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a b s t r a c t

We give a comprehensive survey of published experimental, numerical and theoretical work on the drag
law correlations for fluidized beds and flow through porous media, together with an attempt of system-
atization. Ranges of validity as well as limitations of commonly used relations (i.e. the Ergun and Forch-
heimer relations for laminar and inertial flows) are studied for a wide range of porosities. The pressure
gradient is linear in superficial velocity, U for low Reynolds numbers, Re, referred to as Darcy’s law. Here,
we focus on the non-linear contribution of inertia to the transport of momentum at the pore scale, and
explain why there are different non-linear corrections on the market.

From our fully resolved finite element (FE) results, for both ordered and random fibre arrays, (i) the
weak inertia correction to the linear Darcy relation is third power in U, up to small Re � 1–5. When
attempting to fit our data with a particularly simple relation, (ii) a non-integer power law performs
astonishingly well up to the moderate Re � 30. However, for randomly distributed arrays, (iii) a quadratic
correction performs quite well as used in the Forchheimer (or Ergun) equation, from small to moderate
Re.

Finally, as main result, the macroscopic properties of random, fibrous porous media are related to their
microstructure (arrangement) and porosity. All results (Re < 30) up to astonishingly large porosity,
e � 0.9, scale with Reg, i.e., the gap Reynolds number that is based on the average second nearest neigh-
bour (surface to surface) distances. This universal result is given as analytical closure relation, which can
readily be incorporated into existing (non)commercial multi-phase flow codes. In the transition regime,
the universal curve actually can be fitted with a non-integer power law (better than �1% deviation), but
also allows to define a critical Regc � 1, below which the third power correction holds and above which a
correction with second power fits the data considerably better.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

The transport phenomena in porous media have been the focus
and interest of numerous studies for the past decades. This interest
stems from a wide range of applications in such industries as
chemical, mechanical, geological, environmental and petroleum
[1–5]. The flow conditions encountered are broad enough to cover
a wide range of Reynolds numbers (Re) and porosities. In practice,
ll rights reserved.
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three distinct flow regimes are commonly defined in literature in
terms of Reynolds number: (i) stationary Darcy or creeping flow,
(ii) steady, laminar inertial flow and (iii) unsteady chaotic/turbu-
lent flow regimes. As an example, creeping flows (i.e., Re� 1)
may be encountered in ground water flows, composites manufac-
turing and filtering, whereas inertial flows are found in applica-
tions such as heat exchangers or packed bed chemical reactors.
Highly turbulent flow is expected, e.g., in gas-fluidized beds. The
flow regimes studied in this paper are limited to regimes (i) and
(ii). Several macroscopic parameters are often needed to complete
coarse grained models that are employed to describe such applica-
tions. This has motivated the research in the development of
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relationships to describe macroscopic parameters, such as perme-
ability and inertial coefficients, for different kinds of porous media
at various porosities and flow regimes.

Most porous media are particulate, but some are composed of
long particles/fibres and, therefore, may be considered as fibrous
media. They are encountered in a variety of modern technology
applications, predominantly in the manufacturing of fibre-rein-
forced composites, with extensive use in the aerospace and auto-
mobile industries.

With the recent progress in computational and numerical tools,
one can now perform detailed calculations of heavily loaded, fluid–
particle flows, based on two-fluid models (TFM) and/or the discrete
particle method (DPM) [3,4]. However, these methods require the
knowledge of several constitutive laws (i.e. the interphase momen-
tum-transfer coefficient of the gas/fluid phase acting on the
particles/solid). Accurate drag laws are a basic requirement in sim-
ulations based on DPM or TFM to be successfully used in the design
and optimization of industrial processes. Such correlations have a
strong dependence on the pore structure and pore-level physics,
which generally requires them to be estimated experimentally or
through the use of existing empirical relations.

At the macroscopic level and the limit of creeping flow regimes,
the pressure gradient rp, and the flow rate have a linear relation,
known as Darcy’s law:

�rp ¼ l
K

U; ð1Þ

where l and U are viscosity and superficial velocity, respectively.
The proportionality constant K, is called the permeability of the
medium, which strongly depends on porosity and microstructure
(e.g., fibre/particle shape and arrangement, void connectivity and
inhomogeneity of the medium). The effect of several microstruc-
tural parameters on macroscopic permeability was investigated
for ordered and disordered fibrous media, see Refs. [5–7] and refer-
ences therein.

Darcy’s law was originally obtained from experiments [8] and
later formalized using upscaling [9], homogenization [10,11] and
volume averaging [12,13] techniques. It has been shown that
Darcy’s law actually represents the momentum equation for Stokes
flow averaged over a representative volume element (RVE), imply-
ing that it is valid only in the creeping flow regime [14].

The effect of fluid inertia, on the other hand, is a more complex
problem, lending itself to numerical rather than analytical treat-
ment. Active research has been dedicated to derive adequate cor-
rections to the linear relationship in Eq. (1) from numerical,
theoretical, and experimental points of view. Koch and Ladd [15]
and Hill et al. [16] simulated moderate Reynolds number flows
through periodic and random arrays of aligned cylinders and
spheres using the Lattice Boltzmann Method (LBM). They showed
that the inertial term made a transition from linear to quadratic
in random arrays. The inertial effect became smaller at the volume
fraction approaching close packing due to increased drag forces
through the narrowing channels. The experimentation that proved
this nonlinear relation was carried out by Forchheimer [17], who
indicated that there exists a quadratic term of the flow rate when
the Reynolds number is sufficiently high. While the LBM has been
successfully applied for the simulation of porous media flow in the
creeping regime [18–20], its applicability for high Reynolds num-
bers has been the subject of more speculation and debate due to
selection of parameters, resolution and the necessity to reduce
compressibility effects [21,22]. Andrade et al. [23] demonstrated
that, for a 2D disordered porous structure at high porosity, the
incipient departure from the Darcy law could be observed already
in the steady, laminar inertial flow before arriving at turbulent/
chaotic regime.
To date, mainly empirical relations, such as by Ergun [24], and
their components, the Carman–Kozeny (viscous term) and
Burke–Plummer (inertial term) equations, have proved to be quite
useful [25,26]. Liu et al. [27] devised a semi-empirical formula for
the pressure drop, which incorporates the tortuosity, the curvature
ratio and the variation of the pore cross-sectional area. Jackson and
James [28] conducted a comprehensive review of the literature on
a variety of theoretical models and presented a large collection of
experimental data for both natural and synthetic fibrous media.
A recent discrete particle study by Bokkers et al. [29] showed that,
with respect to bubble formation in fluidized beds, the drag rela-
tions derived from the lattice-Boltzmann simulations of Hill et al.
[16] yielded better agreement with the experimental observations
than the traditional Ergun and Wen and Yu [30] correlations. While
the latter relation remains the most widely used in chemical engi-
neering, an accurate description for the interphase momentum
transfer has been a subject of debate. This has motivated the
research in the development of more accurate relationships to de-
scribe the macroscopic momentum transfer in terms of micro-
scopic pore-scale parameters.

Most of the previously obtained drag laws are only valid for 3D,
spherical packed beds. Although the drag relation for 2D fibrous
materials and 3D packed beds are quite different (for instance in
2D the drag diverges in the limit of close packing), our attempt is
to check the validity of those relations for 2D systems. We estab-
lish the relationship between microscopic and macroscopic prop-
erties of fibrous media by conducting a systematic study using
numerical simulations based on the finite element method
(FEM). In order to get a better understanding of the state-of-the-
art on non-Darcy flow, literature concerning the theoretical basis
of the Forchheimer equation and experimental work on the identi-
fication of flow regimes is reviewed in Section 2. After presenting
the numerical method used to compute the permeability and iner-
tial coefficients, results are discussed in Section 3. The steady state
fluid flow across uni-directional arrays of cylinders are considered,
for both ordered and disordered configurations. Computations
were carried out with special attention to high accuracy (resolu-
tion) in order to investigate the existence of the different regimes
and the corresponding scaling laws. The effects of several struc-
tural parameters, namely porosity, disorder and fibre-shape on
the flow behaviour at various regimes are discussed in detail. The
paper is concluded in Section 4 with a summary and outlook for fu-
ture work.
2. Theoretical background

Flows in porous media can be studied at either microscopic or
macroscopic scales. For the former scale the flow through individ-
ual pores is computed by solving the mass and momentum equa-
tions (i.e., the Navier–Stokes (NS) equation) numerically, whereas
for the latter a continuum description is usually adopted based
on volume averaging of the equations pertaining to microscopic
scales. The linking of these two descriptions constitutes the well
known scaling-up problem, which usually provides macroscopic
properties in terms of the permeability, i.e., the ability of a porous
material to transmit fluids. Although the permeability can, in prin-
ciple, provide quantitative correlations between morphological
features of pore geometry and its capacity to transmit liquid, its
values depend on many factors such as porosity, typical length
scale of pores, grain size distribution, shape, anisotropy and tortu-
osity of pore connections, see Refs. [5–7] and references therein.
Therefore, the permeability determined either analytically or
empirically for porous media with complex structures involves
considerable uncertainty – one cannot determine microscopic
properties only from the macroscopic permeability.
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As mentioned before, Darcy’s law is the most widely used
empirical correlation for the calculation of the pressure drop across
a homogeneous, isotropic, unbounded and non-deformable porous
medium. It is strictly valid for incompressible and isothermal
Stokes flow (Re = 0) of Newtonian fluids. However, it is usually
applicable in engineering applications for Re < 1, defined by Re = -
qUl/l where l and q are the typical pore size of the structure and
density of the fluid, respectively. Darcy’s law, since it lacks, among
other reasons, the flow inhomogeneity/variability,1 is not valid at
the interface of a porous medium-solid or porous medium-free flow.
Brinkman [31] added a diffusion-type term to the Darcy’s law, lead-
ing to

�rp ¼ l
K

U � lr2U: ð2Þ

Brinkman’s equation is, like Darcy’s law, inertia-free and hence va-
lid only for creeping flows. Recently, Auriault [32] discussed the
validity and limitations of Brinkman’s equation for ‘‘classical’’ por-
ous media, swarms of low concentration particles and fibrous med-
ia at high porosities.

In the continuum approach one describes mass and momentum
balance equations at macroscopic scale, using a specific averaging
procedure. Therefore, the major difficulty resides in an adequate
determination of the averaging domain. Following a continuum ap-
proach, Hassanizadeh and Gray [33] developed a set of equations
to describe the macroscopic behaviour of fluid flow through porous
media. Linearization of these equations yields a Darcy equation at
low velocities.

Although the physical nature of the deviation from Darcy’s law
is still unclear and may have several reasons (probably acting to-
gether), empirical relationships allow correlating the pressure drop
and average fluid velocity in porous media. To account for the non-
linear behaviour of the flow in porous media, Forchheimer [17]
added a quadratic velocity term to represent the microscopic iner-
tial effect, and corrected the Darcy equation into the Forchheimer
equation

�rp ¼ l
K

U þ bqU2; ð3Þ

where the constant, b is referred to as the non-Darcy coefficient
which, like permeability, is an empirical value that depends on
the micro-parameters of porous media. Similar to Darcy’s law,
Forchheimer’s law was originally postulated heuristically to ac-
count for the experimental data. However, during the past decades
there has been an effort to derive it from first principles. Some of
the techniques used are matched asymptotic expansions [34], the
capillary model [35], hybrid mixture theory [36] and volume aver-
aging [12,37,38]. The physical justification of the quadratic nature
of the correction was supported either by intuition or by dimen-
sional analysis and the analogous turbulent kinetic energy loss in
straight tubes [39]. Moutsopoulos et al. [40] investigated phenom-
enological relations for the Forchheimer equation experimentally
and theoretically for both homogeneous and heterogeneous media.
Based on homogenization approach, Chen et al. [41] claim that the
nonlinear filtration law is quadratic. By generalizing the Forchhei-
mer equation, Ergun obtained the following empirical relation for
homogenous, packed beds of randomly distributed spheres:

�rp ¼ A
ð1� eÞ2

e3

lU

d2 þ B
ð1� eÞ

e3

qU2

d
; ð4Þ

where d is the average diameter of the particles in the domain and e
is the porosity.2 After analysis of a large quantity of experimental
1 It cannot account for the no-slip boundary condition at the solid boundary of the
porous medium.

2 Comparing Eqs. (3) and (4), one can relate the parameters A, B, and e to K and b.
data, Ergun concluded that their best representation could be ob-
tained with A = 150 and B = 1.75. However, in subsequent studies
these values have been found to vary considerably with shape,
porosity and Re number [42,43]. In particular, after testing the Ergun
equation using many more data than ever before, MacDonald et al.
[42] found that A = 180, and B = 1.8 (smooth particles) or 4.0 (rough
particles) give the best fits to all of the involved data. Besides the Er-
gun equation, there are correlations using the non-dimensional par-
ticle friction factor, fp, through the following definition

fp ¼
�rpd

qU2 : ð5Þ

By combining Eqs. (5) and (3), the Forchheimer equation can be
written as:

fp ¼
1

ReK 0
þ b0; ð6Þ

where Re = qUd/l, K0 = K/d2 and b0 = bd are the Reynolds number
(based on diameter d), the normalized permeability and the modi-
fied non-Darcy coefficient, respectively. The latter two, K0 and b0,
can be considered as the non-dimensional, macroscopic viscous
and inertial coefficients with the beauty of an expected constant
friction factor in the inertial regime. Looking at the literature, we
found several definitions and relations between friction factor and
Re (or sometimes pressure gradient and U) which makes it difficult
to establish a one-to-one comparison. Table 1 summarizes these
definitions and their relations.

In Table 2, the available modifications of Ergun’s equation and
their range of validity are listed as function of the particle Re num-
ber, Rep = Re/(1 � e). Therefore, most equations have the typical
porosity term, (1 � e)/e3, for low Re, with various different con-
stants and strongly varying further terms [42,60,62–64,67–69]
representing the effect of wall, shape, etc. A few of the equations
have non-linear corrections also in the first term [54,59,66], and
the last class are sums of several powers of Re used to fit into avail-
able experimental/numerical data [52,53,61]. A more complete list
of correlations for the viscous term, i.e. at low Re numbers, of 2D
fibrous materials can be found in Ref. [5]. Recently, Barree and Con-
way [44] conducted experiments suggesting that Forchheimer’s
equation is only valid over a limited range of velocities. Derivations
using volume averaging was undertaken by Ruth and Ma [12], and
Whitaker [38]. However, Ruth and Ma [12] explain that micro-
scopic inertial effects are neglected in volume-averaging tech-
niques and therefore cannot be used to derive a macroscopic law.
They point out that the Forchheimer equation is not unique, and
any number of polynomials could be used to describe nonlinear
behaviour due to inertia in non-laminar flow. This is confirmed
in Bourgeat et al. [45], where the nonlinear filtration law is ob-
tained as an infinite series in integer powers of the local Reynolds
number. More recently, Balhoff et al. [46] used the method of
homogenization to develop a general polynomial filtration law
for low Reynolds numbers. In Marušic–Paloka and Mikelic [47],
the existence, uniqueness and regularity of general non-local filtra-
tion law was rigorously established in the homogenization limit
when the pore size tends to zero.

One of the important observations from Wodié and Levy [48],
Mei and Auriault [11], and Rasoloarijaona and Auriault [49] was
that for an isotropic porous medium, the quadratic terms cancel
and one has a cubic filtration law given by

�rp ¼ l
K

U þ c�q2

l
U3 ) fp ¼

1
ReK 0

þ c�Re; ð7Þ

where c� is a porosity dependent dimensionless parameter. This
observation is confirmed analytically and numerically in [50] and
for periodic two-dimensional arrays of cylinders arranged in a



Table 1
Various definitions and relations between friction factors and Re (or pressure gradient and superficial velocity, U).

Friction factor – Re (or pressure gradient – U) relation Comment

�rp � U Linear Darcy’s law for creeping flow, Eq. (1)
�rp � U �r2U Brinkman’s equation for creeping flow at high porosities, Eq. (2)
�rp � U + U2 Forchheimer (Ergun) equation, quadratic correction to Darcy’s law, Eq. (3)
�rp � U + U3 Cubic correction to Darcy’s law at small Re, Eq. (7)
fp � �rp/U2 � Re�1 + b0 Particle friction factor as function of Re. b0 is the inertial, porosity dependent parameter, see Table 2

f 0 � fpRe � �rp=U � a0 þ Rek Non-integer, k, power law fit, used in this paper, Eq. (8). a0 is the viscous, porosity dependent term

f � � f 0 � a0 � Rek
g

Isolated inertial term used for scaling the data in Appendix D, Reg is ‘‘gap’’ Re number

Table 2
Available modifications of the Ergun equation in terms of the particle friction factor, fp and the particle Reynolds number Rep ¼ Re=ð1� eÞ ¼ qUd

ð1�eÞl. Unless explicitly stated, the
relations are valid for 3D, disordered systems.

Author fp Range of validity

Ergun [24] 1�e
e3

� �
150
Rep
þ 1:75

� �
e < 0.8

MacDonald
et al. [42]

1�e
e3

� �
180
Rep
þ B0

� �
B0 = 1.8, smooth particles; B0 = 4, rough particles

Rose [52] 1000Re�1
p þ 60Re�0:5

p þ 12 Mean value of Rep ffi 140

Rose and Rizk
[53]

1000Re�1
p þ 125Re�0:5

p þ 14 1000 < Rep < 6000

Hicks [54] 6:8 ð1�eÞ1:2
e3 Re�0:2

p
500 < Rep < 60000

Tallmadge [55] 150
Rep

ð1�eÞ2
e3 þ 4:2ð1�eÞ1:166

e3 Re�1=6
p

0.1 < Rep < 105

Lee and Ogawa
[56]

1
2

12:5
e3 ð1� eÞ2

� �
ð29:32Re�1

p þ 1:56Re�n
p þ 0:1Þ n ¼ 0:352þ 0:1eþ 0:275e2 1 < Rep < 105

Kürten et al.
[57]

25
4e3 ð1� eÞ2
� �

ð21Re�1
p þ 6Re�0:5

p þ 0:28Þ 0.1 < Rep < 4000

Montillet et al.
[58]

að1000Re�1
p þ 60Re�0:5

p þ 12Þ a ¼ 0:061 1�e
e3

� �
D
d

� �0:2 10 < Rep < 2500, D: bed diameter

Özdinç et al.
[59]

69:785 d
L

� �
ðRep

d
L

� �
e7Þ�0:4733 675 < Rep < 7772

Ozahi et al. [60] 1�e
e3

� �
D
d

� �
ð3� 10�5Rep � 66:487Re�1

p þ 0:1539Þ 800 < Rep < 8000, D: bed diameter

Gibilaro et al.
[61]

ð17:3Re�1
p þ 0:336ð1� eÞÞe�4:8 In fluidized suspensions

Benyahia et al.
[62]

180ð1�eÞ
Repe3 þ 9F3ð1� eÞ F3 ¼ 0:0673þ 0:212ð1� eÞ þ 0:0232e�5 e < 0.6, Rep >

2F3
F1ð1�eÞ, F1 = 0.11 + 0.00051e11.6(1�e)

Molerus [63] 1�e
e2

� �
18

1�eþ 49:5
e

� �
Re�1

p þ 0:69
e2

� �
e < 0.7

Kovács [64] 1�e
e3

� �
144
Rep
þ 2:4

� �
10 < Rep(1 � e) < 100

Kadlec and
Knight [65]

1�e
e3

� �
255

e0:7ð1�eÞRep
þ 2

� �
In fluidized suspensions

Foscolo et al.
[66]

1�e
e4:8

� �
17:3

Repð1�eÞ þ 0:336
� �

Laminar and turbulent regimes, e > 0.4

Mehta and
Hawley [67]

1�e
e3

� �
M 150

Rep
M þ 1:75

� �
M ¼ 1þ 2d

3Dð1�eÞ, D: bed diameter

Du Plessis [68] 1�e
e3

� �
A

Rep
þ e2=ð1� ð1� eÞ2=3Þ2

� �
; A ¼ 41e2

ð1�eÞ2=3 ð1�ð1�eÞ1=3Þð1�ð1�eÞ2=3Þ
Packed bed of spherical particles

Reichelt [69] 1�e
e3

� �
K1A2

w
Rep
þ Bw

� �
;Aw ¼ 1þ 2

3ðD=dÞð1�eÞ ;Bw ¼ 1
ðk1ðd=DÞ2þk2Þ2

Spheres: K1 = 154, k1 = 1.5, k2 = 0.88; cylinders:
K1 = 190, k1 = 2, k2 = 0.77; D: bed diameter

Martin et al.
[70]

be�n Rep

ffiffiffi
K
p

d ð1� eÞ
� �m

dffiffiffi
K
p Square and triangular fibre arrays, with 0.8 < e < 0.99 and 3 < Rep < 160.

The n, m and b are fitting parameters
Papathanassiou

et al. [26]
d2

Rep Kð1�eÞ þ 0:08 ð1�eÞd
e
ffiffiffi
K
p Square and hexagonal fibre arrays, with 0.3 < e < 0.6 and 0 < Rep < 400

Tamayol et al.
[71]

d2

Rep Kð1�eÞ þ
ðaþbeÞ�1=c dffiffiffi

K
p 1D, 2D and 3D ordered fibrous media in the range of 0.35 < e < 0.95 and

0.01 < Rep < 4000. The a, b and c are fitting parameters
Koch et al. [15] (a) k1

Rep
þ k2Rep (a) For both periodic and random fibre arrays at Re < 1; k1 and k2 are

porosity dependent parameters
(b) c1

Rep
þ c2 (b) For random arrays at Re > 5 (similar to Ergun relation); c1 and c2 are

porosity dependent parameters
Tanino and

Nepf [72]

a0
Rep
þ a1 Randomly distributed, rigid, emergent circular cylinders in the range of

0.65 < e < 0.9 and 70 < Rep < 6850 (similar to Ergun relation). The a0 and
a1 are porosity dependent fitting parameters
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regular pattern in [51]. In most cases, the cubic law is only valid at
very low velocities (Re < 1, where Darcy’s law is approximately va-
lid anyway), and the quadratic Forchheimer equation appears appli-
cable at higher, moderate velocities (1 < Re < 10). Nonetheless,
these findings are significant because they suggest that any power
law with integer power, like in the Forchheimer equation, may
not be universal and only valid in a limited range of velocities
and porosities.

Despite extensive previous work, our understanding of the
physical reasons for non-Darcy flow is incomplete. To better
understand the microscopic origin of these correlations, we con-
duct a set of FE simulations on both ordered and disordered arrays



Flow direction 

(a) (b) 

Fig. 1. The geometry of the unit cells used for (a) square and (b) hexagonal configurations.

3 For interpretation of colour in Figs. 1–10, A1, A2, B1, C1 and D1, the reader is
referred to the web version of this article.
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of cylinders in a wide range of Reynolds numbers in the next
section.

3. Numerical results

This section is dedicated to the finite element (FE) based model
simulations of both ordered and disordered fibre arrays at various
porosities and flow regimes. Alternative to the FE method like the
Lattice Boltzmann Method (LBM) can also deal with complex pore
geometries and boundary conditions in the inertial regime, but are
discussed and compared elsewhere [22]. The results on the friction
factor (both the viscous and inertial components) as function of
porosity, structure, shape, etc., are presented and discussed.

3.1. Ordered structure

We start the analysis with the case of a 2D regular periodic ar-
ray of cylinders, perpendicular to the flow direction, as shown in
Fig. 1. These models rely on the assumption that the porous media
is periodic and thus can be divided into unit cells that are then also
representative volume elements (RVE). The friction factor is then
determined by modeling the flow through these, more or less, ide-
alized cells.

3.1.1. Computational method and boundary conditions
The FE software ANSYS� is used to calculate the superficial

velocity, U, from the results of our computer simulations as
U ¼ 1

A

R
Af

udA, where A, Af and u are the total area of the unit cell,
area of the fluid and intrinsic fluid velocity, respectively. On the
flow domain, the steady state NS equations combined with the
continuity equations were discretised into an unstructured, trian-
gular element. They were then solved using segregated, sequential
solution algorithm. The developed matrices from assembly of lin-
ear triangular elements are then solved based on a Gaussian elim-
ination algorithm. Some more technical details are given in Refs.
[5–7]. The mesh size effect is examined by comparing the simula-
tion results for different resolutions (data not shown here). At the
left and right pressure- and at the top and bottom periodic-bound-
ary conditions are applied. No-slip boundary conditions, i.e., zero
velocity are applied on the surface of the particles/fibres. Computa-
tions were performed for Reynolds numbers 10�5 < Re < 30 and
porosity 0.3 < e < 0.9, assuming that the stationary solution is still
physically valid in the upper range of this Reynolds numbers.

3.1.2. Generalized Forchheimer equation
The validity of the Forchheimer equation for ordered structures

(namely square and hexagonal configuration) is studied in this sec-
tion. A generalized non-dimensional form of the Forchheimer Eq.
(3) can be derived by postulating a power law and multiplying
the friction factor by Re, so that:

�f 0 ¼ 1
K 0
þ c

U
U�

� �k

� 1
K 0
þ cRek; ð8Þ

where f0 = d2rp/(lU) � fpRe and U� = l/(qd) are, by definition, mod-
ified friction factor and scaled velocity, respectively. The normalized
permeability K0 = K/d2 and non-dimensional inertial coefficients k
and c, in general, depend on the porosity and structure of the med-
ium. The power k represents the deviation from Darcy’s regime
(f0 = const.), so that the non-linear correction can be isolated by
studying �f0 � 1/K0 (as done in the Appendix C). In case of k ¼ 1,
Eq. (8) reduces to the Ergun equation (Eqs. (4) or (6)) with K0 = e3/
(150(1 � e)2) and c = 1.75(1 � e)/e3. Similarly, for k ¼ 2, Eq. (8) re-
duces to Eq. (7) with c = c�. More discussion on the dependence of
normalized permeability, K0 on porosity and pore-structure for
(dis)ordered fibrous medium is given in [5,6] and references there-
in. In the following, we rather focus on the influence of micro-struc-
tural parameters on the inertial coefficients k and c, while 1/K’ is the
low-Re permeability that only depends on porosity.

Fig. 2a shows the variation of the modified friction factor as
function of normalized velocity, U/U� � Re, for square (red3) and
hexagonal (blue) configurations for three different porosities. The re-
sults are compared against lubrication theory of Gebart [81], FE re-
sults of Ghaddar [82] and numerical results of Sangani and Acrivos
[80] at creeping flow regime. The solid lines represent the best least
square fit to the FE data using Eq. (8) with the power as free param-
eter, while the upper black dashed line (only one shown at e = 0.6)
represents a fit to the cubic deviation (k = 2) from the Darcy regime,
which is pretty perfect (99.99% agreement) for Re < 3, but strongly
overestimates the results for larger Re. As mere examples, the hexag-
onal structures at e = 0.6, 0.7, 0.8 correspond to 1/K0 = 91.5584,
35.3612, 12.3190, and c2 = 0.06993, 0.05330, 0.04297, respectively.
Note that for all fits, first the constant, low Re regime is fitted and
then the nonlinear correction. Since the cubic correction-term
(k = 2) – even though perfectly fine for small Re (see Appendix C) –
is not a good prediction for larger Re, we will discuss fits with
non-integer k values since they are good approximations up to
Re < 30.

As expected, by increasing the porosity, the normalized perme-
ability, K0, increases, i.e. for higher pressure gradients the flow re-
gime changes from Darcy (horizontal line) into inertial
(nonlinear) regime. For square configurations the transition starts
at lower velocities (i.e. Re ffi 10) compared to the hexagonal config-
uration. Note that in Darcy’s regime, the flow is symmetric about
both horizontal and vertical axis (not shown here). However, in
the inertial regime, due to the non-linear contribution of inertia
to the transport of momentum, the symmetry about vertical axes
(normal to the flow direction) will break (see Section 3.1.4 below,
Fig. 5) while the flow is still stationary.

Fig. 2b shows the variations of inertial coefficients (i.e. k and c)
in Eq. (8) as function of porosity for both square and hexagonal
configurations. We observe that the power k is (i) larger than unity
and varying between 1 < k < 2 and (ii) not only depends on poros-
ity but also on structure/arrangements of the particles/fibres. By
increasing porosity (i.e. for more dilute systems) the power de-
creases and approaches the value of unity (i.e. the original qua-
dratic Forchheimer correction, Eq. (3)). Square arrays have larger
values of k compared to hexagonal arrays implying that the transi-



10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

0

100

200

300

400

500

600

U/U*

f '

ε = 0.5
ε = 0.6

ε = 0.7
Ghaddar [82]
Gebart [81]
Sangani & Acrivos [80]

(a)

Square

Hexagonal

λ = 2

λ = 1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

ε

λ 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

ε

γ

Hexagonal
Square

(b)

Fig. 2. (a) Variation of the modified friction factor as function of the normalized
velocity (or Re) for square (red) and hexagonal (blue) configurations (solid lines
show the best least square fit to Eq. (8) and the black dashed lines show the best
quadratic ðk ¼ 1Þ and cubic ðk ¼ 2Þ fits in the range of 10�5 < Re < 30), symbols
show the analytical/numerical data from literature. (b) Inertial coefficients k and c
as in Eq. (8) plotted against porosity. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

10
-5

10
-40

20

40

60

80

100

120

140

f '

α 
α 

α 

α 

α 
α 

  (a) 

αFlow 
direction 

Fig. 3. (a) Staggered angle a and (b) modified friction factor as function of normalized vel
fit in Eq. (8) in the range of 10�5 < Re < 30.

40 K. Yazdchi, S. Luding / Chemical Engineering Journal 207–208 (2012) 35–48
tion to inertial regime starts earlier and sharper (see Fig. 2a). On
the contrary, the pre-factor c (in the inset) seems to be indepen-
dent of structure and linearly decreases by increasing porosity as
c ffi 0.8(1 � e). In Appendix A, the quality of the proposed power
law fit (Eq. (8)) is compared with the quadratic ðk ¼ 1Þ and cubic
ðk ¼ 2Þ fits at different porosity for both square and hexagonal
configurations.

3.1.3. Effect of staggered cell angle
In this subsection, the effect of the staggered cell angle, a on the

inertial term is discussed. The staggered angle is defined between
the diagonal of the unit-cell and flow-direction (horizontal), as
shown in Fig. 3a. In addition to the special cases a = 45� and
a = 60�, i.e., square and hexagonal packings, respectively, several
other angles are studied.

Fig. 3b shows the variation of the modified friction factor as
function of normalized velocity for different staggered angles, a
at the constant porosity e = 0.7. Similar to the normalized perme-
ability, the inertial coefficient c is weakly dependent on the stag-
gered angle in the range of 30� < a < 60�. However, k increases
(almost) linearly from k ffi 1 at a = 70� to k ffi 2 at a = 20�. For
a = 70� and higher (but lower than the maximum achievable
amax = tan�1(p/(2(1 � e))) ffi 80�), the flow mainly follows a straight
line with large superficial velocity and consequently large values of
permeability and the transition starts at higher scaled velocities
(Re). On the other hand, at a = 20� and lower (but larger than the
minimum allowable limit amin = tan�1(2(1 � e)/p) ffi 11�), the flow
is more tortuous and consequently it has lower permeability. At
this range, the transition into non-Darcy regimes starts already at
smaller superficial velocities.

3.1.4. Effect of particle shape
In order to study the effect of particle/fibre shapes on the mac-

roscopic permeability and inertial coefficients, the normalization is
done with respect to the obstacle length, Lp, which is defined as

Lp ¼ 4area=circumference;with :

Lp ¼ d ðfor circlesÞ; Lp ¼ c ðfor squaresÞ; and Lp

¼ 4pab=AL ðfor ellipsesÞ; ð9Þ

where d, c, a and b = a/2 are the diameter of the circle, the side-length
of the square, the major (horizontal) and minor (vertical) lengths of
the ellipse, respectively, and AL is the circumference of the ellipse.
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By applying the same procedure as in the previous section, the
normalized permeability and inertial coefficients are calculated for
different shapes on a square configuration.

Fig. 4 shows the modified friction factor as function of the nor-
malized velocity for different shapes. The circular shape has the
lowest and horizontal ellipses the highest normalized permeabil-
ity. The reason is that, at the same porosity, ellipses are more
stretched in the flow direction and therefore the fluid can flow
more easily on a straight line through the wider channels. How-
ever, at high porosities this effect diminishes (data not shown).
Note that, due to the narrower channels, the local maximal velocity
is higher for circular shapes, given the same porosity and pressure
gradient. However, the superficial (average) velocities for ellipses
are larger, leading to higher permeability, than other shapes. For
the same reason, the transition to the inertial regime happens ear-
lier for squares, whereas it occurs at higher velocities for ellipses.
The values of the inertial coefficients k, c and the viscous (normal-
ized permeability, K0) term, obtained by least square fitting to Eq.
(8), are listed in Table 3. The power k is not much affected by the
shape (maximum variation less than �10%), however, for squares,
the pre-factor c is �5 times larger than for ellipses at low porosi-
ties. Our numerical results show that, similar to the normalized
permeability, the effect of shape on the inertial parameters is less
pronounced at high porosities (e > 0.9), not shown here. Establish-
ing a common drag law based on the aspect ratio, sphericity or
other shape parameters is still a challenge for future study.

To better understand and explain the flow characteristic in the
inertial regime, the patterns of the streamlines for different shapes
and the vortices generated behind the obstacle are shown in Fig. 5.
The non-Darcy effect occurs because microscopic inertial effects al-
ter the velocity and pressure fields. At the same porosity e = 0.7 and
Reynolds number Re ffi 10, we observe that for the square shape we
have stronger vortices (i.e. those that contribute more to the en-
ergy loss) compared to the ellipses in which the wake (or flow sep-
Table 3
The values of the inertial coefficients k, c and viscous (normalized permeability, K0 [5]) te
10�5 < Re < 30, for different shapes and various porosities.

Shape Circle Ellipse

Porosity, e 0.7 0.8 0.9 0.7

K 0 ¼ K=L2
p [5] 0.025 0.077 0.319 0.065

k 1.544 1.561 1.338 1.343
c 0.211 0.113 0.082 0.072
aration) zones behind the obstacle is flattened and stretched. These
vortices increase in size as the velocity increases and eventually
become unsteady and local turbulence occurs. At fixed porosity
and pressure gradient, the flow for ellipses is – even though faster
in average – less ‘‘turbulent’’ and smoother.

Note that the flow pattern is stationary and symmetric along
the horizontal symmetry axis and non-symmetric relative to the
vertical axes. The above example implies that the tortuosity (flow
path) is one of the key factors in determining the viscous and non-
Darcy coefficients (see Section 3.2.3 for more details).

3.2. Structural disorder

Because of the complexity of pore-space geometry, classical
numerical methods for solving flows through porous media are
typically restricted to ordered and small or periodic domains. How-
ever, many realistic porous media are (i) confined with walls, (ii)
are not truly two-dimensional, and (iii) possibly contain a degree
of randomness (or disorder) at larger length scale that is not ade-
quately represented in too small periodic boundary cells. In this
section we focus on (i), as compromise, and investigate the effect
of disorder on both viscous and inertial coefficients in a moderately
large system with N = 800 particles/fibres within a channel with
walls.

3.2.1. Computational domain and methodology
Fig. 6 shows a 2D representation of N = 800 randomly distrib-

uted fibres, generated by a Monte Carlo (MC) procedure [73], ori-
ented normal to the flow direction at porosity e = 0.6 with
minimum inter fibre distance dmin = 0.05d or dimensionless
Dmin = dmin/d = 0.05. Similar to Chen and Papathanasiou [73], and
Yazdchi et al. [5], a minimal distance is needed in 2D to avoid com-
plete blockage. The microstructural parameters, namely the sys-
tem size, method of generation, homogeneity and isotropy of the
structure and their influence on macroscopic permeability have
been discussed in [6]. At the left and right of the system pressure
is set and at the top and bottom walls as well as at the surface of
the particles/fibres no-slip boundary conditions are applied. Fibres
are assumed to be very long so that a 2D solution can be applied. A
typical fine, unstructured and triangular FE mesh is also shown in
Fig. 6. The typical range of number of elements is varying from
5 � 105 to some 106 depending on the porosity regime. The lower
the porosity the more elements are needed in order to resolve the
flow in the many narrow channels between the neighbouring fi-
bres. Our numerical results show that in all simulations we need
at least �10 rows of elements between neighbouring particles to
correctly capture the fluid behaviour and obtain a converging solu-
tion. Details of the comparison of different resolutions are provided
in Appendix B. To obtain good statistical accuracy, the permeability
values and inertial coefficients were fitted to data averaged over 10
realizations of packings generated by the random MC procedure.

Fig. 7a shows the variation of the modified friction factor as
function of the normalized velocity, U/U� for disordered configura-
tions at various porosities. The results are compared against FE re-
sults of Ghaddar [82], numerical results of Sangani and Mo [83]
rm, obtained by least square fitting of the FE results into the Eq. (8) in the range of

Square

0.8 0.9 0.7 0.8 0.9
0.147 0.486 0.031 0.091 0.375

1.436 1.111 1.281 1.342 1.129
0.058 0.056 0.355 0.168 0.113
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Fig. 5. The streamline patterns around (a) circle, (b) square and (c) ellipse of the aspect ratio a/b = 2 at the constant porosity e = 0.7 and Re ffi 10. The colour shows the
magnitude of the horizontal velocity.
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Fig. 6. Fibre distributions generated by a Monte Carlo procedure, with N = 800 unidirectional cylinders, normal to the flow direction, with minimum inter fibre distance
dmin = 0.05d at porosity e = 0.6. The zoom shows the fine, unstructured, triangular FE mesh.
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and LB results of Koch and Ladd [15]. As expected, increasing the
porosity leads to an increased normalized permeability, K0. For
Re < 3, like in the ordered hexagonal situations, the normalized
friction factor is perfectly fitted by a cubic correction, e.g., for
porosities 0.6, 0.7, 0.8, one has 1/K0 = 158.8418, 49.40725,
12.74905, and c2 = 0.6569, 0.5369, 0.2592, respectively. Thus the
modified friction factor is considerably larger for low porosity in
the random configurations, while the correction quadratic factor
(k = 2) c2 is about an order of magnitude larger, implying that the
inertial effects occur at much smaller Re numbers already. The rel-
ative deviation at Re = 1 for the above porosities is 0.004, 0.01 and
0.02, respectively. Thus at Re� 1 Darcy’s law holds, yet for Re � 1
stationary eddies (dead zones that do not participate in the overall
mass-flux) exist mainly due to the geometry of the pores. The grad-
ual deviation from Darcy’s law is due to the dynamic growth of
pre-existing eddies within the micro-scale flow field and separa-
tion of flow in pores where flow diverged. Small deviation between
our FE and LB results of Koch and Ladd [15] at creeping flow regime
might be due to the difference in minimum inter-fibre distance,
resolutions, number of fibres or boundary (periodic/wall)
conditions.

Since the quadratic fit deteriorates for Re > 0.5–2, we again per-
form the nonlinear fits to our data up to about Re � 30, see Fig. 7b,
where the variations of the inertial coefficients (k and c) in Eq. (8)
are shown as function of porosity. We observe that for e > 0.45, un-
like for the ordered arrays and similar to the Ergun equation, the
power k is approximately constant and close to unity, whereas
the pre-factor c decreases with increasing porosity. However, at
very low porosities (e < 0.45), k increases (c decreases) with
decreasing porosity and approaches the expected values ðk ffi 2Þ
for hexagonal arrays, corresponding to the appearance of ordered
zones. Due to the (artificial) gap between fibres/discs, each disc
has an effective diameter d� = d(1 + Dmin) greater than its actual va-
lue, d. With this effective diameter, it is possible to define an effec-
tive porosity e� = 1 � (1 � e)(1 + Dmin)2. Inserting Dmin = 0.05 and
e = 0.45, the effective transition porosity from disorder to order
arrangements is estimated as e� ffi 0.393. Note that this value is still
far above the random close packing limit e�rcp ffi 0:16 [74], or the
minimum hexagonal lattice e�hex ffi 0:0931, and still above the freez-
ing point e�f ffi 0:309 [75] or melting point e�m ffi 0:284 [75]. In fact it
indicates that even small (partial) ordering in the system can dras-
tically affect the transport properties, namely permeability [6] and
inertial coefficients of porous media. The comparison of the quality
of the proposed power law fit (Eq. (8)) with the quadratic ðk ¼ 1Þ
and cubic ðk ¼ 2Þ fits at different porosities are given in Appendix
A.

In Appendix D, we present a universal scaling law, valid at all
porosities, based on different definitions of Re and friction factor.
It is shown that the inertial effect can be better explained as two
distinct regimes: (i) cubic correction at Re < 1 and (ii) quadratic
fit at Re > 1, with almost the same accuracy as the proposed power
law.

As mentioned before, most of the available correlations have
the similar viscous porosity dependence as the Ergun equation
with varying constants wCK, where our data lead to a range of
150 < wCK < 300 [76], see next section. Here we are curious to check
the quantitative validity of the inertial component of the Ergun
equation, i.e. c = 1.75(1 � e)/e3. To this end, we fit our FE results
into Eq. (8) assuming constant k ¼ 1 (i.e. quadratic correction) for
porosities e > 0.45, i.e. random/disorder co-existence arrange-
ments. Fig. 8 shows the comparison between the inertial coeffi-
cient c, obtained from our FE simulations (blue squares) and
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from Ergun’s equation (red line) at various porosities. Astonish-
ingly, the excellent agreement of these curves demonstrates the
validity of the inertial component of the Ergun’s equation, origi-
nally obtained for 3D spherical beds, also for 2D disordered fibrous
media.

3.2.2. Different definitions of the Reynolds number
In analyzing flow through porous media, the superficial velocity

and pressure drop are typically correlated through the particle fric-
tion factor, fp, which appears as a function of Reynolds number, Re,
see Eq. (6). Looking at the literature, several Reynolds numbers for
porous media are defined, namely

Reference flow Reynolds number : Re ¼ qUd=l; ð10Þ

Particle Reynolds number : Rep ¼ qUd=ðð1� eÞlÞ; ð11Þ

modified Reynolds number : Re ffiffi
k
p ¼ qU

ffiffiffiffi
K
p

=l; ð12Þ

Interstitial Reynolds number : Rei ¼ qUd=ðelÞ: ð13Þ
Recently, based on the lubrication effect of the narrow channels, we
found a power law relationship between the permeability values
obtained from fluid flow simulations and the mean value of 2nd
nearest neighbour surface-to-surface fibre distances Dgap normal-
ized with the fibre diameters [6]. Therefore, another microstructural
definition could be the ‘‘gap’’ Reynolds number as Reg = qUDgap/
l � (Dgap/d)Re, where (Dgap/d) is a function of porosity [6]. In
Appendix D we use this definition to get a universal friction fac-
tor-Reg relation valid at almost all porosities. By increasing the
porosity and in the very dilute regime (i.e. e ? 1 or d ? 0), by intu-
ition, the Reynolds number should increase and approach its max-
imum limit, Remax for the duct flow (i.e. flow between parallel
plates). The definitions presented in Eqs. (10) and (13) incorrectly
approach zero values in this limit. On the other hand, the definition
in Eq. (12) contains the macroscopic permeability which, in general,
is an unknown quantity- a priori- on the microscopic level. This has
motivated us to revisit the definition of the Reynolds number in
terms of some measurable quantities of the (random) systems such
that a proper trend is recovered also in dilute regimes. A useful,
measurable quantity that is frequently used in modeling of por-
ous/fibrous structures is the hydraulic diameter, Dh. When one
has obstacles like fibres (or particles) instead of straight pores, the
hydraulic diameter can be defined as:

Dh ¼
4eV
Sv
¼ 4e
ð1� eÞav

¼ ed
ð1� eÞ ; with av

¼ particle surface
particle volume

¼ Sv

ð1� eÞV ¼
4
d
; ð14Þ

with the total volume of the unit cell, V, the total wetted surface, Sv,
the specific surface area, av. Note that the hydraulic diameter, in this
way, is expressed as a function of the measurable quantities poros-
ity and specific surface area. The above value of av is for circles (cyl-
inders) – for spheres one has av = 6/d. Therefore the relation
between normalized hydraulic diameter Dh/d and porosity for fibres
will reduce to:

Dh

d
¼ e
ð1� eÞ : ð15Þ

Using the hydraulic diameter as the characteristic length, we define
the pore Reynolds number as

ReDh
¼ qUDh=l; ð16Þ
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and combine it with Eq. (15) which leads to

ReDh
¼ qUde=ðlð1� eÞÞ; ð17Þ

For the case of flow between parallel plates (slab flow), separated by
distance hs, the hydraulic diameter is Dh = 2hs and the superficial
velocity, U is related to the pressure gradient as

U ¼ � h2
s

12l
rp: ð18Þ

Combing Eqs. (18) and (16) leads to the maximum Reynolds num-
ber Remax ¼ �qh3

s
6l2 rp. Fig. 9 shows the variation of different defini-

tions of Reynolds numbers as function of porosity at relatively
low, constant pressure gradient rp = 0.0005 [Pa/m]. The non-Darcy
behaviour (i.e. high Re numbers) become important due to the com-
bination of high porosity and large pressure gradient. As it is seen,
by increasing the porosity the Reynolds numbers (for all the defini-
tions) increase and the flow approaches the inertial regimes even at
such a small applied pressure gradient. However, Re (reference Re
number) and Rei (interstitial Re number) will decrease at porosities
e > 0.95 and asymptotically goes to zero. Whereas, the particle Rey-
nolds number (Rep) and the pore Reynolds number ðReDh

Þ increases
and approaches the maximum Remax ¼ �qh3

s
6l2 rp ffi 66 (though it is a

sharp increase from ReDh
ffi 0:032 at e = 0.99 to ReDh

ffi 66 at e = 1).
We observed that the ReDh

is nicely fitted to the exponential func-
tion with the power �12.5 for the wide range of porosities e < 0.9.
Our numerical results show that this scaling remains valid also at
larger applied pressure gradients (data not shown here). For the
range of e < 0.8, the variation of ReDh

is similar to Reg and ReDh
/Reg

is almost constant equal to �1/6. In Appendix D we use ReDh
or

Reg to get a universal friction factor, valid for all porosities for ran-
dom configurations.

3.2.3. Effect of inertia on viscous terms (K0): Carman–Kozeny (CK)
equation

The earliest and most widely applied approach in the porous
media literature, for predicting the permeability in Stokes regimes,
involves capillary models [77] such as the one that leads to the Car-
man–Kozeny (CK) equation. The approach is based on the analogy
between Poiseuille flow through pipes and pore channels. By
applying the Poiseuille equation in terms of the hydraulic diame-
ter, Dh = ed/(1 � e) as U ¼ � eD2

h
32lrp and combine it with Darcy’s

law, Eq. (1), the normalized permeability is obtained as
K 0 ¼ K

d2 ¼
e3

wCKð1� eÞ2
; ð19Þ

where wCK is the empirically measured CK factor which represents
both the shape factor and the deviation of flow direction from that
in a duct. It is approximated as wCK = 180 for random packed beds of
spherical particles [77] or as in Ergun equation (Eq. (4)) wCK = 150.
Reported values of the CK factor for fibrous media are varying be-
tween 80 and 320 [78,79]. The same range of wCK has been obtained
from the theoretical results of Sangani and Acrivos [80].

The principal limitation of the CK equation is the fact that all
geometrical features of the medium are lumped into the CK factor.
Even though attempts have been made to introduce microstruc-
tural features of the system into the CK equation by suitably mod-
ifying the mean hydraulic radius, it is fair to say that, at this stage,
microstructural features can be included only semi-empirically
through experimental determination of wCK. An initial attempt
was made by Carman [77] who considered the effect of flow path
(tortuosity) on wCK. Writing the CK factor in terms of its compo-
nents, namely the pore shape factor U and tortuosity Le/L

wCK ¼ U
Le

L

� �2

: ð20Þ

The tortuosity, Le/L is the average effective streamline length, Le

scaled by system length, L. In the original CK equation, for 3D ran-
dom spherical beds, it was assumed that the tortuosity is constant
ðLe=L ¼

ffiffiffi
2
p
Þ and U = 90, which gives us the CK factor as wCK = 180.

However, in a recent study [76] we showed that for fibrous media
in the creeping (viscous) regime the tortuosity is not constant and
depends on porosity. The effects of several microstructural param-
eters (namely particle shape, orientation, staggered angle, etc.) on
tortuosity in creeping flow regimes have investigated elsewhere
[5,76]. From our numerical simulations, we extract the average
length of several streamlines (using 8 streamlines that divide the
total mass in-flux into 9 zones, thus avoiding the center and the
edges). By taking the average length of these lines, the tortuosity
can be obtained, while by taking the standard deviation of the set
of streamlines, the homogeneity of the flow can be judged. The tor-
tuosity is plotted in Fig. 10 as function of normalized velocity at dif-
ferent porosities. Similar to the modified friction factor, the
tortuosity is just a function of porosity at creeping flow regimes
(horizontal line). However, by turning into inertial regimes, it de-
creases by increasing the flow rate implying that the fluid flows
mainly on a straight line and become less tortuous.



K. Yazdchi, S. Luding / Chemical Engineering Journal 207–208 (2012) 35–48 45
4. Summary and conclusions

The paper started with an extensive review of published exper-
imental, numerical and theoretical work on the drag law correla-
tions in fluidized beds and porous media with special attention
to the intermediate-Re numbers (inertial) regime. Deviation from
Darcy’s law, for Newtonian, incompressible, stationary flow in
homogeneous porous media, was then investigated numerically
using FEM. We refer to Darcy’s law as linear (in superficial velocity)
while different nonlinear corrections for larger Re can be found on
the market – from quadratic, intermediate to cubic. Computations
were performed on model 2D systems with regularly and ran-
domly distributed, rigid, uniform cylinders/fibres, oriented perpen-
dicular to the flow direction. The effect of several microstructural
parameters (namely the shape and structure/arrangement of the fi-
bres) on the macroscopic permeability (viscous drag) and inertial
coefficients was investigated first, before we turned to random
configurations of cylinders. Major conclusions emerge from the
numerical results and can be listed as follows.

For ordered and periodic structures:

	 For small Re < 3 (threshold varying with porosity, shape, etc.), a
cubic correction in velocity ðk ¼ 2 is the power law for the
dimensionless friction factor) works perfectly well, with devia-
tions stronger/earlier for larger porosities – given constant pres-
sure drop.
	 Based on the generalized, non-dimensional form of the Forch-

heimer equation, for larger Re < 30, the nonlinear correction to
the Darcy drag law is a power law with powers 1 < k < 2
depending on the porosity and the structure (i.e. square or hex-
agonal arrays), and with power decreasing from cubic at low
porosity towards quadratic at high porosity.
	 The viscous and inertial coefficients are not much affected

(maximum variation 10%) by the staggered unit cell angle, a
in the range of 30� < a < 60�. However, k increases (almost) lin-
early from k ffi 1 at a = 70� to k ffi 2 at a = 20�.
	 The shape of the particles has a strong effect on both viscous

and inertial drag coefficients, especially for porosities lower
than approximately 0.9.

For disordered (random) structures:

	 For moderate Re, the nonlinear correction to Darcy drag law is
well approximated, to first order, by a quadratic term in velocity
(i.e. with k ¼ 1). The inertial pre-factor c = 1.75(1 � e)/e3 turns
out to be very similar to the one used in the Ergun equation,
originally derived for 3D spherical packed beds in the range of
e > 0.45 and Re < 30. A nonlinear function fits better including
also the very small Re data, but best performs a cubic correction
up to a critical Re-number, Rec, and the same with a quadratic
correction above Rec.
	 With decreasing porosity a structural transition from disor-

dered to ordered packing occurs (for our preparation method)
and the inertial coefficients approach values closer to those
for the hexagonal lattice.
	 The tortuosity (flow path) not only depends on the porosity and

the pore structure but also on the fluid velocity (flow regime). At
steady state and not fully turbulent flows, by increasing the
porosity or flow rate, the flow becomes faster and less tortuous.
	 A microstructural definition of the Reynolds number, Reg, is

based on the mean value of the averaged 2nd nearest neighbour
surface-to-surface fibre distances Dgap. The ‘‘gap’’ Reynolds
number Reg = qUDgap/l, is employed to get the universal fric-
tion factor as function of Reg valid for all Re studied here and
in an astonishingly wide range of porosities up to even
e � 0.9. After scaling/collapsing all data, both the non-linear fit
with non-integer power ðk ffi 1:15) and the two-regime
approach fit the data for Re < 30 very well.

Although disorder was investigated in two dimensions, these
results provide insights and indicate that similar conclusions might
be extended to 3D realistic random porous structures. Further
work can now be planned on anisotropic and heterogeneous media
and also the study of the fully turbulent regime.
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Appendix A. Comparison of the fit quality for ordered/
disordered configurations

The quality of the proposed power law fit for the modified fric-
tion factor, Eq. (8), can be evaluated by the relative error, v defined
as:

v ¼ 1� f 0fit
f 0FEM

				
				: ðA1Þ

The variation of v as function of U/U� � Re using quadratic (blue),
cubic (red) and proposed power law fits (black), for (a) square
and (b) hexagonal configurations is shown in Fig. A1. The power
law fits best to our FE results with maximum discrepancy less than
1%, when the fits are performed in the full range of available data up
to Re < 30. (Note that the cubic fit performs even better, if not per-
fect, but only up to Re < 3 (varying with porosity).)

The quality factor, v for random configuration is shown in
Fig. A2. Contrary to the case of ordered arrays, the quadratic and
power law fits have approximately the same accuracy (maximum
discrepancy less than 2%). However, by decreasing the porosity
the quadratic correction becomes less accurate.
Appendix B. Mesh sensitivity analysis for random arrangements

Due to the difference in scale between domain size and gap size
between neighbouring fibres, this typically requires local mesh
refinement. For different porosities, flow through random fibre
arrangements (Fig. 6) was simulated at different mesh resolutions
(number of elements, Ne). The dependence of the solution in terms
of the calculated friction factor at (a) dense, e = 0.4, and (b) dilute,
e = 0.8, systems is shown in Fig. B1. The numerical results show
that not only the inertial term (more elements are required to
reach higher Re numbers), but also the viscous term (normalized
permeability K0) depends on the resolution, Ne. By increasing the
porosity (dilute system) less elements would be sufficient to get
a convergent solution.
Appendix C. An alternative cubic ðk ¼ 2Þ correction fit for the
friction factor

The following empirical fit is based on correction of the creep
regime (constant f0 for Re < Rec) with a cubic term ðk ¼ 2Þ and fit-
ting the inertial deviation with another correction term, m(Re)
for Re > Rec. The Rec is the critical Re number in which the devia-
tion starts. For the case of creeping regime one has the cubic cor-
rection for f0 as
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�f 0 ¼ 1
K 0
ð1þ c2K 0Re2Þ; ðC1Þ

and with the correction at Re > Rec as
�f 0 ¼ 1
K 0
ð1þ c2K 0Re2ÞmðReÞ: ðC2Þ

For the special case of random configuration at e = 0.4, the numeri-
cal fitted values are

K 0 ¼ 5:9983� 10�4; c2 ¼ 1:1816;Rec ¼ 4:3;

mðReÞ ¼ 1� a1ðRe� RecÞ2; a1 ¼ 4:3� 10�4

(
: ðC3Þ

Fig. C1 shows the variation of friction factor as function of Re = U/U�

together with the proposed fits in Eqs. (C1), (C2) and non-integer
power law in Eq. (8). The agreement is perfect (better than 99.9%)
for Re < Rec using the first correction (Eq. (C1)) and extends with
the same quality up to Re � 20 with Eq. (C2). This indicates that an-
other type of correction is needed in order to improve the predic-
tion for larger Re. Therefore, there is not a single integer power
law correction. However, we stop this approach here as the non-
integer power law (Eq. (8)) is already a good approximation (max-
imum discrepancy less than 1%) in wide range of Re < 30.

Appendix D. Towards unified friction factor using different
definitions of Re numbers

In this appendix we present unified relations for the friction fac-
tor as function of Reg or ReDh

, valid at a wide range of porosities for
random configurations. The non-linear correction in Eq. (8) can be
isolated by studying f� = �f0K0 � 1, i.e. subtracting the viscous term,
as
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f � ¼ cK 0Rek
Dh
� cK 0

e
1� e

� �k

Rek or

f � ¼ cK 0Rek
g � cK 0

Dgap

d

� �k

Rek: ðD1Þ

Note that by replacing Re with ReDh
or Reg, the values of the fitting

power k would not change. Fig. D1 shows the variation of f� as func-
tion of (a) ReDh

and (b) Reg at various porosities for the case of ran-
dom configurations. Using the alternative definitions of Reynolds
numbers, i.e. Reg, the values of f� at different porosities collapse
on a single curve up to astonishingly large porosity, e � 0.9. The
weak inertial regime seems to be cubic ðk ¼ 2Þ, whereas the higher
inertial regime fits better to quadratic ðk ¼ 1Þ correction. Note that
the non-integer power law (Eq. (8)), with k ffi 1:15, see the black line
in Fig. D1b, is also fit to our data considering the whole range of Re.
Our numerical results show that one cannot get such a scaling also
for ordered (i.e. square or hexagonal) configurations (data not
shown here).
References

[1] N.G. Deen, M. Van Sint Annaland, M.A. Van der Hoef, J.A.M. Kuipers, Review of
discrete particle modeling of fluidized beds, Chem. Eng. Sci. 62 (2007) 28–44.

[2] Y. Tsuji, T. Kawaguchi, T. Tanaka, Discrete particle simulation of two
dimensional fluidized bed, Powder Technol. 77 (1993) 79–87.

[3] H.P. Zhu, Z.Y. Zhou, R.Y. Yang, A.B. Yu, Discrete particle simulation of
particulate systems: a review of major applications and findings, Chem. Eng.
Sci. 63 (2008) 5728–5770.

[4] H.P. Zhu, Z.Y. Zhou, R.Y. Yang, A.B. Yu, Discrete particle simulation of
particulate systems: theoretical developments, Chem. Eng. Sci. 62 (2007)
3378–3396.

[5] K. Yazdchi, S. Srivastava, S. Luding, Microstructural effects on the permeability
of periodic fibrous porous media, Int. J. Multiphase Flow 37 (2011) 956–966.

[6] K. Yazdchi, S. Srivastava, S. Luding, Micro–macro relations for flow through
random arrays of cylinders, Composites Part A: Applied Science and
Manufacturing, in press, (2012), http://dx.doi.org/10.1016/j.compositesa.
2012.07.020.

[7] K. Yazdchi, S. Srivastava, S. Luding, On the transition from creeping to inertial
flow in arrays of cylinders, in: Proceedings of IMECE, Vancouver, Canada, 2010.

[8] J.L. Lage, B.V. Antohe, Darcy’s experiments and the deviation to nonlinear flow
regime, J Fluids Eng. 122 (2000) 619–625.

[9] S. Whitaker, Flow in porous media I: a theoretical derivation of Darcy’s law,
Transp. Porous Media 1 (1986) 3–25.

[10] E. Sanchez-Palencia, Non-homogeneous media and vibration theory, Lect.
Notes Phys. 127 (1980).

[11] C.C. Mei, J.-L. Auriault, The effect of weak inertia on flow through a porous
medium, J. Fluid Mech. 222 (1991) 647–663.

[12] D.W. Ruth, H. Ma, On the derivation of the Forchheimer equation by means of
the averaging theorem, Transp. Porous Media 7 (1992) 255–264.

[13] F.J. Valdes-Parada, J.A. Ochoa-Tapia, J. Alvarez-Ramirez, Validity of the
permeability Carman Kozeny equation: a volume averaging approach,
Physica A 388 (2009) 789–798.

[14] J.L. Auriault, Nonsaturated deformable porous media: quasistatics, Transp.
Porous Media 2 (1987) 45–64.

[15] D. Koch, A.J.C. Ladd, Moderate Reynolds number flows through periodic and
random arrays of aligned cylinders, J. Fluid Mech. 239 (1997) 31–66.

[16] R.J. Hill, D.L. Koch, A.J.C. Ladd, Moderate-Reynolds-number flows in ordered
and random arrays of spheres, J. Fluid Mech. 448 (2001) 243–278.

[17] P. Forchheimer, Wasserbewegung durch Boden, Z. Ver. Deutsch. Ing. 45 (1901)
1782.

[18] M.A. Van der Hoef, R. Beetstra, J.A.M. Kuipers, Lattice-Boltzmann simulations
of low-Reynolds-number flow past mono- and bidisperse arrays of spheres:
results for the permeability and drag force, JFM 528 (2005) 233–254.

[19] A. Narvaez, T. Zauner, F. Raischel, R. Hilfer, J. Harting, Quantitative analysis of
numerical estimates for the permeability of porous media from lattice-
Boltzmann simulations, J. Stat. Mech. (2010). P11026.

[20] Aydin Nabovati, Edward W. Llewellin, Antonio C.M. Sousa, A general model for
the permeability of fibrous porous media based on fluid flow simulations using
the lattice Boltzmann method, Composites: Part A 40 (2009) 860–869.

[21] Z. Chai, B. Shi, J. Lu, Z. Guo, Non-Darcy flow in disordered porous media: a
lattice Boltzmann study, Comput. Fluids 39 (2010) 2069–2077.

[22] A. Narvaez, K. Yazdchi, S. Luding, J. Harting, From creeping to inertial flow in
porous media: a lattice Boltzmann – finite element comparison, JSTAT, (2012),
submitted for publication.

[23] J.A. Andrade Jr., U.M.S. Costa, M.P. Almeida, H.A. Makse, H.E. Stanley, Inertial
effects on fluid flow through disordered porous media, Phys. Rev. Lett. 82
(1998) 5249–5252.

[24] S. Ergun, Fluid flow through packed columns, Chem. Eng. Prog. 48 (1952) 89–
94.

http://dx.doi.org/10.1016/j.compositesa.2012.07.020
http://dx.doi.org/10.1016/j.compositesa.2012.07.020


48 K. Yazdchi, S. Luding / Chemical Engineering Journal 207–208 (2012) 35–48
[25] R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena, second ed.,
Wiley, New York, 2002.

[26] T.D. Papathanasiou, B. Markicevic, E.D. Dendy, A computational evaluation of
the Ergun and Forchheimer equations for fibrous porous media, Phys. Fluids 13
(2001) 2795–2804.

[27] S. Liu, A. Afacan, J. Masliyah, Steady incompressible laminar flow in porous
media, Chem. Eng. Sci. 49 (1994) 3565–3586.

[28] G.W. Jackson, D.F. James, Permeability of fibrous porous media, Can. J. Chem.
Eng. 64 (1986) 364–374.

[29] G.A. Bokkers, M. van Sint Annaland, J.A.M. Kuipers, Mixing and segregation in a
bidisperse gas–solid fluidized bed: a numerical and experimental study,
Powder Technol. 140 (2004) 176–186.

[30] C.Y. Wen, Y.H. Yu, Mechanics of fluidization, AIChE J. 62 (1966) 100–111.
[31] H.C. Brinkman, A calculation of the viscous force exerted by a flowing fluid on a

dense swarm of particles, Appl. Sci. Res. A 1 (1949) 27–34.
[32] J.-L. Auriault, On the domain of validity of Brinkman’s equation, Transp. Porous

Media 79 (2009) 215–223.
[33] M. Hassanizadeh, W.G. Gray, General conservation equations for multi-phase

systems: 3. Constitutive theory for porous media flow, Adv. Water Res. 3
(1980) 25–40.

[34] T. Giorgi, Derivation of the Forchheimer law via matched asymptotic
expansions, Transp. Porous Media 29 (1997) 191–206.

[35] M.I.S. Azzam, A.L. Dullien, Flow rate-pressure gradient measurements in
periodically nonuniform capillary tubes, AIChE J. 19 (1973) 222–229.

[36] S.M. Hassanizadeh, W.G. Gray, High velocity flow in porous media, Transp.
Porous Media 2 (1987) 521–531.

[37] N. Ahmed, D.K. Sunada, Nonlinear flow in porous media, J. Hydr. Div. ASCE 95
(1969) (1969) 1847–1857.

[38] S. Whitaker, The Forchheimer equation: a theoretical development, Transp.
Porous Media 25 (1996) 27–61.

[39] D. Lasseux, A.A. Abbasian Arani, A. Ahmadi, On the stationary macroscopic
inertial effects for one phase flow in ordered and disordered porous media,
Phys. Fluids 23 (2011) 073103.

[40] K.N. Moutsopoulos, I.N.E. Papaspyros, V.A. Tsihrintzis, Experimental
investigation of inertial flow processes in porous media, J. Hydrol. 374
(2009) 242–254.

[41] Z. Chen, S.L. Lyons, G. Qin, Derivation of the Forchheimer law via
homogenization, Transp. Porous Media 44 (2001) 325–335.

[42] I.F. MacDonald, M.S. El-Sayed, K. Mow, F.A.L. Dullien, Flow through porous
media-the ergun equation revisited, Ind. Eng. Chem. Fund. 18 (1979) 199–208.

[43] T. Farkas, G. Zhong, G. Guiochon, Validity of Darcy’s law at low flow-rates in
liquid chromatography, J. Chromatogr. A 849 (1999) 35–43.

[44] R.D. Barree, M.W. Conway, Beyond beta factors: a complete model for Darcy,
Forchheimer, and trans-Forchheimer flow in porous media, in: Proceedings –
SPE Annual Technical Conference and Exhibition, 2004, pp. 7–14.

[45] A. Bourgeat, E. Marušic-Paloka, A. Mikelic, Weak non-linear corrections for
Darcy’s Law, Math. Models Methods Appl. Sci. 6 (1996) 1143–1155.

[46] M. Balhoff, A. Mikelic, M.F. Wheeler, Polynomial filtration laws for low
Reynolds number flows through porous media, Transp. Porous Media 81
(2010) 35–60.

[47] E. Marušic–Paloka, A. Mikelic, The derivation of a non-linear filtration law
including the inertia effects via homogenization, Nonl. Anal. Theory Methods
Appl. 42 (2000) 97–137.

[48] J.-C. Wodié, T. Levy, Correction non linéaire de la loi de Darcy, C. R. Acad. Sci.
Paris t.312, Série II (1991) 157–161.

[49] M. Rasoloarijaona, J.-L. Auriault, Non-linear seepage flow through a rigid
porous medium, Eur. J. Mech. B: Fluids 13 (1994) 177–195.

[50] M. Firdaouss, J.L. Guermond, P. Le Quéré, Nonlinear corrections to Darcy’s law
at low Reynolds numbers, J. Fluid Mech. 343 (1997) 331–350.

[51] O. Couland, P. Morel, J.P. Caltagirone, Numerical modelling of nonlinear effects
in laminar flow through a porous medium, J. Fluid Mech. 190 (1988) 393–407.

[52] H.E. Rose, On the resistance coefficient–Reynolds number relationship for fluid
flow through beds of granular materials, Proc. Inst. Mech. Eng. 153 (1945)
154–161.

[53] H.E. Rose, A.M.A. Rizk, Further researches in fluid flow through beds of
granular material, Proc. Inst. Mech. Eng. 160 (1949) 493–503.

[54] R.E. Hicks, Pressure drop in packed beds of spheres, Ind. Eng. Chem. Fund. 9
(1970) 500–502.

[55] J.A. Tallmadge, Packed bed pressure drop – an extension to higher Reynolds
numbers, AIChE J. 16 (1970) 1092–1093.
[56] J. Sug Lee, K. Ogawa, Pressure drop through packed beds, J. Chem. Eng. 27
(1974) 691–693.

[57] H. Kürten, J. Raasch, H. Rumpf, Beschleunigung eines kugelförmigen
Feststoffteilchens im Strömungsfall konstanter Geschwindigkeit, Chem. Ing.
Tech. 38 (1966) 941–948.

[58] A. Montillet, E. Akkari, J. Comiti, About a correlating equation for predicting
pressure drops through packed beds of spheres in a large of Reynolds numbers,
Chem. Eng. Process. 46 (2007) 329–333.

[59] M. Özdinç Çarpinlioglu, E. Özahi, M.Y. Gündogdu, Determination of laminar
and turbulent flow ranges through vertical packed beds in terms of particle
friction factors, Adv. Powder Technol. 20 (2009) 515–520.

[60] E. Ozahi, M.Y. Gundogdu, Melda Ö. Carpinlioglu, A modification on Ergun’s
correlation for use in cylindrical packed beds with non-spherical particles,
Adv. Powder Technol. 19 (2008) 369–381.

[61] L.G. Gibilaro, R. Di Felice, S.P. Waldram, P.U. Foscolo, Generalized friction factor
and drag coefficient correlations for fluid-particle interactions, Chem. Eng. Sci.
40 (1985) 1817–1823.

[62] S. Benyahia, M. Syamlal, T.J. O’Brien, Extension of Hill–Koch–Ladd drag
correlation over all ranges of Reynolds number and solids volume fraction,
Powder Technol. 162 (2006) 166–174.

[63] O. Molerus, Druckverlustgleichung für die Durchströmung von
Kugelschüttungen im laminaren und im Übergangsbereich, Chem. Eng.
Technol. 49 (1977) 675.

[64] G. Kovács, Seepage Hydraulics, Development in Water Sciences, Elsevier, NY, 1981.
[65] H.R. Kadlec, L.R. Knight, Treatment Wetlands, Lewis Publishers, 1996.
[66] P.U. Foscolo, L.G. Gibilaro, S.P. Waldram, A unified model for particulate

expansion of fluidised beds and flow in fixed porous media, Chem. Eng. Sci. 38
(1983) 1251–1260.

[67] D. Mehta, M.C. Hawley, Wall effect in packed columns, Ind. Eng. Chem. Proc.
Des. Dev. 8 (1969) 280–282.

[68] J.P. Du Plessis, Analytical quantification of coefficients in the Ergun equation
for fluid friction in a packed bed, Transp. Porous Media 16 (1994) 189–207.

[69] W. Reichelt, Zur Berechnung des Druckverlustes einphasig durchströmter
Kugel- und Zylinderschüttungen, Chem. Ing. Tech. 44 (1972) 1068–1071.

[70] A.R. Martin, C. Saltiel, W. Shyy, Frictional losses and convective heat transfer in
sparse, periodic cylinder arrays in cross flow, lnt, J. Heat Mass Transfer 41
(1998) 2383–2397.

[71] A. Tamayol, K.W. Wong, M. Bahrami, Effects of microstructure on flow
properties of fibrous porous media at moderate Reynolds number, Phys. Rev. E
85 (2012) 026318.

[72] Y. Tanino, Heidi M. Nepf, Laboratory investigation of mean drag in a random
array of rigid, emergent cylinders, J. Hydraul. Eng. 134 (2008) 34–42.

[73] X. Chen, T.D. Papathanasiou, The transverse permeability of disordered fiber
arrays: a statistical correlation in terms of the mean nearest inter fiber spacing,
Transp. Porous Media 71 (2008) 233–251.

[74] James G. Berryman, Random close packing of hard spheres and disks, Phys.
Rev. A 27 (1983) 1053–1061.

[75] B.J. Alder, T.E. Wainwright, Phase transition in elastic disks, Phys. Rev. 127
(1962) 359–361.

[76] K. Yazdchi, S. Srivastava, S. Luding, On the validity of the Carman–Kozeny
equation in random fibrous media, Particle-Based Methods II – Fund. Appl.
(2011), 264–273 (Barcelona, Spain).

[77] P.C. Carman, Fluid flow through granular beds, Trans. Inst. Chem Eng. 15
(1937) 150–166.

[78] B. Astroem, R. Pipes, S. Advani, On flow through aligned fiber beds and its
application to composite processing, J. Compos. Mater. 26 (1992) 1351–1373.

[79] L. Skartsis, J.L. Kardos, B. Khomami, Resin flow through fiber beds during
composite manufacturing processes. Part II. Numerical and experimental
studies of Newtonian flow through ideal and actual fiber beds, Polym. Eng. Sci.
32 (1992) 231–239.

[80] A.S. Sangani, A. Acrivos, Slow flow past periodic arrays of cylinders with
application to heat transfer, Int. J. Multiphase Flow 3 (1982) 193–206.

[81] B.R. Gebart, Permeability of unidirectional reinforcements for RTM, J. Compos.
Mater. 26 (1992) 1100–1133.

[82] Chahid K. Ghaddar, On the permeability of unidirectional fibrous media: a
parallel computational approach, Phys. Fluids 7 (1995) 2563–2586.

[83] A.S. Sangani, G. Mo, Inclusion of lubrication forces in dynamic simulations,
Phys. Fluids 6 (1994) 1653–1662.


	Towards unified drag laws for inertial flow through fibrous materials
	1 Introduction
	2 Theoretical background
	3 Numerical results
	3.1 Ordered structure
	3.1.1 Computational method and boundary conditions
	3.1.2 Generalized Forchheimer equation
	3.1.3 Effect of staggered cell angle
	3.1.4 Effect of particle shape

	3.2 Structural disorder
	3.2.1 Computational domain and methodology
	3.2.2 Different definitions of the Reynolds number
	3.2.3 Effect of inertia on viscous terms (K'): C


	4 Summary and conclusions
	Acknowledgements
	Appendix A Comparison of the fit quality for ordered/disordered configurations
	Appendix B Mesh sensitivity analysis for random arrangements
	Appendix C An alternative cubic ? correction fit for the friction factor
	Appendix D Towards unified friction factor using different definitions of Re numbers
	References


