
Metrics-based control in outsourced software
development projects

Laura Ponisio1 and Pascal van Eck2

1 BE Software Design, Okeghemstraat 6, 1075 PM Amsterdam, The Netherlands
Email: ml@ponisio.com
2 Department of Computer Science, University of Twente, P.O. Box 217
7500 AE Enschede, The Netherlands. Email: pascal@pascalvaneck.com

Abstract

Measurements have been recognized as vital instruments to improve control in outsourced software devel-
opment projects. However, project managers are still struggling with the design and implementation of
effective measurement programs. One reason for this is that although there is a large body of research
literature on metrics, practical guidelines for choosing among concrete measurements are scarce. We ad-
dress this gap between research and practice by synthesising knowledge from frameworks and guidelines
presented in the software process improvement literature. Our contribution comprises a framework that
provides a set of measurements (selected from the research literature) for control of software development
in cooperative settings, and a set of principles and guidelines for the design of an information infrastruc-
ture that provides managers with control information. As implications for research we identify the need to
develop new theories of software process improvement through the lens of inter-organisational networks,
and to take into account relevant practices from the world of open-source software development. We also
discuss lessons for managers of outsourced software development projects. Our results have been validated
via expert interviews and by a panel of experts.

Keywords: Software process improvement, measurement, metrics, outsourcing.

1 Introduction

Control through metrics is a critical component of the success of software process improvement
programs (SPI) [1]. Much has been written about metrics program implementation in SPI efforts [2,
3, 4, 5]. However, despite the importance of metrics and the presence of this vast body of literature,
we have learnt in a five-year study of a large outsourcing organisation that managers experience
difficulties in applying metrics in practice. The reason for this seems to be twofold. Firstly, this
problem arises not despite, but because of the presence of a vast body of literature: there are
simply too many metrics to choose from. Secondly, outsourcing of software development creates a
different context for software process improvement (and thus for metrics): while SPI takes place at
the vendor side, the ultimate goal is to create value at the client side. Therefore, in this paper we
aim at selecting metrics that help managers at the vendor side of outsourced projects to develop
software that helps clients to meet their business goals.

Which are the concrete problems in the context of outsourcing? Outsourcing of software de-
velopment by definition introduces distance in the software development process. Firstly, there is
organisational distance: the development team is not part of the same organisation as the client.
Secondly, often there is physical and cultural distance introduced by offshoring: either the vendor

This paper is a postprint of a paper submitted to and accepted for publication in IET Software and is subject to Institution
of Engineering and Technology Copyright. The copy of record is available at IET Digital Library.
Published as: L. Ponisio and P. van Eck. Metrics-based control in outsourced software development projects. IET Software,
6(5):438–450, 2012. DOI: 10.1049/iet-sen.2011.0199.

http://dx.doi.org/10.1049/iet-sen.2011.0199

2 2 How do project managers control outsourcing projects?

is in a different country or continent than the client, or the vendor itself offshores actual develop-
ment to a subsidiary in a low-cost country. Both types of distance in turn introduce new issues
in software development coordination [6]: lack of adequate timely informal interactions, which
presents challenges for coordination, communication (and even trust) in outsourcing organisations.
Consequently, managers risk loss of control [7] (in the sense of lack of information about what is
going on in their projects), especially at the development side.

To address these issues, this study answers the following question: how can managers at the
vendor side in outsourcing relations improve control of the software development projects that
they are responsible for? To answer this question, we have examined literature to find concrete
metrics and implementations, developing a picture of the measurements field through the lens
of software process improvement in an outsourcing context. By developing such a picture, we
point at implementations in concrete cases in organisations such as IBM and Motorola, we help
practitioners to synthesise and reflect on existing work and we contribute to focusing the direction
of interest of project managers.

The current paper presents the results of this study in the form of a framework (Section 4) that
contains a set of organisational effectiveness measurements and an information infrastructure that
collects and distributes principles, lessons learnt and measurement data in software development
projects. This framework is distilled from research findings published over the last two decades at
the intersection of three different, but related fields: software process improvement (SPI), metrics,
and outsourcing. In Section 2, we provide the necessary background information about these three
fields by discussing how metrics are used to improve control in outsourcing projects. After that,
in Section 3, we present the research method we followed in our literature survey. Our findings
are presented in Section 4. Section 5 discusses implications for research and SPI practice. Finally,
Section 6 reflects on the results of this paper.

2 How do project managers control outsourcing projects?

The research reported in this paper took place in the context of a 5-year research project [8] in
which we observed outsourcing projects at a large outsourcing company that develops software on
behalf of customers. Our aim was to discover mechanisms to support managerial decision making
during software development processes in these projects. In particular, we were interested in finding
how managers deal with software development issues such as complexity and requirements transfer
between the customer side and vendor side. By managers we mean project managers at the vendor
side who are responsible for realising what the customer ordered. Those people have a variety of
titles; we will use ‘project manager’. Even though such project managers belong to the vendor
side, they are close to the customer side and are in a position to suffer the same lack of control
that Lacity et al. [7] indicate as a well-known risk in outsourcing. For instance, in the projects we
observed the project manager was physically located in the same country as the customers, while
the development team was located in Asia.

In this study we described information paths, made coordination issues explicit and derived
guidelines for managing outsourcing projects [9, 8]. We also observed, in line with existing research
in the outsourcing domain [10, 11], the importance of building congruent client-developer relation-
ships to deliver within time and budget software products that support the client’s business goals,
and the importance of gathering enough knowledge to solve the business-technical domain cut-off.
Boehm and Sullivan [12] describe a cut-off between the decision criteria that tends to guide soft-
ware engineers (technical domain) and the value creation criteria of organisations in which software
is developed (business domain).

To maximise value creation, project managers must understand the connections between, on
the one hand, technical decisions that shape the solution built at the vendor side and, on the other
hand, enterprise-level value for the client. With inadequately understood connections, project man-
agers are unable to make decisions that could significantly increase the value created by software
development. Consider software modularity. The ability to meet time-to-market requirements

2.1 SPI, metrics, and management of IT outsourcing 3

depends on having a modular design. An independent-feature-based architectural style helps de-
velopers to meet time-to-market requirements because it enables them to abandon unimportant
features easily later if time runs out. Acting as boundary objects [13, 9] between the development
team and the customer, project managers in software development strive, thus, to connect technical
decisions with value creation criteria (in an attempt to derive the best possible result).

In this context a need appeared over and over again: project managers, sensing lack of control,
asked for effective mechanisms to better control software projects, i.e., mechanisms that help
them steer the project such that decisions are aligned across strategic, technical and organisational
domains. “I need to see what’s going on at the other [the development] side.” and “Metrics could
help us to increase control” were phrases that came up in our interviews. After asking “how are
we in control?’ ’ [8] project managers asked how they could improve control. They were referring
to the development projects they execute and are responsible for, and from which they have to
realise customer value. This leads us to the following objective for this paper: to find a concrete set
of metrics that help project managers to improve control of their software development projects.
Thus, we are looking for mechanisms project managers can use to gain knowledge about their
projects, for instance about coordination and customer value.

2.1 SPI, metrics, and management of IT outsourcing

Metrics have the potential to improve software development processes but the field is heavily
populated. There are too many metrics to choose from and project managers do not have time to
select appropriate metrics for their projects. Even though the SPI literature is rich in examples of
metrics applications and management of IT outsourcing, projects present specific problems that
need to be addressed.

2.1.1 SPI

The fundamental objective of SPI is to change software development processes in order to achieve
improvements in quality and productivity [14]. The SPI literature is rich in examples of metrics
and in principles to apply them [15, 16, 17, 4, 18, 19, 20]. Already in 1999, Rico had identified more
than 487 metrics for software process improvement [21]. By 2004, Hansen et al. had considered 322
works on software improvement [22]. Since then, the body of literature has only grown, creating a
need for integration to support practitioners.

Firstly, several researchers have attempted to come to a more integrated body of literature of
SPI [23, 24, 25]. Several papers present frameworks or critical evaluations [22, 26]. For instance,
in a literature review of contributions to the SPI field, Hansen et al. created a framework cate-
gorising contributions as prescriptive, descriptive, or reflective [22]. The authors conclude that the
field is heavily biased towards contributions that tell software professionals how they can carry
out software process improvement initiatives (prescriptive contributions). According to this study,
much less contributions either report on actual instances of SPI programs in software organisa-
tions (descriptive contributions), or set the other contributions in a theoretical context (reflective
contributions). In our search for related work, we focussed on descriptive contributions.

Aaen et al. made a survey of the SPI literature and experiences from SPI practice [14]. Their
paper offers a conceptual map of nine key ideas underlying SPI organized in three concerns: man-
agement, approaches, and perspectives of the SPI process. Each concern includes ideas associated
to it. For instance: organisation, plan and feedback are the SPI ideas corresponding to the con-
cern of management; evolution, norm and commitment are SPI ideas corresponding to approaches;
and process, competence and context are the SPI ideas corresponding to perspectives in the SPI
process.

Florac, Park and Carleton [4] define processes for selecting and defining metrics for process man-
agement and improvement. Besides offering a list of technologies and methodologies for changing
software processes, they list measurable entities (for instance, people, tools and procedures) and

4 2 How do project managers control outsourcing projects?

their attributes (such as experience, accessibility and coverage, respectively) that can be measured
to address, for example, process compliance (compliance measures help managers to understand
why a process might not be performing as it should and performance measures address the degree
to which a process fulfils its purpose).

Secondly, a number of papers focus on reporting experiences with applications of metrics in
organisations. For instance, early research described cases where metrics were applied in practise in
leading companies such as Motorola [27] and AT&T Bell Laboratories [28]. More recently, Iversen
and Mathiassen presented a case study that analysed an engineering process in which a metrics
program was constructed and put into use [5]. The program’s goal was to test the effect of ongoing
SPI initiatives within the company Danske Data. These works, and those of the next paragraph,
are closely related to our literature review, which we present in Section 3.

Thirdly, other papers focussed on studying factors that influence success of SPI programs [29,
30, 31], and (in line with research in the area of software metrics) there is a body of work that
emphasizes the need to apply metrics in accordance with company-specific needs. In particular,
Iversen and Kautz [32] and Kautz [33] assert the importance of adapting metrics programs: to
be successful, the metrics programs implemented should be defined according to the organisa-
tion’s specific information needs. Furthermore, while describing examples from practice, Aaen et
al. [14] illustrate that there is room to implement SPI programs in very different ways and that
metrics must be adapted, at the time of implementing them, to the specifics of an organisational
environment.

2.1.2 Metrics

The benefits of using metrics in software development are unquestionable: the use of information
provided by metrics in decision making leads to higher organizational performance [31] and vis-
ible results (such as those provided by measurements) are considered critical to success of any
improvement plan, keeping participants focussed and motivated [1]. However, whilst the literature
recognizes metrics are an important source of control in software development, project managers
still ask “which metrics can I use in my project?”, indicating they have time neither to research
the best metrics nor to find the best advice to apply them.

There are many metrics, but equally important as the metric is its application. The major
problems of metrics are using measurements in isolation, handling uncertainty, combining them
with evidence, and gathering and applying measurements that are meaningful [14]. Having numbers
to show does not mean per-se neither that the measurements are relevant and meaningful, nor that
they are accurate and reliable. Size is a case in point: “One single measure of size could give a
misleading picture of progress and cost” [2].

2.1.3 Management of IT outsourcing projects

There is a vast body of literature on IT outsourcing. Lacity, Khan and Willcocks [7] review
the IT sourcing literature and present, among other results, an overview of determinants of IT
outsourcing success. They distinguish between three categories of determinants: determinants
related to how the decision to outsource was made, determinants related to characteristics of the
outsourcing contract, and determinants related to controlling the relation between customer and
vendor. This last category includes issues such as trust, communication, information exchange, and
cooperation, which makes explicit that outsourcing involves issues related to the customer-vendor
relationship [34], socialisation in global software development [35] and coordination [10, 36]. For
our research, this category is the most relevant.

Also the issue of quality is related to what Lacity et al. call ‘relationship governance’. Van
Ekris [37] claims that not only quality of the final product is important: low customer perception
of ‘delivery quality’ (i.e., quality of the process of delivering that final product in a relationship
with the customer) may rule out a supplier for the next project. Thus, a significant problem (of
outsourcing) that metrics need to address is the need for effective mechanisms to help managers

5

to establish a connection between enterprise-level value maximisation (which determines product
and delivery quality for the customer and is thus in the business domain) and technical decisions
(domain of technology, mostly at the side of the vendor) [9].

Gopal and Gosain hypothesised that higher levels of quality-based outcome control are associ-
ated with higher levels of software quality [38]. In an empirical study of 96 projects, the results
indicate a significant and positive effect of control on quality. According to that study, activities
such as knowledge sharing between the client and vendor teams increased quality because, intend-
ing to eliminate gaps in understanding requirements and ensuring clarity of expectations, these
activities diminished the cut-off between the decision criteria that tends to guide software engineers
and the value creation criteria of organisations in which software is developed [12]. In other words,
they bridged the gap between business and IT domains. Their paper does not address the question
of whether and how each of these projects itself chose a set of metrics for control. This question
has been addressed by Misra who proposed a top-down framework for selecting outsourcing met-
rics [39]. Misra observes that “The whole process of analyzing metrics and selecting them for a
particular outsourcing project can be very tedious and time consuming” and proceeds to describe
best practices.

All in all, we observe that many concepts and best practices have been proposed. Yet, a major
problem remains: it is unclear which metrics to use. In spite of significant research efforts, there
is a need for practical findings that help practitioners to know when, how and where to measure,
what not to measure to control their projects, and all that in a nutshell.

3 Research Method

The research reported in this paper took place in the context of a long-term interpretive research
project at a large outsourcing company in the area of IT that we name BIG. BIG is a good example
of an IT service provider because it exemplifies most (large) offshore outsourcing development
organisations. BIG has offices in many countries, with headquarters in the UK. In the Netherlands,
with several thousands of employees, BIG is in the top-ten of IT service providers ranked to number
of employees and revenue.

The methodological approach adopted in our research at BIT follows the guidelines of Klein and
Myers [40] and Walsham [41, 42] on methods for carrying out interpretive case studies. We decided
to adopt an interpretive approach because the close involvement it requires increases relevance to
practice [42], which is one of the points of this particular work. Klein and Myers [40] demonstrate
that case study research can be interpretive and indicate seven principles of interpretive research,
which we followed in our case study. According to Klein and Myers, interpretive research attempts
to understand phenomena by gaining knowledge of reality through social constructions, documents,
tools, and other artefacts. Interpretive research focuses on the complexity of human sensemaking
as the situation emerges rather than predefining dependent and independent variables. It is ap-
propriate for our research because our problem consists of gaining knowledge. It helps us, thus,
to understand phenomena by interpreting the software development situation as it emerged in
practice.

In our research at BIG, we were interested in finding how managers deal with software devel-
opment issues such as complexity and requirements transfer across domains. The objective was
to understand mechanisms that organisations put in place to optimise software development man-
agement in outsourcing projects. In particular, we studied documentation of such projects, such
as the requirements management plan, and best practices used at BIG. We obtained knowledge
about which mechanisms facilitate transfer of the information that managers need when making
decisions during software development [8].

At BIG, we observed four large offshore outsourcing projects and analysed any mechanism
we could observe. The four projects we observed at BIG represent the state and behaviour of

6 3 Research Method

traditional outsourcing projects, and it is reasonable to consider these projects representative of
their kind. These projects are examples of offshore in-house development of software on behalf of
BIG’s customers carried out by geographically distributed teams formed by 10 to 46 members. The
observations took place between January 2007 and March 2011 and were made by two researchers.
To double-check the findings and to detect potential misunderstandings, focus groups and extra
interviews with two experts were performed. The experts were software architects with more than
ten years of experience each in managing software development projects.

One iteration in this hermeneutics cycle [40] that spans five years of interpretive research at BIG
called for the research we present in this paper. By interpreting our observations we realised that
practitioners at BIG expressed a need for a framework that empowers them to see what is going
on in their projects, in order to improve their control over these projects. In particular, the need
to improve control in outsourcing projects (in the sense of obtaining knowledge about the product
and the coordination) was mentioned in two interviews we held with project managers (experts in
software development outsourcing). Software metrics seemed to be the logical approach to improve
software development in this case because when used appropriately they can show what’s going
on.

3.1 Research design

As stated above, our five-year-long case study at BIG indicated the need for research to elucidate
a way to improve control in the projects of this outsourcing company by a compact set of metrics.
In this particular iteration of the hermeneutic cycle, we followed the guidelines for design science
as described by Hevner et al. [43]. This design science approach fits our research because our
long-term research calls for elucidating a small set of metrics that helped project managers to
improve control in outsourcing projects; we view this set as a design artefact. This artefact is a
framework built upon research literature: we used existing research that describes metrics applied
to real-world projects. We then designed our framework by filtering the papers according to our
experience in programming and software development processes and our observations at BIG. Using
this process, we follow the guideline of Hevner et al. to treat design as a search process.

To evaluate usefulness our design artefact (another guideline of Hevner et al.), we seek feedback
via expert interviews, as reported in Section 4. In particular, we seek expert opinion about the
question whether our results are useful and applicable in other organizations than those that report
their experiences in the works we have selected.

As the framework we designed and present in this paper is based on research literature, our
research design roughly follows a general procedure for performing systematic reviews described by
Kitchenham [44, 45], even though we do not view our own result as a systematic literature review.
By following Kitchenham’s guidelines, we strive to make our research as repeatable as possible
(although it will not be completely repeatable as human judgement is involved in interpreting the
usefulness of the metrics found).

3.1.1 Research questions

The problem that we introduced in the previous two sections leads to the following question that we
want to answer by our literature search: which software metrics are reported in the software process
improvement literature that are applicable to software development in an outsourcing context and
what practical experiences with metrics have been reported?

3.1.2 Search process

As a starting point, we took the entire set of papers of the most recent EuroSPI conference at the
time of writing, which was EuroSPI 2010. We then added all papers referenced in the papers in this
initial set, followed by all papers referenced in the newly added papers, until no more new papers
were found. As EuroSPI is a quite focused conference, this process turned out to be feasible.

3.2 Study limitations 7

3.1.3 Study selection process

Based on a close reading of the abstract, title and keywords (if available), we selected those papers
that appear to present definitions of concrete software metrics applicable in an outsourcing context
or experiences in applying those metrics in a practical situation. In other words, we selected those
papers that present either concrete metrics or experiences with metrics in organisations, or by
addressing elements to be measured (for example, aspects of open-source software development)
that are relevant for the perspective on metrics that we discussed in the previous section. Since
we needed our metrics to be feasible, we included articles that provided evidence of the feasibility
of implementing the metrics in outsourcing organisations such as BIG.

3.1.4 Quality assessment

Most of the papers in our selection are themselves in the category of design science. Therefore,
to assess quality of each paper, we checked whether it complied with the ‘Research contribution’
guideline of Hevner et al. : does the paper provide a clear and verifiable contribution?

3.1.5 Data extraction process

From the papers deemed applicable, we extracted those metrics that, given our experience as de-
velopers, we would like to have if we were project managers. We did not extract metrics that are
specifically for outsourcing only, as doing so would limit our view of the problem and potential
solutions. We focused on the metrics that had some potential to describe projects in the coop-
erative way to develop software today. Since the research reported in this paper was conducted
in the context of an interpretative study, observation and analysis based on our experience as
software developers made us gain knowledge of which contributions would fit our needs. We used
that knowledge to cross-check the information gathered in the interviews with the results of our
literature review. The role of researchers as decision tools using their experience to filter the papers
acts both as an enabler of this framework (as selecting a compact set of metrics is the key value of
our contribution) and as an unavoidable limitation.

The result of our literature review gave 959 metrics. We organised this large amount of papers
by applying an existing framework for organisational effectiveness measures, as explained in Sec-
tion 4. As a result we obtained a tree of categories that we think is useful for practitioners to find
the metric they need. Moreover, this organisation helped us to check whether there was at least
one metric per category. Given that synthesis was paramount for the framework we could suggest
to practitioners: our results are digestible and systematic.

3.2 Study limitations

By following the process described above, we incur the risk that the list of papers collected by
the process described above is not complete, for two reasons. Firstly, it is possible that relevant
papers exist that are not referenced in any EuroSPI paper nor in any paper referenced by EuroSPI,
nor in any paper referenced by papers referenced by EuroSPI papers, and so on. (In other words,
relevant papers from a completely disconnected research community). To account for this risk, we
cross-checked the list with our own database of papers on SPI, outsourcing and metrics, which was
collected in over nine years of research on these topics. Secondly, there is a risk that we excluded
papers from the list because we misinterpreted the abstract (or the abstract provided insufficient
information for a good verdict). We have indications that this risk is not large: we received several
suggestions for additional literature from reviewers of an earlier version of this paper, all of which
were included in our original data set.

Our framework is not the presentation of the outcome of a systematic literature view, but a
design artefact that is based on a literature review. While the risk that our search process was not
complete was mitigated as much as possible by the cross-checking process described above, note

8 4 Research findings: a metrics framework designed for outsourcing

that the resulting framework presented in this paper is not complete in the sense of Kitchemham’s
requirements for systematic literature reviews. This makes sense because, according to Kitchen-
ham, a systematic literature study per definition aims to present all papers, while the framework
we needed to design calls for quality (i.e., metrics that are suitable for improving control), which
in this case is the opposite of completeness: we required a first compact set of sensible, practical
metrics.

4 Research findings: a metrics framework designed for outsourcing

We present our research findings in a framework that consists of two parts: a set of organisational
effectiveness measurements (Section 4.1) and a set of information infrastructure principles (Sec-
tion 4.2). Organisational effectiveness measurements are software metrics in a broader context, as
we explain below. The information infrastructure principles are the starting points for the design
of a system of components that provides managers with information to control software processes.

4.1 Organisational effectiveness measurements

This section reports software development measurements for SPI found in the existing literature.
We selected these metrics using the method we described in Section 3, bringing together relevant
proposals for companies in an outsourcing context. Having a manageable list of metrics and advice,
projects managers can better understand how they can put metrics to use. Our selection of metrics
is presented in Figure 1.

Why do we use the term ‘organisational effectiveness measurements’ instead of software met-
rics? As we have argued before, software metrics need to be applied in their organisational context,
which, in current practice, often means globally distributed cooperative software development. Ex-
ploiting the notion of organisational effectiveness as proposed by Applegate [46], we systematically
identify the organizational context for software metrics.

Applegate’s notion of organisational effectiveness suits our control-for-more-value needs because
it sees control as enabled by shared understanding of relationships between strategy as executed
and organisational effectiveness. In more practical terms, it can be used to design what to measure
if our goal is to gather information upon which to base management decisions.

Thus, in our framework the metrics are organised in categories based on Applegate’s view of
important characteristics for organisations in this information age. The four areas of interest in
measuring organisational effectiveness measurements (adapted from Applegate [46]) are (i) results,
which are needed to know how the software quality assurance process is performing, (ii) stakeholder
satisfaction, (iii) industry dynamics, and (iv) software process performance, the set of “activities,
methods and transformations that people use to develop and maintain software and the associated
products, for example: product plans, design documents, code, test cases and user manuals” (SEI).

Why do we select these metrics rather than others? The software metrics that comprise our set
of organisational effectiveness measurements are metrics that help managers to control software
development projects. We are specifically interested in metrics that project managers can use to
control software development performed in a cooperative context, such as outsourcing. Control in
this context is the ability to develop an understanding of what is going on in the project and make
informed decisions. Moreover, our selection comprises metrics that, according to existing literature,
have been tried in real projects of real organisations, as is indicated by the company names in
the column labelled ‘Organisations’. (In this column, the name ‘SEI Capability Maturity Model
for Software’ refers to organisations that have implemented that model.). By using Applegate’s
categories, this work coincides with the results of Iversen and Ngwenyama, who were the first to
instantiate Applegate’s framework for the SPI domain [1].

We illustrate the use of our framework with the following example. Consider a manager of
an offshored outsourcing project who wants to increase control. A significant part of having that
control is to know exactly how work is distributed in the offshore team: Who is who in the offshore

4.1 Organisational effectiveness measurements 9

ReferenceMetric Organisation

Organisational effectiveness metrics
Re

su
lts

In
du

st
y

Dy
na

m
ics

Size Functional size

Developer participation: how is work distributed? E.g., can
we recognise "partitioning" in the code?
Adherence to schedule: variation from agreed time of
delivery, absolute and relative to volume of project.Time

Number of error reports relative to size in function points.

Adherence to budget: variation from estimated use of
resources.Cost

Post-release defects per thousand lines of code added,
instead of delivered.

Number of error reports, absolute.

Defect density

Quality

Defects per line of documentation

Defects per testing time

So
ftw

ar
e

pr
oc

es
s

pe
rfo

rm
an

ce

Gain per Year in Productivity

Productivity

Gain per Year in Early Detection of Defects

Average fixed defects per working day

Reduction per Year in Calendar Time to Develop Software
System

Time
Time to resolve problem reports

Percent overtime per 40 hours per week

Thousands of Dollars per Year Spent on SPI
Cost

Dollars per Software Engineer per Year Spent on SPI

Average engineering hours per fixed defect

Reduction per Year in Post-Release Defect Reports

Quality
Business Value Ratio of SPI Efforts

Average fixed defects per working day

Non-commented source statements per engineering
month

Defects per thousands of non-commented source
statements

Fan in

Fan out

System paritioning

Cyclomatic Complexity

St
ak

eh
ol

de
r

sa
tis

fa
ct

io
n

Survey in-person, phone and mail, random, systematic
and stratified.Customer

satisfaction

Satisfaction with the development process (questionnaire)

Satisfaction with the development process (questionnaire)

Employee
satisfaction

Cumulative distribution of contributions to the code base

Resources used to develop the system relative to volume
of project hours (hours/FP).

Any lost bids

Market
performance Loss of reputation to the firm

Satisfaction with the development process (questionnaire)

Time used in review meetings

Resources used in coordination activities

Number of individuals submitting reports (eg. bugs)

Size of the development community

Core team size

Code
ownership

Perception of delivery quality

Hewlett Packard, Eclipse, Danske Data

Apache server

Danske Data

Danske Data

Danske Data

Apache Server

Danske Data

AT&T, Motorola, IBM,
Apache server, Eclipse, Danske Data

Hewlett Packard

Hewlett Packard

SEI Capability Maturity Model for Software

SEI Capability Maturity Model for Software

Hewlett Packard

SEI Capability Maturity Model for Software

Apache server

Hewlett Packard

SEI Capability Maturity Model for Software

SEI Capability Maturity Model for Software

Hewlett Packard

SEI Capability Maturity Model for Software

SEI Capability Maturity Model for Software

Hewlett Packard

Hewlett Packard

Hewlett Packard

IBM Rochester SPI

IBM Rochester SPI

IBM Rochester SPI

IBM Rochester SPI

IBM Rochester SPI

Data Dansk

Data Dansk

Apache server

Data Dansk

Not applicable or unreported

Not applicable or unreported

Data Dansk

Small company

Small company

Apache server

Apache server

Apache server

Large consultancy company

Grady97, Iversen00

Mockus00

Iversen00, 03 and 06

Iversen00, 03 and 06

Iversen00, 03 and 06

Mockus00

Iversen00, 03 and 06

Barnard94, Rosenberg94,
Florac97, Mockus00

Grady86

Grady86

Herbsleb94

Herbsleb94

Grady86

Herbsleb94

Mockus00

Grady86

Herbsleb94

Herbsleb94

Grady86

Herbsleb94

Herbsleb94

Grady86

Grady86

Grady86

Kan95, Florac97

Kan95, Florac97

Kan95

Kan95, McLoughlin10

Kan95

Iversen00, 03, and 06

Iversen00, 03, and 06

Mockus00

Iversen00, 03 and 06

McLoughlin10

McLoughlin10

Iversen00, 03, and 06

Iversen00

Iversen00

Mockus00

Mockus00

Mockus00

VanEkris08

Fig. 1: Organisational effectiveness measurements.

10 4 Research findings: a metrics framework designed for outsourcing

Figure label Reference Figure label Reference Figure label Reference

Barnard94 [28] Herbsleb94 [19] McLoughlin10 [48]
Dekkers99 [20] Iversen00 [32] Mockus00 [47]
Florac97 [4] Iversen03 [5] Rifkin91 [16]
Grady86 [15] Iversen06 [1] vanEkris08 [37]
Grady97 [17] Kan95 [49]

Tab. 1: Cross-reference of figure labels and the literature references of this paper.

team? How is code authorship distributed? Is most of the coding done by one single developer,
or is it partitioned in equal shares? In our framework, one of the metrics characterising a software
artefact is code ownership (second metric under Results in Figure 1). This metric indicates developer
participation. It has been successfully used in the Apache server project and we can get the details
of that experience from an article written by Mockus, Fielding and Herbsleb [47], indicated under
Reference, the third column in our framework (Table 1 provides the key for the references).

4.2 Information infrastructure

As stated before, we are interested in metrics that project managers can use to control outsourced
software development. According to general models of control, a controlling system (in this case:
a project manager) needs information about the system that it tries to control (in this case: a
software development project in a cooperative context). The software metrics literature discusses
the many different metrics identified in the software field that can serve as control information,
and that we have presented in the previous section. This information, however, needs to be made
available to the controlling system. The information infrastructure is the system that connects the
controlled system to the controlling system and supplies the controlling system with information.

In Figure 2 and its continuation (Figure 3), we present a set of principles that can serve as a
starting point for the design of such an information infrastructure. The table describes principles
organised in four categories: information management, information access, communication man-
agement and presentation. A principle is a piece of advice regarding the way to apply metrics;
it is backed up by pieces of knowledge that some manager gained when implementing metrics
programs. In other words, the principles are taken from actual experiences in SPI measurements
program application described in the research literature. We have selected those principles that,
based on experiences of applying SPI programs, provide managers with information to control
software processes.

As a first example, consider the principle Plan to throw one away (sixth principle in category
Information management in Figure 2). Our framework warns project managers not to make the
result of a measurement effort completely dependent on too few metrics, and to take into account
that some metrics will not be accurate enough, or even collected. As indicated in the rightmost
column of Figure 2 and Figure 3, we have found a recent article from Iversen and Ngwenyama [1]
describing SPI implementation in a company, where the experts could not include as many metrics
in their report as they had planned. The principle plan to throw one away has a description of the
principle (third column), what not to do (fourth column), experience in an actual SPI program in
the form of an example or quote in the fifth column (in this case, “The first measurement report
included only 20% of the projects and only three out of six factors”), and a literature reference
(sixth column, in this case “Iversen06”) for the manager who wants to know the details.

Our second example warns project managers not to make the mistake of underestimating the
cost of measurement (they usually add no extra time for measurement in the project plan). More-
over, they might have thought that to compute function points automatically was one way to
reduce the burden of extra work for their people. Indeed, at first sight automatically computing
function points seems to be the clever thing to do, especially in projects with very limited resources.

4.2 Information infrastructure 11

Co
m

m
un

ica
tio

n
m

an
ag

em
en

t

ReferencePrinciples What not to do Quote / Example

Information infrastructure (part 1)
In

fo
rm

at
io

n
m

an
ag

em
en

t
In

fo
rm

at
io

n
ac

ce
ss

Define clear outcomes to expect and collect the data
based on clear objectives. An example of a clear
outcomes to expect is ``to let all developers work on all
parts of the product". Using Basili's Goal Question
Metric method is a good way to design the metrics to
include in the program, being based on the goal that
stakeholders expect to achieve from the metrics
program.

To implement a set of metrics that is
not well suited to describe a concrete
outcome. An example of a too general
objective is ``to give information about
the effect of improvement initiatives".

Start by
determining

goals
Iversen00

``Improved procedures for
documentation of source code should
allow all developers to work in all
areas of the companies products and
should facilitate the extension of the
development teams."

Metrics programs seem to be more successful if
people see that they bring improvements to the
process or the product. It should be clear:
1) what data to report,
2) how to report that data,
3) why data they provide is important,
4) show results based on the data.

To not inform project managers about
exactly what data they should report,
how they have to report it, what part of
the process and product will be better
by analysing that data.

Establish
incentive
structures

Iversen00
``Those who report data to a metrics
program need to see some form of
advantage in the program."

A metrics program consume resources and therefore
to set it in the context of a project for its own sake
should make the task of collecting and analysing the
data easier. Moreover, you need the right staffing to
carry on a measurement program.

 To have people work on metrics as an
extra task of their current projects,
forgetting to recognise that collecting
and reporting metrics consume
resources (e.g., time).

Establish a
project

Dekkers99
Iversen00
Iversen06

``Establishing a formal project made
the program far more visible in the
organisation and made it much easier
for the participants to argue that
adequate resources should be
available."

In the beginning, collect a small set of goal-oriented
metrics. For example, ``One company measured the
number of fixed change requests delivered on time
and the time used in review meetings and found that
change requests delivery on time had increased from
45% to 77% and review meeting time was shortened
by a factor 4."

Neither to start with a large metrics
set, nor to start with too general
metrics. Too many resources will be
spent on them and people will not see
accordingly advantages when the
(analysis report containing the) results
comes back to them.

Start simple Iversen00

``six fairly complex factors should be
measured, and all projects were
required to report data from day 1.
This was an extremely ambitious
undertaking, and as of yet, all the
factors have not been measured, and
some have even been officially
abandoned."

Metrics programs must take into account the existing
work practices in the organisation, and the needs of
the stakeholders affected by a potential effect of the
metrics application.

To not communicate clearly the
advantages expected from
implementing the program.

Use
organisational

knowledge
Iversen00

``external consultants acted as
analysts of the current practice and
carried out interviews with the
developers [...] This provided the
knowledge necessary to define
metrics and to gather data. "

Implementing metrics programs involves several
branches of knowledge such as SPI, software
development and reverse engineering. One solution
might be to include external consultants.

Disregard unfamiliar areas of
knowledge (for instance, reverse
engineering if management has
background in software architecture)
when making decisions about how to
implement the metrics program.

Use
improvement
knowledge

Iversen00``The first measurement report [...]
was criticized for being too academic."

To have a clear goal such as improve efficiency by x%
is important, but do neither procrastinate nor forget to
choose the attribute to be measured to check if the
goal is met. It should be clear to management that the
chosen attributes to measure (and the metrics results)
describe the program's goal.

To underestimate the importance of
having process and product attributes
that describe the goal, leaving the
decision of what should be measured
to the group responsible of the metric
program.

Match your
goals with

measurable
attributes

Iversen03

``We expect to gain a 10%
improvement in efficiency has become
an important focal point of the SPI
project [...] However, neither the CEO
nor the contract was explicit on what
should be measured to show this 10%
efficiency improvement."

Facilitate collecting data by making it simple. Metrics
from finished projects would be used as a baseline
and metrics of finished parts of projects (when
collecting them makes no harm) should be used when
possible. Beware that some stakeholders will not
provide data.

To have tedious mechanisms to report
the data, especially with unclear
questions.

Use non-
invasive
measure-

ments
whenever
possible

Iversen03

``There are some who simply do not
enter data into the system. There are
some that have misunderstood the
definition of the field." ``...results from
13 out of 56 projects that were
completed"

Measure size accurately is critical because size is a
key attribute to measure common goals such as
efficiency and productivity.

To believe blindly the first result
obtained from counting function points
wihout checking that results match
goal and match questions, i.e.,
checking that numbers obtained match
the perceived size of the system.

Consider
potential
problems

when
measuring

size

Iversen06

``Excluding a size measure seriously
impeded reaching the original
objective of measuring efficiency and
productivity, as there was no longer a
measure of the output of the software
projects."

Some measurements will prove to be too difficult to get
due to wrong initial assumptions and inaccuracy in the
data access.

To underestimate measurement. For
instance, planning that the
measurement will be made in a
completely automatic way.

Plan to throw
one away

Iversen06,
Rifkin91

``The first measurement report only
included 20% of the projects and only
three out of six factors."

Attributes to measure, measurement data and its
results need to be recognised by management.
Measurement must describe part of the project in the
eyes of stakeholders. Otherwise measurements
become unacceptable.

To see measurements as just
gathering data without matching them
to a business goal. For instance, to
use function points count without
normalising them when needed.

Match
measurement

with your
organisation's

goal

Iversen06

``...after counting function points in
several application systems, it was
very difficult to see any relationship
between the perceived complexity of
the systems, and the number that the
counting procedures had arrived at."

The measurements you choose should be
complementary. Each measurement should contribute
to improve the picture of the system obtained from the
measurement program.

For instance, to count code performed
during the original development twice.

Iversen06
Dekkers99

``Enhancement projects that continued
work on an existing system were
accredited the entire function point
count of each module they modified,
even if the modifications were
miniscule. This gave very few hours
per function point, or in other words,
unrealistically high productivity."

Have a
complementa-

ry suite of
measure-

ments

People need to see that metrics they collected are
used and that bring some advantage. Publishing
realistic objectives is a way to secure gathering data of
quality for the SPI program, and to improve the metrics
program with employee's feedback.

To be vague in the objectives and to
relate the metrics results to
performance evaluations. The
objective of using metrics is to improve
the way we do things rather than to
find who is to blame. Not informing the
results of the metrics program might
form undesirable rumours.

Publish
Objectives

and collected
data widely

Not only communicate the metrics, but incentivise
stakeholders to discuss the metrics program and its
results. Use their feedback to improve the
measurement program

To not hear what employees have to
say about the metrics program and its
implementation. This might cause the
loss of valuable improvements for the
program (such as improving the input
fields of the system used to report
data).

Facilitate
debate

Iversen00
Iversen06

Iversen00

(About why developers did not enter
data) `` this information was not
previously used for anything"

``Data discipline was improved in the
next report ."

``Another problem was that
questionnaires [..] covered questions
relating to contractual
agreements and to the entire course
of the project, whereas those who
answered the questionnaire were
users who were only involved in
acceptance tests."

Fig. 2: Information infrastructure: principles for the design of a system that provides managers
with information to control software processes (part 1).

12 4 Research findings: a metrics framework designed for outsourcing

ReferencePrinciples What not to do Quote / Example

Information infrastructure (part 2)
Co

m
m

un
ica

tio
n

m
an

ag
em

en
t

Empower the program with the feedback of the
employees that develop and collect measurement
data.

To enter in this vicious circle: ``the data
reported were of a poor quality, since those
who reported them did not see any advantage
in supplying accurate data in a timely manner.
At the same time, the poor data quality caused
management to be wary of making the results
public."

Iversen00

`` being able to recognise trends,
even from imprecise or non-
complete data sets, can be more
helpful than having no data at all."

Use the
measurement

feedback

Pr
es

en
ta

tio
n Feedback empowers the measurement program.

One of the mechanisms to facilitate feedback is to
use the information gathered, for instance by
emitting reports containing the results of the
measurement program.

To have forms to fill in the measurement data
that are difficult to understand. We don't have
examples of 'bad' layouts, but examples of
good ones can be found in Florac (1997)

Iversen00
Iversen06

(about why developers did not
enter data) ``the user interface for
the application used to enter the
data was highly confusing, giving
rise to many wrong entries."

Facilitate
feedback with
good layouts

Fig. 3: Information infrastructure: principles for the design of a system that provides managers
with information to control software processes (part 2).

Our framework reminds project managers of experiences reported in SPI literature that warn of
one danger with this approach: inaccurate results. Look at Figure 2, Match measurement with your
organisation’s goals in the category Information management. The Quote/Example column in our
framework points out an example where after using function points, managers could not see any
relation between the perceived complexity of the system and the obtained metric results. More-
over, by following the reference that our framework offers next to it (“Iversen06”), the reader can
learn about the reasons behind this misalignment between function points and goals. This chal-
lenge could be explained by a known problem with function points: maintenance projects being
credited the entire function point count of each module they modify (even for tiny modifications),
thus indicating unrealistically high productivity. In this way, using our framework, managers are
warned of the risk of automatizing function point counting.

4.3 Evaluation of the proposed framework

We have validated our framework via two interviews with a project manager from BIG with 10
years of experience in managing outsourcing projects and with a panel of experts. Both evaluated
the framework as useful to improve control. The project manager suggested that our framework
could help managers mitigate the risk of loss of control over their projects. The responses of
the experts indicated they found the framework very useful because (subsets of independent)
metrics from our framework could be used to support mitigating several risks such as introducing
requirements defects (thanks to better feedback and to driving the focus of attention to internal
dependencies), reducing commercial risk (e.g., loss of revenue due to misconfigured interfaces with
other systems), and by our metrics and principles helping managers to balance time, functionality
(including quality) and cost.

The opinion of the outsourcing manager Reflecting on the potential of the framework applied
to general situations, our expert could relate to this approach, finding it useful to improve control
in outsourced projects. In particular, the interviewee was very enthusiastic about the guidelines
and principles, recognising especially the principle Plan to throw one away and strongly agreeing
with the guideline that suggest to analyse cohesion and coupling (which we present in Section 5.3).

Is our framework suited to address the outsourcing measurement challenges? The expert agreed
that our framework would be useful in the current outsourcing context because it helps companies
to meet the current outsourcing challenges such as lack of time, need for semi-automatisation and
competitiveness. In the opinion of this expert, our framework

“is OK because metrics are important, but there is no time to report findings or search-
ing for the best metrics: it is all about finishing a project on time. We would need some

4.3 Evaluation of the proposed framework 13

kind of automated system, so that there are fewer things to do.” (outsourcing manager
at BIG)

Surprisingly, our interviewee was concerned about the framework’s potential to replace man-
agers. This was never the authors’ intention, who consider the thought of replacing people by
frameworks is totally unrealistic. The idea behind our framework is to empower managers by
giving them the right information.

The opinion of the panel of experts We consulted five outsourcing experts from the Dutch
outsourcing industry (two from an organisation in a client role, and three from organisations in a
vendor role). The experts indicated that they found our framework very useful:

“There are enough metrics and principles that are usable and that can add value in an
outsourcing relationship.” (expert from organisation in client role)

The experts expressed the idea of using our framework to pick some metrics to improve under-
standing of their project and agreed with the principle (stated in our framework) of starting small:

“To implement all would be ‘extreme’.” (same expert)

According to one of the vendor experts, the metrics can be used to mitigate commercial risks
by preventing defects due to misinterpretations (Lauesen and Vinter [50] call this ‘requirements
defects’) and are due to tacit requirements. This expert based his view on his experience from a
large migration project planned to last three to four years.

Furthermore, a specific positive point of the framework is that it drives the focus of attention
to inter-dependencies; which the experts can use to improve coordination. One of the experts,
who belongs to a large organisation that combines custom software together with commercial-off-
the-shelf suites, saw the advantage of using some of the metrics in our framework to improve the
efficiency of configurations with interfacing suites.

Another possibility of using our framework (mentioned by another expert) is to check whether
a vendor is capable of building the product that this vendor promises in a bid. This is because
the company of this expert uses productivity index and manpower built-up index together with
lines-of-code to check whether plans offered by a vendor are realistic. Although not mentioned by
the experts, we believe that the same strategy could be used by a vendor in a bid to convince the
customer that their bid is realistic.

According to the experts, our framework could help them in some specific tasks such as improv-
ing tracking progress of the project, improving provision of feedback to the development team and
improving management of software defects. Moreover, in general, the set of metrics and principles
can be used to balance time, cost and functionality.

Two experts raised the issue of trust in the customer-vendor relationship. Although recognising
the challenges involved in quantifying trust, they stressed the need for some mechanism to be able
to measure and control trust. At BIG, such mechanisms were already in place. Categorisation of
customer-vendor relationships according to their types and guidelines in internal documents help
managers improve trust in the customer-vendor relationship. This explains why trust is missing
in our framework; we agree with the experts that mechanisms to control trust need to be added if
not already covered by other mechanisms.

Generalizability Can our metrics be of use for companies other than the companies mentioned
in the referenced articles such as Motorola or AT&T? This is something we cannot prove, but the
results of the interviews are encouraging at the very least, given that the experts we consulted were
enthusiastic about their potential. Moreover, metrics are good or bad according to a company and
project-specific needs. However, we do believe our framework is potentially useful in other compa-
nies because it includes metrics that are recognised, as indicated by our experts, by highlighting
issues of outsourcing projects such as modularity and cooperation needs.

14 5 Implications for research and practice

5 Implications for research and practice

This paper contributes to the growing understanding of how to improve control in software devel-
opment projects. Our work extends the existing literature by bringing together relevant proposals
from the SPI literature to build a framework that is specifically suitable for vendors in an outsourc-
ing context. The outcome of our search for metrics (and practical experience with them) reported
in the literature is presented in two tables in our framework. These results indicate the following
implications for research and practice.

5.1 Enriching the literature with models that support feedback between the
operational and the strategic level

The metrics that we present in Figure 1 all deliver measurements data of the ongoing current
operations of an organisation: They are at what we call the data or operational level. Metrics
have been recognised as a way to connect this operational level to the strategic goals of that
organisation [51], which are on what we call the managerial or strategic level. For instance, we
could use code ownership metrics to support or reject a hypothesis that suggests downsizing by
applying a certain personnel cut.

As our first implication for SPI research, we stress the importance of enriching the current
literature with models that enable this feedback between the data (operational) level and the man-
agerial (strategic) level. Such models are needed in outsourced software development to support
collaboration to deal with dynamism and complexity. Already in 1994, Applegate [46] noted that
collaboration is an essential capability for organisations to face dynamism and complexity. Since
then, dynamism and complexity have become much more important, mostly because of globalisa-
tion and the emergence of the Internet.

Secondly, we believe that on the grounds of current demands for faster reaction in boundary-
spanning outsourcing, organisations improving software development need more than ever not only
a model that enables feedback between goals and metrics, but a model that supports some degree
of automatisation of providing this feedback. Semi-automatic models should enable shared under-
standing of links between organisational strategy and development effectiveness on a regular and
timely basis. We realise that while the literature recognises the cyclical dependency between use of
metrics in decision-making and organisational performance to influence success [31], the dynamics
of incorporating semi-automatic models that would enact an increase in that interdependence are
mainly unexplored.

Our results agree with these insights, since increased control without sacrificing flexibility can
be achieved by timely feedback between development performance and organisational strategy.
The set of metrics and principles in our tables all support this feedback. This sets the stage for
further research in the dynamics that result from providing such feedback.

5.2 Towards a focus on inter-organizational networks in SPI research

In the previous subsection, we have discussed the need to address (automated support for) feedback
between metrics and goals and to enrich the SPI literature with models that explain the dynamics
arising from providing such feedback. In this section, we discuss another direction for SPI research
that is indicated by our research: to study software process improvement through the lens of
inter-organisational systems. Other people have studied strategic alliances in outsourcing from
the business perspective [52]. We focus on software process improvement and propose to extend
that research area with an inter-organisational network approach. Our suggestion follows from our
reflection on how metrics are used in practice, which indicates that IT managers need to shift their
attention to more collaboration-oriented metrics.

To elaborate on this, we start with the observation that the job of project managers is shift-
ing towards more involvement with and increased knowledge of the business. Project managers,

5.3 Lessons for outsourcing managers 15

architects, and even developers need to understand the business that IT is supposed to support
in order to be successful. For instance, if the system is designed to support electronic customs
and e-commerce, then the architect needs to know about areas relevant for this business such as
imports, exports, transits, inspections, rates and tax rules. If the system is to support portable
sound-intensity measurement, then the architect needs to know about sound power per unit area,
threshold of hearing and intensity of decibels. This shift, in our opinion, is reflected by current
practice, where the existence of many tools that cover the need for accurate project estimations
and progress monitoring makes ‘mechanical’ work less needed. Our results indicate project man-
agers show now more and more interest in project solutions at a strategic level, such as business
alignment benchmark assessment.

In itself, this situation potentially applies to all types of software development. In the case
of outsourcing projects, i.e. software development projects performed in one organisation for a
customer belonging to another organisation, the required business knowledge for project managers
is not only knowledge about the business of their own organisation but also that of their cus-
tomers. In other words, in this case software development is performed crossing the boundaries of
the development team, in inter-organisational networks rather than in a single organisation. This
idea is in line with work in the area of new organisational models, which studied the mechanisms
organisations put in place to perform boundary-spanning collaboration [13, 36, 9]. We can see the
job shifts as having occurred through collaboration in the dynamic, complex and tool-empowered
environments of outsourcing as predicted by Appelgate’s organizational change framework [46]. As
stated in Section 5.1, according to Applegate, in a dynamic, complex and uncertain environment,
collaboration becomes a critical organisation design criteria. This is the case not only inside one
single organisation, but also between organisations in an inter-organisational network. Therefore,
this new current networking condition call for an explanatory theory of software process improve-
ment through the lens of inter-organisational systems. Such a theory would provide new models
that explain complex, dynamic inter-organisational software process improvement, e.g., by propos-
ing metrics and visualizations that help IT managers to determine which potential collaborations
seem most fruitful.

5.3 Lessons for outsourcing managers

The following guidelines for software development in an outsourcing context result from comparing
traditional industrial styles of development with cooperative development processes based on the
literature. We studied experiences reported in the literature from a practitioner’s perspective,
focussing on the sets of metrics and principles provided by our framework. Therefore, we view
these guidelines as new insights that need to be validated in further work.

Cohesion and coupling Our first guideline is to analyse coupling and cohesion to improve devel-
opment processes. By cohesion we mean the number of intra-organisational activities that generate
knowledge, such as the amount of time spent in introducing new members to project tasks. By
coupling we mean work that crosses the boundaries of a working group or organisation. For in-
stance, coupling increases when interactions between working groups increase. Considering the
significant amount of tasks related to coordination in distributed software development, we believe
that measuring coupling and cohesion has the potential to paint a picture of where resources go in
a project.

Distribution of work Our second guideline is to measure how work is distributed within the
project (for instance, employee participation). In offshored outsourcing projects there is most
likely little if any control on work distribution within part of the team, as distance creates a large
obstacle to exercise control in this way. Measuring the distribution of work enables managers to
improve control in the development process.

16 6 Discussion: Comparison with related methods

Mechanisms oriented to understand work distribution that, in particular, support a healthy
relationship with the customer of the outsourcing project could shed light on improving outsourced
software development. Keeping a healthy customer-vendor relationship during development is
essential under today’s highly competitive outsourcing market. In this market, with work in
conditions of high speed, recent research has shown that not only product quality is important:
low customer perception of delivery quality may rule out a supplier for the next project [37].

Coordination mechanisms Our third guideline is to consider improving traditional coordination
mechanisms such as plans, system-level design and defined processes. We have seen cases of success-
ful development projects where non-traditional mechanisms are used, such as social networking-like
notifications of commit information in the development of the Apache server.

Mechanisms that have been successfully used in open-source projects have the potential to help
managers save valuable resources. Mockus, Fielding and Herbsleb [47] examined the development
process of an open-source application by measuring elements of software development such as
developer participation, core team size, code ownership, productivity, defect density, and problem
resolution interval for the Apache web server open-source software development project. The study
shows that a large network of people (400 code contributors) cooperated to develop software and
that most of the code was made by a small group of developers (approximately 15 developers).
It was expected that these 15 developers arranged a partition of the code, to prevent making
conflicting changes. But measurements proved otherwise: parts of the system requiring changes
were worked upon by more than one developer, suggesting thus a healthy contribution coordination
mechanism based on mutual trust and respect. We hypothesise that part of project success is due
to the well-covered coordination information needs (such as in the Apache open-source project);
which was supported by the metrics they used.

6 Discussion: Comparison with related methods

The study presented in this paper is based on research papers that report real experiences with
metrics in organisations. A related study has been published in 1999 by Rico [21]. Our framework
is different from Rico’s in two ways. Firstly, while Rico’s aim was to be complete, our aim is to
provide a small set of metrics that (i) have proven to be useful in organisations and (ii) focus
on cooperative software development, specifically outsourced software development. Secondly, our
selection contains a number of metrics that have been identified after the year in which Rico’s
selection was published.

Like other methods for software measurement such as Goal-Question-Metric [51], Practical
Software and Systems Measurement (PSM) [53], ISO/IEC 15939, and like models to develop mea-
surement capabilities such as CMMI for Acquisition [54], our framework helps project managers
to link measurements to information needs. Of the various levels at which the process of software
development can be viewed, if the topmost level is where project managers think about the method-
ology, and the lowest level is where they think about the concrete measurement implementation,
then the methods listed above are at a higher level than the framework proposed in this paper.
Moreover, contrary to the methods mentioned above, our framework has been constructed with
the aim to help project managers to improve control in software development. Our framework is,
therefore, complementary to these methods as it supports the application of these approaches to the
problem of controlling outsourced software development projects. In other words, our framework
can be used to operationalize a method like CMMI for Acquisition, by providing selected expe-
rience in a nutshell, obtained from applying outsourcing needs to the state-of-the-art of software
measurement.

In this sense, our framework is comparable to MIS-PyME [55], a software measurement method-
ological framework for small and medium enterprises. MIS-PyME and our framework can both be
used to facilitate reuse, because they put tried-and-tested metrics in front of managers in a format
that is easy to digest. In particular, MIS-PyME helps users to derive guidelines to identify and

17

control key indicators based on previous projects of the organization. Our framework recognises
and supports reuse of learning and experience, and, contrary to MIS-PyME, helps project man-
agers even when there is no available data from previous projects in their organisation (because
our metrics are derived from referenced literature).

Moreover, our work extends existing methods by focussing on the inter-organisational-network
view. Many metrics and guidelines support this view (for instance, cohesion and coupling), which is
in line with the inter-organisational networking needs of outsourced software development projects.

7 Conclusion

Despite an abundance of research literature on metrics for software process improvement, it is
still difficult for managers to choose a set of measurements that enables them to control software
development, especially for software development in a cooperative setting such as outsourcing. In
this paper, we present a framework that provides a set of measurements and a set of principles
and guidelines for the design of an information infrastructure. The set of measurements has been
distilled from the research literature by selecting metrics that have been used in real projects in real
organisations (as reported in the literature), and that we believe are most suitable for cooperative
software development. The framework has been validated by a panel of experts, who confirmed
our findings. The main conclusion is that the set of measurements has the potential to improve
control in outsourcing projects, and that the principles and guidelines are potentially very useful
for managers to apply the measurements in real-world projects, particularly in an outsourcing
context.

In addition to providing a practical framework based on the current state-of-the-art in SPI
research, this paper also reflects on the role of software measurements in SPI in today’s context.
Increasingly, software development takes place in very dynamic environments, under high time
pressure, and often crossing the boundaries of organisations, as is the case in outsourced software
development. Our results suggest that metrics that support feedback between operational and
strategic levels help organisations to succeed in dealing with this new context of inter-organisational
development. We conclude that this reflection calls for new directions in SPI research, in which
theories are developed that (i) explain the dynamics of semi-automatized feedback between oper-
ational and strategic levels and (ii) study metrics for SPI through the lens of inter-organisational
networks.

Acknowledgment Thanks to the experts who participated in the validation of our results. We
would also like to thank the anonymous reviewers for their useful comments.

References

[1] Iversen, J., and Ngwenyama, O.: ‘Problems in measuring effectiveness in software process
improvement: A longitudinal study of organizational change at Danske Data’, Int. J. of Inf.
Mngt., 2006, 26, (1), pp. 30–43

[2] Carleton, A., Park, R., Goethert, W., Florac, W., Bailey, E., and Pfleeger, S.: ‘Soft-
ware measurement for DoD systems: Recommendations for initial core measures’. Tech.
Rep. CMU/SEI-92-TR-019, Software Engineering Institute, Carnegie Mellon University, Pitts-
burgh, 1992

[3] Paulish, D., and Carleton, A.: ‘Case studies of software process improvement measurement’,
IEEE Trans. Softw. Eng., 1994, 27, (9), pp. 50–57

[4] Florac, W. A., Park, R. E., and Carleton, A. D.: ‘Practical software measurement: Measur-
ing for process management and improvement’. Tech. Rep. CMU/SEI-97-HB-003, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, 1997

18 References

[5] Iversen, J., and Mathiassen, L.: ‘Cultivation and engineering of a software metrics program’,
Inf. Sys. J., 2003, 13, pp. 1365–2575

[6] Palacio, R., Vizcáıno, A., Morán, A., and González, V.: ‘Tool to facilitate appropriate
interaction in global software development’, IET Softw., 2011, 5, (2), pp. 157 –171

[7] Lacity, M. C., Khan, S. A., and Willcocks, L. P.: ‘A review of the IT outsourcing literature:
Insights for practice’, J. Strat. Inf. Sys., 2009, 18, (3), pp. 130 – 146

[8] Ponisio, L., and Vruggink, P.: ‘Effective monitoring and control of outsourced software devel-
opment projects’. In: Song, W. W., Xu, S., Wan, C., Zhong, Y., Wojtkowski, W., Wojtkowski,
G., and Linger, H. (eds.) Information Systems Development (Springer, 2011), pp. 135–147

[9] Ponisio, M. L., and Vruggink, P.: ‘Analysing boundary objects to develop results that sup-
port business goals’. In: 2008 International Conferences on Computational Intelligence for
Modelling, Control and Automation; Intelligent Agents, Web Technologies and Internet Com-
merce; and Innovation in Software Engineering (IEEE Computer Society, Los Alamitos, CA,
USA, 2008), pp. 516–521

[10] Heeks, R., Krishna, S., Nicholsen, B., and Sahay, S.: ‘Synching or sinking: global software
outsourcing relationships’, IEEE Softw., 2001, 18, (2), pp. 54–60

[11] Lacity, M. C., Willcocks, L. P., and Rottman, J. W.: ‘Global outsourcing of back office
services: lessons, trends, and enduring challenges’, Strat. Outsourcing: An Int. J., 2008, 1,
(1), pp. 13–34

[12] Boehm, B. W., and Sullivan, K. J.: ‘Software economics: A roadmap’. In: International
Conference on Software Engineering (ICSE) (2000)

[13] Star, S. L., and Griesemer, J. R.: ‘Institutional ecology, ’translations’ and boundary objects:
Amateurs and professionals in berkeley’s museum of vertebrate zoology, 1907-39’, Soc. Stud.
Sc., 1989, 19, (3), pp. 387–420

[14] Aaen, I., Arent, J., Mathiassen, L., and Ngwenyama, O.: ‘A conceptual MAP of software
process improvement’, Scandinavian J. Inf. Sys., 2001, 13, pp. 81–101

[15] Grady, R. B., and Caswell, D. L.: ‘Software metrics: Establishing a company-wide program’
(Prentice Hall, Englewood Cliffs, NY, 1986)

[16] Rifkin, S., and Cox, C.: ‘Mesurement in practice’. Tech. Rep. CMU/SEI-91-TR-016, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, 1991

[17] Grady, R. B.: ‘Successful software process improvement’ (Prentice Hall, Saddle River, NH,
1997)

[18] Rosenberg, L. H., Sheppard, S. B., and Butler, S. A.: ‘Software process assessment (SPA)’.
In: Third International Symposium on Space Mission Operations and Ground Data Systems,
Part 2, Greenbelt, MD, USA (1994), pp. 1001–1008

[19] Herbsleb, J., Carleton, A., Rozum, J., Siegel, J., and Zubrow, D.: ‘Benefits of CMM-based
software process improvement: Initial results’. Tech. Rep. CMU/SEI-94-TR-013, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, 1994

[20] Dekkers, C. A.: ‘The secrets of highly successful measurement programs’, Cutter IT J., 1999,
12, (4), pp. 29–35

[21] Rico, D. F.: ‘Using cost benefit analyses to develop a pluralistic methodology for selecting
from multiple prescriptive software process improvement (spi) strategies’ Master’s thesis, 1999

References 19

[22] Hansen, B., Rose, J., and Tjrnehj, G.: ‘Prescription, description, reflection: the shape of the
software process improvement field’, Int. J. of Inf. Mngt., 2004, 24, (6), pp. 457–472

[23] Fuggetta, A., and Picco, G. P.: ‘An annotated bibliography on software process improvent’,
ACM SIGSOFT Softw. Eng. Notes, 1994, 19, pp. 66–68

[24] Conradi, R., and Fuggetta, A.: ‘Improving software process improvement’, IEEE Softw., 2002,
19, (4), pp. 92–99

[25] Austin, R., and Paulish, D.: ‘A survey of commonly applied methods for software process
improvement’. Tech. Rep. CMU/SEI-93-TR-027, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, 1993

[26] Herbsleb, J., Zubrow, D., Siegel, J., and Rozum, J.: ‘Software process improvement: State of
the payoff’, Am. Progr., 1994, 7, pp. 2–12

[27] Daskalantonakis, M.: ‘A practical view of software measurement and implementation experi-
ences within motorola’, IEEE Trans. Softw. Eng., 1992, 18, pp. 998–1010

[28] Barnard, J., and Price, A.: ‘Managing code inspection information’, IEEE Softw., 1994, 11,
(2), pp. 59–69

[29] Goldenson, D. R., and Herbsleb, J. D.: ‘After the appraisal: a systematic survey of process
improvement, its benefits, and factors that influence success’. Tech. Rep. CMU/SEI-95-TR-
009, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, 1995

[30] Hall, T., and Norman: ‘Implementing effective software metrics programs’, IEEE Softw.,
1997, 14, (2), pp. 55–65

[31] Gopal, A., Krishnan, M., Mukhopadhyay, T., and Goldenson, D. R.: ‘Measurement programs
in software development: Determinants of success’, IEEE Trans. Softw. Eng., 2002, 28, pp.
863–875

[32] Iversen, J. H., and Kautz, K.: ‘The challenge of metrics implementation’. In: Svensson, L.,
Snis, U., Srensen, C., Fgerlind, H., Lindroth, T., Magnusson, M., and stlund, C. (eds.) Proc.
IRIS 23. Laboratorium for Interaction Technology (2000)

[33] Kautz, K.: ‘Making sense of measurement for small organizations’, IEEE Softw., 1999, 16,
(2), pp. 14–20

[34] Mirani, R.: ‘Procedural coordination and offshored software tasks: Lessons from two case
studies’, Inf. & Mngt., 2007, 44, (2), pp. 216–230

[35] Oshri, I., Kotlarsky, J., and Willcocks, L. P.: ‘Global software development: Exploring
socialization and face-to-face meetings in distributed strategic projects’, J. Strat. Inf. Sys.,
2007, 16, (1), pp. 25–49

[36] Kellogg, K. C., Orlikowski, W. J., and Yates, J.: ‘Life in the Trading Zone: Structuring
Coordination Across Boundaries in Postbureaucratic Organizations’, Org. Science, 2006, 17,
(1), pp. 22–44

[37] van Ekris, J.: ‘Customer perception of delivery quality: a necessary area for attention for
project managers’. In: Pahl, C. (ed.) Proceedings of IASTED International Conference on
Software Engineering as part of the 26th IASTED International Multi-Conference on Applied
Informatics, Innsbruck, Austria (ACTA Press, 2008), pp. 268–275

20 References

[38] Gopal, A., and Gosain, S.: ‘The role of organizational controls and boundary spanning in
software development outsourcing: Implications for project performance’, Inf. Sys. Res., 2010,
21, (4), pp. 960–982

[39] Misra, R. B.: ‘Global IT outsourcing: Metrics for success of all parties’, J. Inf. Tech. Cases
and Appl., 2004, 6, pp. 21–34

[40] Klein, H. K., and Myers, M. D.: ‘A set of principles for conducting and evaluating interpretive
field studies in information systems’, MIS Q., 1999, 23, (1), pp. 67–93

[41] Walsham, G.: ‘The emergence of interpretivism in IS research’, Inf. Sys. Res., 1995, 6, (4),
pp. 376–394

[42] Walsham, G.: ‘Doing interpretive research’, Eur. J. Inf. Sys., 2006, 15, (3), pp. 320–330

[43] Hevner, A., March, S., Park, J., and Ram, S.: ‘Design science in information systems research’,
MIS Q., 2004, Vol. 28, (1), pp. 75–105

[44] Kitchenham, B., and Charters, S.: ‘Guidelines for performing systematic literature reviews in
software engineering’. Tech. Rep. EBSE 2007-001, Keele University and Durham University
Joint Report, 2007

[45] Kitchenham, B., Pretorius, R., Budgen, D., Pearl Brereton, O., Turner, M., Niazi, M., and
Linkman, S.: ‘Systematic literature reviews in software engineering – a tertiary study’, Inf.
and Softw. Tech., 2010, 52, (8), pp. 792–805

[46] Applegate, L. M.: ‘Managing in an information age: Transforming the organization for the
1990s’. In: Proceedings of the IFIP WG8.2 Working Conference on Information Technology
and New Emergent Forms of Organizations: Transforming Organizations with Information
Technology (1994), pp. 15–94

[47] Mockus, A., Fielding, R. T., and Herbsleb, J.: ‘A case study of open source software devel-
opment: the Apache server’. In: Proc. 22nd Int. Conf. on Software Engineering (ICSE 2000),
Limerick, Ireland (ACM, New York, NY, USA, 2000), pp. 263–272

[48] McLoughlin, F., and Richardson, I.: ‘The Rosetta Stone Methodology – a benefits-driven
approach to SPI’. In: Systems, Software and Services Process Improvement, proceedings of
the 17th European Conference, EuroSPI 2010, Grenoble, France (2010), pp. 201–212

[49] Kan, S. H.: ‘Metrics and models in software quality engineering’ (Addison-Wesley, Boston,
MA, USA, 1995)

[50] Lauesen, S., and Vinter, O.: ‘Preventing requirement defects: An experiment in process
improvement’, Req. Eng., 2001, 6, (1), pp. 37–50

[51] Basili, V.: ‘Software modeling and measurement: The goal/question/metric paradigm’. Tech.
Rep. CS-TR-2956, UMIACS-TR-92-96, University of Maryland, 1992

[52] Lacity, M. C., and Willcocks, L. P.: ‘An empirical investigation of information technology
sourcing practices: Lessons from experience’, MIS Q., 1998, 22, (3), pp. 363–408

[53] McGarry, J., Card, D., Jones, C., Layman, B., Clark, E., Dean, J., and Hall, F.: ‘Practical
software measurement: Objective information for decision makers’ (Addison-Wesley, Boston,
MA, USA, 2002)

[54] CMMI Product Team: ‘CMMI for acquisition, version 1.2’, 2007

[55] Diaz-Ley, M., Garcia, F., and Piattini, M.: ‘Implementing a software measurement program
in small and medium enterprises: a suitable framework’, IET Softw., 2008, 2, (5), pp. 417–436

	Introduction
	How do project managers control outsourcing projects?
	SPI, metrics, and management of IT outsourcing
	SPI
	Metrics
	Management of IT outsourcing projects

	Research Method
	Research design
	Research questions
	Search process
	Study selection process
	Quality assessment
	Data extraction process

	Study limitations

	Research findings: a metrics framework designed for outsourcing
	Organisational effectiveness measurements
	Information infrastructure
	Evaluation of the proposed framework

	Implications for research and practice
	Enriching the literature with models that support feedback between the operational and the strategic level
	Towards a focus on inter-organizational networks in SPI research
	Lessons for outsourcing managers

	Discussion: Comparison with related methods
	Conclusion

