on a particle can be approximated by Stokes’ law:

Fdrag = 3πµgd(u− v), (2.2)

where µg is the dynamic gas viscosity, u is the local flow velocity of the gas phase
and v is the velocity of the particle.

The use of Stokes’ law asks for some justification. The hydrodynamic interaction
with the surrounding particles (Ergun 1954) can be neglected because of the low
particle concentration, while the history forces (Maxey & Riley 1983) can be neglected
since d/

√
ν/ω < 1, with d = 0.075 mm, ν = 1.52×10−5 m2 s−1 the kinematic viscosity

of air (at room temperature and atmospheric pressure) and ω = 1257 s−1. The
Reynolds number can be estimated as Re= Ud/ν < aωd/ν ≈ 0.5, justifying the use of
Stokes’ law. Finally, the proximity of the vibrating plate is known to modify Stokes’
law with a multiplicative function of the ratio of the particle radius and the distance to
the wall (Brenner 1961; Goldman, Cox & Brenner 1967). Close to the plate this leads

journals.cambridge.org/flm
journals.cambridge.org/flm
journals.cambridge.org/flm
journals.cambridge.org/flm


Air-induced inverse Chladni patterns 207

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

FIGURE 2. Instantaneous horizontal flow field of the air, in the absence of particles, over the
resonating plate at t = 0.25T , when the vertical deflection given by (2.1) is momentarily zero
everywhere. The depicted field has been calculated at a height z= 0.5H, midway between the
plate and the cover, but the velocity field looks qualitatively the same also at other heights (cf.
figure 5).

to small but detectable corrections to Stokes’ formula, which are not considered here,
since they are not expected to change our results qualitatively.

Using Stokes’ law, the ratio of the (typical) drag force and gravity on a particle is

B= |Fdrag|
|Fg| =

3πµgd|u− v|
ρπgd3/6

≈ 18µgaω

ρgd2
= τg

τr
, (2.3)

where τg = aω/g is proportional to the typical time span between two consecutive
collisions with the vibrating plate and τr = ρd2/(18µg) is the particle response time in
the induced flow (Elghobashi 1994).

When a simulation is carried out with high-density particles (gold beads, with
ρ = 20 000 kg m−3), the ratio B is around 0.03, i.e. the motion of the particles is
governed by the Newtonian forces. Owing to the oscillations of the plate, the particles
start to bounce and the successive bounces tend (on average) to increase their kinetic
energy. Only at the nodal lines the plate has a zero velocity and the collisions with the
plate and other particles reduce the kinetic energy of the particles. As a result, starting
with all 80 000 particles distributed uniformly over the plate, within a few seconds
most of them have accumulated at the nodal lines, forming a standard Chladni pattern
(see figure 3a).

We now reduce the density of the particles to 20 kg m−3 while keeping the diameter
constant, resulting in a typical drag force that is almost thirty times larger than the
gravitational force on a particle, i.e. B ≈ 30. This value is approximately the same as
for lycopodium powder (ρ = 460 kg m−3, diameter d ≈ 0.016 mm (Banerjee & Law
1998)), which was used by Faraday in his experiments (Faraday 1831). As can be seen
in figure 3(b), these light particles move to the antinodes and form an inverse Chladni
pattern.
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(a) (b)

FIGURE 3. (a) Top view of the resonating plate of figures 1 and 2, sprinkled with 80 000
heavy particles (ρ = 20 000 kg m−3, diameter d = 0.075 mm). After a few seconds most
particles have collected at the nodal lines, forming a classic Chladni pattern. (b) The same
plate with very light particles (ρ = 20 kg m−3 and d = 0.075 mm). Owing to the presence of
air, the particles now migrate to the antinodes and after ∼4 s an inverse Chladni pattern has
formed. Movies of the formation of regular and inverse Chladni patterns can be found in the
online supplementary material.

Bouncing plays no appreciable role this time, since the motion of the particles is
dominated by the Stokesian forces. We further note that the particle response time
τr = ρd2/(18µg) (Elghobashi 1994) is ∼0.07T (with T the vibration period), so the
particles are to a large extent able to follow the motion of the gas. Evidently then, the
physical reason for the inverse Chladni patterning must be that the to-and-fro motion
of the gas averaged over one cycle is non-zero. This counterintuitive fact is explored in
the next section.

At this point it is good to note that the formation of regular and inverse Chladni
patterns is not restricted to the 2 × 2 mode, nor to the particular plate that is used. By
way of example, figure 4 shows a plate that is pinned in the middle, resonating in its
second, third and fifth mode, respectively. The top row are the regular Chladni patterns
formed with heavy particles; the bottom row shows the corresponding inverse Chladni
patterns formed with light particles. It is only for reasons of clarity that in this paper
we focus on a plate pinned at its outer rim and resonating in its 2× 2 mode.

3. Steady streaming: Eulerian versus Lagrangian velocity
It is a curious but well-known fact that geometries that move sinusoidally may

generate a flow field that is not simply sinusoidal: in addition to (and as a result of)
the to-and-fro motion of the gas, there is a steady directed streaming near the surface
of vibrating boundaries (Rayleigh 1884, 1894; Nyborg 1953; Lighthill 1978; Riley
2001). A short mathematical description of steady streaming is given in appendix A,
in which it is shown how the streaming velocity is linked to the square of the
instantaneous velocity, integrated over one cycle. Here, we address the physical origin
of the streaming flow.

In figure 5 we show the velocity component ux(x, y, z, t) of the air above two
representative points {x, y} on the plate (indicated in the insets), as a function of z at
four consecutive moments t during the vibration cycle.
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FIGURE 4. Regular and inverse Chladni patterns formed on a flexible plate pinned in the
middle and excited at different eigenfrequencies. The top row shows the regular Chladni
patterns obtained with heavy particles (ρ = 20 000 kg m−3, d = 0.075 mm), while the bottom
row shows the corresponding inverse patterns that are obtained when light particles are
used (ρ = 20 kg m−3, same diameter). The size of the plate is the same as that of figure 1,
i.e. 40× 40 mm2.

Let us first consider figure 5(a), which depicts the velocity ux above the point
{x = L/2, y = L/4}, on a nodal line. At t = 0T , the plate has zero velocity and
maximum acceleration. The plate accelerates the gas near the surface and the
momentum of the gas is subsequently passed to the higher layers of the fluid.
After t = 0.25T , the plate decelerates and the gradient of the horizontal velocity in
the boundary layer becomes smaller. This sequence repeats itself half a cycle later
(t = 0.5T), but now in the opposite direction. The grey lines in figure 5(a) represent
the velocity at two instants during the first half of the cycle (t = 0.1T and t = 0.4T)
and the black lines at the corresponding instants half a cycle later (t = 0.6T and
t = 0.9T). Clearly, the velocities during both halves of a cycle cancel each other and
the averaged velocity, indicated by the vertical grey line, is zero at this location.

The situation is different half-way between an antinode and a nodal line: figure 5(b)
shows the velocity above the point {x = 3/8L, y = L/4}. At this location the plate is
not at the same position during the acceleration phase of the first and the second
half cycle. As a result, the averaged velocity over one cycle (the grey line with cross
markers) does not vanish and a net flow occurs.

Figure 6 shows a vertical cross-section up to z/H = 0.3 of the averaged horizontal
velocities at y = L/4 for 0 < x < L/2. At the nodal lines (x = 0,L/2) and antinodes
(x = L/4) the averaged velocity is zero. In between, the net velocity is directed
towards the nodal lines for z/H < 0.05 (z < 0.100 mm) and towards the antinodes
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FIGURE 5. Horizontal component ux of the air velocity induced by the vibrating bottom
plate as a function of the height, at two time instants during the first half of a cycle (grey
lines) and half a cycle later (black lines). The velocity ux is given in units of the velocity
amplitude aω of the vibrating plate; likewise, the height z is normalized by the distance
H between the equilibrium position of the vibrating plate and the top lid. The depicted
velocities are calculated at two representative locations on the plate (see insets): (a) on
a nodal line (x = L/2, y = L/4) and (b) halfway between a nodal line and an antinode
(x = 3/8 L, y = L/4). The grey line with cross markers represents the amplitude of the
average velocity during the complete vibration cycle and is multiplied by a factor of five
for clarity. At location (a) this grey line does not deviate from zero. However, at location (b) it
deviates from zero, i.e. there is a net flow of air in the horizontal direction.

above this height up to z/H = 0.30; see also the grey line with cross markers in
figure 5(b). Since the particles have a diameter of d = 0.075 mm only, based on this
result for the streaming flow one would expect the particles to move to the nodal lines.
This is in obvious contradiction to the simulation results (see figure 3b) where we
found that the exact opposite occurs: the particles move to the antinodes.

To resolve this apparent paradox, we now distinguish between the Eulerian and
Lagrangian mean velocity of the gas. The Eulerian mean velocity is the net velocity
at a point fixed in space. This is the averaged velocity that we have been considering
so far (see figure 6 and the grey line with cross markers in figure 5), which would
be measured by a probe located at a certain, fixed point in space. In contrast, the



Air-induced inverse Chladni patterns 211

0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

1.6

3.2

4.8

6.4

8.0

FIGURE 6. (Colour online available at journals.cambridge.org/flm) Cross-section of the time-
averaged Eulerian velocities in the vertical xz-plane at y = L/4. The vertical dashed line
marks the position of the antinode at x= L/4. The grey lines indicate the location of the plate
at maximum deflection. The magnitude of the averaged velocity is indicated by the coloured
lines, its direction is indicated by the arrows. The velocity scale has been made dimensionless
by dividing by the maximum velocity of the vibrating plate (aω).

Lagrangian mean velocity is the velocity, again averaged over one cycle, of a tracer
particle that moves along with the fluid.

In most studies of steady streaming the Eulerian mean velocity is used (Loh et al.
2002; Açikalin, Raman & Garimella 2003; Dorrestijn et al. 2007) since the Lagrangian
mean velocity is in general much more difficult to obtain analytically. In the present
study, however, the Lagrangian mean velocity is definitely the more appropriate: the
ratio B for the particles that form inverse Chladni patterns is larger than unity (in our
case, B= 30) and the Stokesian forces dominate, which means that the particles follow
the motion of the fluid and act like tracer particles.

To illustrate the importance of using the Lagrangian mean velocity, we show in
figure 7 the trajectories of three tracer particles (or fluid particles) at a height of
d/2 = 0.0375 mm (z/H = 0.019) above the resonating plate (i.e. the same height as
the centres of most of the granular particles) during a time span of two vibration
cycles. At the antinode the tracer particle moves up and down, while at the nodal line
it moves from left to right. In both cases, the tracer particles have the same position
after two vibration cycles. In between the antinode and nodal line, however, the tracer
particle has moved to the left, i.e. to the antinode. By contrast, the mean Eulerian
velocity at this location was directed to the nodal line (see figure 6).

A difference between the time-averaged Eulerian and Lagrangian velocities typically
occurs in all oscillatory flows that are inhomogeneous in space and is often referred
to as the Stokes drift. This name is a tribute to Stokes’ derivation of the expressions
that describe the net motion of a small particle near the free surface of water waves
(its Lagrangian velocity) in the direction of the wave propagation (Stokes 1847).
Lighthill was one of the first to recognize the difference between the Eulerian and

http://journals.cambridge.org/flm
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FIGURE 7. Path in the xz-plane of a tracer particle (or fluid particle) during two vibration
cycles at an antinode, between an antinode and a nodal line, and at a nodal line, respectively.
The initial position of the tracer particles (indicated with the filled grey circles) is 0.0375 mm
above the plate, i.e. at the height of the centre of mass of granular particles resting on the
plate. The particles at the antinode and the nodal line return exactly to their original position,
but the particle between them is seen to move slightly towards the antinode; its position after
two cycles is indicated by the black circle. Note that the maximum vertical displacement of
the tracer particle at the antinode (left) is twice the vibration amplitude, namely 0.15 mm.

Lagrangian velocities in steady streaming (Lighthill 1978). In that study, however,
the streaming was caused by a standing sound wave, and Lighthill correctly reported
that the difference between the Eulerian and Lagrangian velocities was considerably
smaller than the steady streaming velocity itself. In our case, where the streaming
is caused by a resonating plate without significant sound production, the situation is
changed dramatically: not only has the difference between the Eulerian and Lagrangian
velocities grown significantly, but they are even pointing in opposite directions!

The Lagrangian mean velocity can be determined by subtracting the initial position
of a fluid particle (anywhere above the vibrating plate) from its position after one
vibration cycle, and dividing by the time T . In figure 8 (the Lagrangian counterpart of
figure 6) we have done precisely this, starting the vibration cycle at t = 0.25T when
the plate goes through its horizontal equilibrium position. Figure 8(a) shows a vertical
cross-section of the Lagrangian streaming velocities at y= L/4 for 0< x < L/2. Close
to the plate (in fact, for all heights z/H < 0.35 or z < 0.7 mm) the mean velocity is
directed towards the antinodes, in stark contrast to the Eulerian velocity depicted in
figure 6. Figure 8(b) shows the corresponding horizontal cross section of the time-
averaged Lagrangian velocities (above one quarter of the vibrating plate) at a height
of half the particle diameter z = d/2 = 0.0375 mm (z/H = 0.019), which is the height
where most particles reside. The inverse Chladni patterns of fine particles are formed
as a result of this Lagrangian streaming.

4. Discussion
In the previous Section we have seen that the Lagrangian streaming, which is

directed towards the antinodes, is responsible for the inverse Chladni patterns that
are observed under experimental conditions similar to the original conditions used



Air-induced inverse Chladni patterns 213

0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0

0.1

0.2

0.3

0.4

0.5

0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(a)

(b)

FIGURE 8. (Colour online) (a) Cross-section of the time-averaged Lagrangian velocities in
the xz-plane at y = L/4. The magnitude of the averaged velocity is indicated by the coloured
lines while the direction is indicated with arrows. Note that the vertical axis goes up all
the way to z/H = 1.0, whereas the companion cross-section of the Eulerian velocities in
figure 6 stops at z/H = 0.3. (b) Horizontal xy cross-section of the time-averaged Lagrangian
velocities of one quarter of the vibrating plate at height z/H = 0.019 or z= d/2= 0.0375 mm
(indicated by the arrow at the left axis in a). In the movie in the online supplementary material
one can clearly observe the resulting motion of particles towards their equilibrium positions.
Again, the velocity scale has been made dimensionless by dividing by the maximum velocity
of the vibrating plate (aω).

by Chladni and Faraday. At the same time, the Eulerian streaming, the averaged
velocity at a fixed position above the plates, has the opposite direction, i.e. towards
the nodal lines. At this point one could ask whether, by suppressing the Lagrangian
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FIGURE 9. Transition from inverse to regular Chladni patterns: 80 000 particles on a
resonating plate where the parameter B (equation (2.3)) is varied by modifying the particle
density. (a) At B= 30 the Stokesian forces dominate and an inverse Chladni pattern is formed.
(b–e) As B decreases, we see a gradual transition towards a regular Chladni pattern. At
B= 1 (ρ = 550 kg m−3) the Newtonian and Stokesian forces balance each other: the particles
neither accumulate at the antinodes nor at the nodal lines. (f ) For B = 0.03, the Newtonian
forces clearly dominate and a regular Chladni pattern is the result.

component, it would be possible to observe Eulerian streaming in the same system.
Stated differently, would it be possible to have air-driven Chladni patterns at the nodal
lines? To answer this question let us study the dimensionless parameters that govern
the system in some detail.

The first and most important dimensionless parameter is B, the ratio of Stokesian
and Newtonian forces on a particle, which was introduced in § 2. In figure 9 we
show the complete transition between inverse patterning and regular patterning in
our simulation, where we vary B by changing the particle density ρ. When the
Stokesian forces dominate (B > 1, see (2.3)), the particles are driven to the antinodes
(see figure 9a). When we slowly increase the density of the particles (with 0.1 %
per vibration cycle, allowing the system to adjust itself to the new conditions), the
Newtonian forces become more important and the particles start to bounce, forming
clouds around the antinodes that become more extended as the density increases (see
figure 9b). Around B = 1 the Newtonian and Stokesian forces are equally strong and
the clouds cover almost the entire plate (figure 9c). When the density is increased
further and B falls below one, the Newtonian forces start to dominate (figure 9d,e),
resulting for B� 1 in the well-known Chladni pattern with the particles accumulating
at the nodal lines (figure 9f ). Clearly, to observe air-driven (inverse) Chladni patterns,
B needs to be considerably larger than one.

The second dimensionless parameter which we can vary is the ratio of the vibration
amplitude and the boundary layer thickness, a/δ. We expect that when this parameter
is of order unity (or larger), the Lagrangian streaming effect will be dominant. This
is the case in our system, as in most Chladni plate experiments. When however the
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FIGURE 10. Horizontal component ux of the Lagrangian (black) and Eulerian (grey)
streaming velocities as a function of the height above the plate, in the situation of figure 10,
i.e. halfway between a nodal line and an antinode (x = 3/8 L, y = L/4, see inset). The
velocity ux is given in units of the velocity amplitude aω of the vibrating plate; likewise,
the height z is normalized by the distance H between the equilibrium position of the vibrating
plate and the top lid. Near the moving plate in the bottom boundary layer, there is a clear
difference between the Lagrangian and Eulerian streaming velocities, where they even have
opposite directions. By contrast, in the top boundary layer (near the top lid), the Lagrangian
and Eulerian streaming velocities are almost equal.

amplitude becomes much smaller than the boundary layer thickness (i.e. a/δ � 1),
the difference between the Eulerian and Lagrangian streaming becomes vanishingly
small. Evidence for this can be found in figure 10, where we compare the Eulerian
and Lagrangian streaming velocities as a function of the height above the vibrating
plate, for the situation of figure 5(b). Close to the plate the Lagrangian streaming
is directed towards the antinode, whereas the Eulerian streaming has the opposite
direction towards the nodal line. Above the bottom boundary layer this difference
vanishes quickly and in the bulk both streaming velocities are practically equal.
Incidentally, the same is true for the top boundary layer, which may be interpreted
as the Stokes boundary layer in the limit of vanishingly small a/δ ratio. Note that
here both streaming velocities are directed towards the nodal lines and particles that
are confined to this layer would therefore give rise to a regular Chladni pattern with
particles accumulating at the nodal lines.

Sticking to the experimental set-up, i.e. keeping the dimensions and the material
of the plate and ambient fluid fixed, we obtain a constant resonant frequency ω for
the 2 × 2 mode and consequently a fixed boundary layer thickness δ ≈ √2ν/ω. So
to go to the domain where the dynamics is dominated by Eulerian streaming, we
need to aim for a considerable decrease of the a/δ ratio which can only be realized
by decreasing the amplitude a. This has the unfortunate side effect that B (which is
proportional to a) will decrease at the same rate through which we enter into the
regime that is dominated by the Newtonian forces. Physically this happens because
typical air velocities scale as aω, which leads to a decrease of the drag force on the
particles. Therefore, the only option we have to enter the Eulerian streaming regime
for the set-up discussed in this article is by at the same time taking much lighter
particles, lighter even than lycopodium powder. Alternatively, we may turn the set-up
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upside down such that the particles enter the boundary layer near the lid, which indeed
produces a Chladni pattern at the nodal lines.

Interestingly, in a recent experiment by Dorrestijn et al. (2007) it was found that
nanobeads (with a diameter of 0.5 µm) moved towards the nodal lines of a resonating
cantilever beam submerged in water, forming a regular Chladni pattern. This result,
which at first sight seems to contradict the findings for the classic Chladni experiment,
can be interpreted in the light of the above discussion: in their experiment the
vibration amplitude (a ≈ 0.02 µm) is much smaller than the thickness of the boundary
layer (δ ≈ 0.80 µm), such that a/δ ≈ 2.5 × 10−2, i.e. at least an order of magnitude
smaller than it is in the classic experiment of Chladni and Faraday. This is further
discussed in appendix B.

Finally, the third parameter is the ratio of the particle diameter and the boundary
layer thickness, r/δ. In order to observe the inverse Chladni patterns, particles should
be small enough to fit within the boundary layer, such that they can benefit from the
difference between the Eulerian and Lagrangian streaming velocities. If the particle
radius is of the order of the boundary layer thickness or even larger, particles are
expected to move into the outer streaming region. This limit moves beyond the Stokes
drag approximation of our analysis, since in this case the incident fluid velocity is
not constant but varies considerably over a particle diameter. Also our numerical code
would not be suited for this limit, since we would not be able to use the coupling
between gas flow and granular dynamics (Stokes, Ergun and Wen-Yu) that is presently
being used. Instead, we would have to resolve the air flow around each particle. This
clearly requires a numerical approach quite different from the present one.

5. Conclusion

In this paper we have studied the formation of Chladni patterns on a resonating plate
by direct numerical simulations, including the flow of the ambient air. We expressly
focused our attention on a plate of dimensions similar to the ones originally used in
the experiments of Chladni and Faraday.

For heavy particles Newtonian forces dominate (B� 1) and we find regular Chladni
patterns, where particles accumulate around the nodal lines of the resonating plate. For
light particles the system is dominated by Stokesian forces (B� 1), which lead to
the formation of inverse Chladni patterns, where particles aggregate at the antinodes.
The reason for this behaviour is that the motion of the ambient air averaged over one
cycle is non-zero. In particular, the very light particles behave like tracer particles and
follow the motion of the air; their motion is appropriately described by the Lagrangian
streaming velocity of the air over the resonating plate. Interestingly, Eulerian streaming
would give a result that contradicts experiments and simulation, so the streaming
phenomenon that causes the inverse Chladni patterns is a striking example of a
physical system in which the Lagrangian velocity field proves to be different (and
more relevant) than the Eulerian velocity field.

We wish to thank J. A. M. Kuipers for many invaluable discussions on the
numerical method, and D. Lohse, H.-J. Stoeckmann and L. van Wijngaarden for
carefully reading the manuscript. This work is part of the research program of the
Stichting FOM, which is financially supported by NWO.
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Appendix A. Mathematical description of streaming
In this appendix we give a brief mathematical description of the steady streaming.

The basic equation is the momentum balance (i.e. the Navier–Stokes equation) for the
gas phase:

∂(ρgu)
∂t
+∇ · (ρguu)=−∇p−∇ · τ , (A 1)

where p is the gas phase pressure, ρg the density of the gas phase (which we assume
to be constant), τ the viscous stress tensor and u is the flow velocity of the gas
phase. One may approximate the velocity and the pressure by a harmonic velocity
and pressure (with a zero average over time), plus a time-independent correction
representing the steady streaming:

u= uH + uS, p= pH + pS. (A 2)

Substituting the harmonic and streaming velocity into (A 1) and averaging over one
vibration cycle yields (note that 〈u〉 = uS, 〈uH〉 = 0, but 〈uHuH〉 6= 0):

∇ · (ρguSuS)=−∇pS −∇ · τ S −∇ · 〈ρguHuH〉, (A 3)

where the brackets indicate a time averaging over one vibration cycle. As in turbulence
modelling, the last term in the equation is commonly called Reynolds stress (Pope
2000). This Reynolds stress drives the steady streaming. For our system, which has
negligible compressibility effects, the Reynolds stress in the x-direction at y = L/4 is
equal to ρg(∂〈u2

x〉/∂x + ∂〈uxuz〉/∂z). The second term is large in the boundary layer,
where the velocities in both the x- and z-direction are large. For this reason, the steady
streaming is much stronger near the vibrating plate than higher up near the cover
plate (where the velocity in the z-direction is practically zero), see figures 5(b) and 8
in the main text. To obtain an analytical solution for (A 3), one begins by finding a
solution for uH and then substitutes this solution into (A 3) (Nyborg 1953; Açikalin
et al. 2003). Although in our system the Lagrangian velocity field is more relevant,
most studies only consider the Eulerian velocity field (Nyborg 1953; Riley 2001;
Açikalin et al. 2003; Dorrestijn et al. 2007) or the streaming induced by a standing
sound wave (Lighthill 1978). Finding the solutions for (A 3) is far from trivial in a
three-dimensional system like ours and that is why in this paper we limit ourselves to
studying the flow fields obtained from direct simulations.

Appendix B. Chladni patterning when the vibration amplitude is much
smaller than the thickness of the boundary layer

As noted in the main text, in the submerged Chladni experiments of Dorrestijn
et al. (2007) the vibration amplitude a is much smaller than the thickness δ of the
boundary layer (table 1). From this it may be inferred that the vertical displacement
of the plate can play only a minor role in these experiments. As a result, in this
case the difference between the Eulerian and Lagrangian flow fields will only be very
small. Indeed, the induced streaming is much more reminiscent of acoustic streaming
(Lighthill 1978) and the mechanism responsible for the pattern formation in this case
must be quite different from the one discussed in this paper, where a ∼ δ. The aim of
this appendix is to shed some light on the interpretation of their results in the context
of our findings.

In acoustic streaming two layers of vortices can be identified, as depicted in
figure 11 (Rayleigh 1884, 1894; Boluriaan & Morris 2003; Hamilton, Ilinskii &
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Present work Dorrestijn et al.

B 10−2–102 103–105

a/δ 0.5 0.01
r/δ 0.5 0.5–5

TABLE 1. Comparison of the three governing dimensionless parameters.

Inner streaming

Outer streaming

Cantilever anti-node      velocity node
Cantilever node       velocity anti-node

FIGURE 11. Sketch of the proposed streaming pattern in the experiment conducted by
Dorrestijn et al. (2007), with particles on a cantilever beam submerged in water, resonating
at very high frequency with a very small amplitude a. The vertical vibration of the beam
induces a velocity field in the fluid: the horizontal component of this field is zero at the
beam’s antinodes and maximal at the nodes (cf. figure 2). In other words, the velocity nodes
are located at the antinodes of the resonating beam and vice versa.

Zabolotskaya 2003): vortices inside the boundary layer (inner circulation) and vortices
outside the boundary layer (outer circulation), which have an opposite direction of
rotation. Particles smaller than the thickness of the boundary layer will be dragged
by the inner circulation to the nodal lines; particles with a diameter exceeding 2δ
(such that their centre of mass lies above the boundary layer) are exposed to the
outer circulation and will go to the antinodes. In the experiment of Dorrestijn et al.
(2007) the thickness of the boundary layer was δ ≈ √2ν/ω = 0.8 µm, where ν =
1.00 × 10−6 m2 s−1 is the kinematic viscosity of water and ω = 2πf = 3, 14 × 106 s−1

(with f = 0.5 MHz the frequency of the vibrating plate). In perfect agreement with the
mechanism outlined above they found that nanobeads with a diameter of 0.5 µm, i.e.
smaller than δ, moved to the nodal lines, and large particles towards the antinodes.

Incidentally, according to the authors’ own analysis (Dorrestijn et al. 2007) the inner
circulation responsible for the motion of the nanobeads was confined to the layer of
vibration just as in figure 5 of Açikalin et al. (2003). However, in the experiment
this layer had a thickness of only a ≈ 0.02 µm, much too small to drive the 0.5 µm
nanobeads. If our interpretation in terms of acoustic streaming is correct, the actual
situation is as depicted in figure 11 and the zone of inner circulation is given by the
thickness of the boundary layer δ = 0.8 µm.
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STÖCKMANN, H.-J. 2006 Ein Nomade der Wissenschaft. Physik J. 5, 47.
STÖCKMANN, H.-J. 2007 Chladni meets Napoleon. Eur. Phys. J. Special Topics 145, 15.

http://purl.org/utwente/61070
http://purl.org/utwente/61070
http://purl.org/utwente/61070
http://purl.org/utwente/61070
http://purl.org/utwente/61070


220 H. J. van Gerner, K. van der Weele, M. A. van der Hoef and D. van der Meer

STOKES, G. G. 1847 On the theory of oscillatory waves. Camb. Phil. Soc. Trans. 8, 441.
UHLMANN, M. 2005 An immersed boundary method with direct forcing for the simulation of

particulate flows. J. Comput. Phys. 209, 448.
WALLER, M. D. 1955 Air circulations about a vibrating plate. Br. J. Appl. Phys. 6, 347.


	Air-induced inverse Chladni patterns
	Introduction
	Numerical model
	Steady streaming: Eulerian versus Lagrangian velocity
	Discussion
	Conclusion
	Appendix A. Mathematical description of streaming
	Appendix B. Chladni patterning when the vibration amplitude is much smaller than the thickness of the boundary layer
	References


	ikona: 
	203: 
	204: 
	205: 
	206: 
	207: 
	208: 
	209: 
	210: 
	211: 
	212: 
	213: 
	214: 
	215: 
	216: 
	217: 
	218: 

	animtiph: 
	1: 
	2: 
	3: 
	4: 
	5: 
	6: 
	7: 
	8: 
	9: 
	10: 
	11: 
	12: 
	13: 
	14: 
	15: 
	16: 
	17: 
	18: 
	19: 
	20: 
	21: 
	22: 
	23: 
	24: 
	25: 
	26: 
	27: 
	28: 
	29: 
	30: 
	31: 
	32: 
	33: 
	34: 
	35: 
	36: 
	37: 
	38: 
	39: 
	40: 
	41: 
	42: 
	43: 
	44: 

	TooltipField: 


