
Icarus 220 (2012) 383–391
Contents lists available at SciVerse ScienceDirect

Icarus

journal homepage: www.elsevier .com/locate / icarus
Collisional features in a model of a planetary ring

Brian P. Lawney a,⇑, James T. Jenkins b, Joseph A. Burns a

a Field of Theoretical and Applied Mechanics, Sibley School of Mechanical Engineering, Cornell University, Ithaca, NY 14853, United States
b Field of Theoretical and Applied Mechanics, School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, United States
a r t i c l e i n f o

Article history:
Received 3 August 2011
Revised 29 April 2012
Accepted 6 May 2012
Available online 23 May 2012

Keywords:
Collisional physics
Planetary rings
Saturn, Rings
0019-1035/$ - see front matter � 2012 Elsevier Inc. A
http://dx.doi.org/10.1016/j.icarus.2012.05.011

⇑ Corresponding author.
E-mail address: brianlawney@gmail.com (B.P. Law
a b s t r a c t

Images taken by the Cassini spacecraft display numerous ‘‘propellers’’, telltale disturbances detected in
Saturn’s outer A ring. In conventionally accepted models (Seiß, M., Spahn, F., Sremčević, M., Salo, H.
[2005]. Geophys. Res. Lett. 32, L11205; Lewis, M., Stewart, G. [2009]. Icarus 199, 387–412), unseen moon-
lets are considered to generate these structures by gravitationally stirring the shearing Kepler flow of ring
particles. The morphology and scale of these structures likely depend on both gravity and collisions.
However, with a goal to understand one aspect of the development of real propellers, and motivated
by similar features observed in terrestrial granular systems, we here study only the collisional effects
on propeller-like feature formation, entirely omitting the gravitational attraction between the moonlet
and the particles.

Our investigation employs a combination of simulation and continuum analysis to examine the extent
to which dissipative collisions between ring particles and with a large obstacle might cause such features
to form. Our simple, heuristic two-dimensional numerical simulations demonstrate that propeller-like
features having many of the features seen in gravitating systems can form. Our continuum theory pre-
dicts that, at observed ring densities, the magnitudes of relative particle speeds and thermal speeds
(i.e., kinetic granular temperatures) imply that the flow with respect to the moonlet is supersonic. As a
consequence, these propeller-like features could be interpreted as the locus of a granular shock across
which the flow experiences significant, almost discontinuous, changes in flow properties.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Among Cassini’s major discoveries in the Saturn system is a
population of ring features (Tiscareno et al., 2006), so-called ‘‘pro-
pellers,’’ that has been detected in the outer A ring and perhaps
elsewhere (Sremčević et al., 2011). These pairs of (bright or dark)
streaks lie along the orbital direction and are slightly offset radi-
ally. Such features are attributed to small unseen moonlets that
gravitationally perturb typical ring particles as they pass by in a
Keplerian shear flow (Spahn and Sremčević, 2000; Seiß et al.,
2005; Lewis and Stewart, 2009). They thus share properties with
protoplanets that are believed to have resided in the early solar
nebula, hence the interest in them and their orbital behavior.

Since the causative moonlets for the propellers cannot be
resolved in the Cassini spacecraft images, models then become
crucial to infer indirectly the moonlet’s mass; as described later,
such models generally find that the moonlet’s Hill spheres are pro-
portional to the separation between the arms of the visible distur-
bance in the ring material. On this basis, the unseen moonlets
range in radius from �10 m to perhaps 1 km and display a steep
ll rights reserved.
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size distribution, q � 6, where the differential number of particles
of radius r is n(r) � r�q (Tiscareno et al., 2006, 2008). According
to these ideas, when the embedded masses become large enough,
the propeller features extend entirely around the planet so that
complete gaps are opened in the rings; the ring moons Pan and
Daphnis, which inhabit the Encke and Keeler gaps, respectively,
fit into this picture quite well (cf. Cuzzi et al., 2010). The prove-
nance of the largest ring masses is open to current debate, but it
is agreed that their precise size distribution, as inferred by the
gravitational models, must furnish clues about the origin of the
rings themselves (Charnoz et al., 2009).

Saturn’s rings are composed of innumerable water–ice particles
that orbit the central planet in a thin sheet. The particles in the
classical A, B and C rings form a power–law size distribution rang-
ing from 10�2 m to �10 m, according to radio observations taken
by Voyager three decades ago (Zebker et al., 1985; Cuzzi et al.,
2009). In most ring regions, large fractions of ring surface area
are completely covered, implying that a typical ring particle fre-
quently collides with others during each orbit of the planet.

The model that we will present below will, for simplicity, take
the ring to be two-dimensional. The vertical thickness of Saturn’s
rings – specifically the question of the extent to which planetary
rings form monolayers – received considerable theoretical and
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observational attention in the Voyager era. That interest continues
today (see reviews by Cuzzi et al. (2009, 2010) and Schmidt et al.
(2009)): Cassini observations of stellar and radio occultations
across ring perimeters suggest ring thicknesses, which may also
be inferred from the properties of spiral density waves and the nat-
ure of the transmitted signal in radio occultations through the ring
proper. These results indicate that most regions of Saturn’s rings
are 10 m to tens of meters thick, i.e., at most a few times the size
of the largest ring particles in a typical power–law size distribu-
tion. Many have interpreted these measurements to confirm sim-
ple theoretical arguments and simulations that indicate an
orbiting swarm of single-size, lossy particles will collapse rapidly
to deposit all particles within a few particle diameters of the pla-
net’s equatorial plane. Thus classical radio-transmission models
(e.g., Zebker et al., 1985) are based on thin layers. In systems con-
taining a particle size distribution, the smallest particles will reside
in a layer that is many small particles thick (Cuzzi et al., 1979), but
still only a few large particles thick. The general belief (but one that
cannot yet be confirmed) among Cassini scientists is that, in the
densest part of Saturn’s rings, the most massive ring particles lie
roughly in a monolayer.

In any case, because our goal in this paper is a heuristic one,
namely to address in a novel way the fundamental role that colli-
sions play in producing propeller-like features in shear flow (or to
open insights into a different fashion to think about propeller for-
mation), we will investigate a two-dimensional model. Such a
model allows easier interpretation and permits a more complete
analysis.

To put our simple investigation into context, we here review
past theoretical and numerical studies of propeller formation.
Spahn and Sremčević (2000) applied a viscous continuum model
to numerically examine density disturbances due to a perturbing
body. In their two-dimensional treatment, the system has two
parts – a scattering region and a mean (shearing) Keplerian flow.
The gravitational influence of the moonlet is restricted to a line
at the moonlet’s azimuthal location and the scattering is modeled
as a Markov process. The flux of scattered particles provides a
boundary condition for the viscous transport to the mean flow.
Sremčević et al. (2002) also employed this model, using Green’s
functions to solve the diffusion-type boundary-value problem.
Both studies considered energetic effects to be of minor impor-
tance compared to mass and momentum transport. Later, Seiß
et al. (2005) conducted three-dimensional N-body simulations of
uniform, inelastic particles with a restitution coefficient of
e = 0.5. They found the azimuthal-averaged optical depth of the
propellers scaled well with the Hill radius (Murray and Dermott,
1999) in the radial direction and the azimuthal extent of the fea-
tures correlated with moonlet mass and ring viscosity. It is worth
noting that scaling laws have been confirmed by some (Sremčević
et al., 2007) and not by others (Tiscareno et al., 2008).

Lewis and Stewart (2009) increased the complexity of these
numerical studies, employing a three-dimensional, N-body simula-
tion that included both particle size distributions and self-gravity.
As well as investigating these additional effects on propeller for-
mation, they examined particle clustering about the moonlet and
accretion in the shearing flow. Michikoshi and Kokubo (2011)
numerically simulated the development of propellers in regions
of very high surface density to ascertain the extent to which the
presence of self-gravity wakes might impede propeller formation.
They found that propellers formed as long as the wavelength of
the gravitational wakes was less than the moonlet’s Hill radius;
this condition is satisfied throughout the A ring.

A feature common to all prior work has been the inclusion of
the moonlet as a gravitational mass. No previous study has exam-
ined this problem in the absence of moonlet gravity. Instead, we
will create a purely collisional system under the influence of only
the gravitational forces that drive the shearing flow. We are not
arguing against the importance of moonlet and self-gravitational
effects in any realistic model. Rather, for heuristic purposes, we
wish to present a different perspective to help readers understand
the roles of different processes in propeller formation. As a conse-
quence of this different perspective, previous interpretations of
simulation results and current size-scaling laws may require some
reconsideration.

Filamentary density concentrations are commonly found in ter-
restrial granular flows where gravitational attraction has no role
(see the numerical simulations of Hopkins and Louge (1991)). An
everyday example illustrates this point: in vehicular traffic, con-
gestion begets further congestion (auto collisions even more so!).
By analogy, the expectation is that when ring particles – driven
by Keplerian shear – crash into a moonlet and rebound inelastical-
ly, the region close to the moonlet will become clogged with ring
material. Indeed, similar to supersonic compressible gases, granu-
lar systems can also experience spatial changes in their properties
(shocks) when the flow speed exceeds that of the sound speed in
the material. If information about the presence of obstructing
bodies (as realized through collisions) cannot be transmitted
upstream, the flow does not alter its properties smoothly to accom-
modate for the body; thus a shock develops. Granular shocks have
been investigated in simple geometries both experimentally
(Rericha et al., 2002; Gray and Cui, 2007) and numerically (Rericha
et al., 2002), but only limited analytical work has been performed
(Gray and Cui, 2007; Haff, 1983), especially for dense-gas
treatments.

Using an adapted kinetic theory for plane flows of inelastic, fric-
tionless disks (Jenkins and Richman, 1985, 1988), in Section 2 we
derive an expression for the strength of the velocity fluctuations
(granular temperature) in shear flow. Following this, we employ
elements of equilibrium thermodynamics to arrive at a relation
for the sound speed as a function of this temperature and solid
fraction. We show that for intermediate planar densities (e.g.
30–70%), incident flows upon the moonlet are predominantly
supersonic; accordingly, we suggest that the propeller-like feature
observed may represent the locus of a detached bow shock. We
support our analysis by simple two-dimensional N-body simula-
tions (Sections 3 and 4) of a Keplerian shearing flow past an obsta-
cle, investigating the effects of relative obstacle size, density
(fractional area coverage), and collision inelasticity on the nature
of the structures produced.

The simulations that we describe are not intended to compete
with existing three-dimensional simulations (e.g., Lewis and
Stewart, 2009; Michikoshi and Kokubo, 2011) in terms of realism.
They are meant to be the simplest that capture the collisional
interactions in a shear flow and indicate how these alone may lead
to propeller-like features around an obstructing body. We do not
intend to minimize the potential importance of gravitational inter-
actions to the formation of propellers in realistic ring models. Our
intent is to show instead in the simplest possible context that such
interactions are not fundamental for the development of propeller-
like features.
2. Analysis

According to our model, a general particle experiences no grav-
itational forces from the moonlet nor from other companion parti-
cles. Hence, the observed formation of any density structures in
our simulations can only be due to the interparticle collisions
and orbital dynamics in the moonlet frame (as described by Hill’s
equations – see Section 3). We adopt a modified two-dimensional
kinetic theory for the plane flow of inelastic, smooth disks and ele-
ments of equilibrium thermodynamics to show that at observed



Fig. 1. Non-dimensional temperature T� ¼ T=ðd _cÞ2 versus area fraction. Eq. (11) is
plotted for restitution coefficients of e = 0.3, 0.5, 0.8.
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densities and strength of the velocity fluctuations (granular tem-
perature), the Keplerian flow with respect to the moonlet is pre-
dominantly supersonic. Because of this, we interpret the
propeller-shaped density features that we observe about moonlets
as granular shock fronts.

In contrast to the dilute, three-dimensional ring considered, for
example, by Goldreich and Tremaine (1978), we consider a dense
two-dimensional flow where the increased frequency of collisions
reduces or eliminates the anisotropy in the dispersion velocity.
Consequently, the appropriate analysis for our dense ‘‘ring’’ is more
like that of granular kinetic theory that involves an isotropic tem-
perature determined by an energy balance.

Salo (1995) and Daisaka and Ida (1999) have shown that dense
rings possess inhomogeneous structure (wakes) due to inelastic
collisions and mutual gravitation which indeed produces compli-
cated variations with space and time in the particle velocity distri-
bution, but we do not consider this in our treatment. Depending
upon ring conditions (e.g., optical depth and collisional dissipation)
such structure may be more or less important in a given model, but
it is not yet clear that these wakes would preclude our ‘‘propellers’’
from providing insight to the role of collisions in more realistic
treatments. Various regions of Saturn’s rings, such as its C ring, bet-
ter satisfy the conditions that our model assumes.

2.1. Granular temperature in shear flow

We next compute the velocity dispersion of identical, inelastic,
circular disks of diameter d in two-dimensional dense, steady
shear. We will use this result to show that non-gravitating flows
with planar densities similar to that of rings have a relatively
low mean agitation with respect to the flow speed and, thus, dis-
turbance information is slow to propagate through the medium.

We first examine the energy-balance equation (Jenkins and
Richman, 1985),

q _T þ PabDab þ
@qa

@xa
¼ C; ð1Þ

where q is the surface mass density, T the granular temperature, P
the pressure tensor, D the rate of strain tensor,r � q the divergence
of the heat flux, and C the rate of collisional energy dissipation.
Greek subscripts denote components with respect to orthogonal ba-
sis vectors in the plane and we sum over repeated indices. Given an
ensemble mean velocity u � hci, the fluctuating velocity component
is C = c � u, and the granular temperature in two dimensions is
T � hC � Ci. The surface mass density is the product of the constitu-
ent material’s density qm and the area fraction m. For a number den-
sity n, the area fraction is defined as m = npd2/4.

In steady state, the adiabatic energy equation (r � q = 0) simpli-
fies to

PabDab ¼ C; ð2Þ

which expresses the balance of stress-work and collisional dissipa-
tion. With Dab � (ua,b + ub,a)/2, the only non-trivial component in
the shear flow is Dxy ¼ Dyx ¼ _c=2, where _c � @u=@y is the shear rate
(coordinate y is defined in Fig. 4). Owing to the symmetry of the
pressure tensor, we may write

Pxy _c ¼ C: ð3Þ

The rate of collisional dissipation for frictionless disks with res-
titution coefficient e is (Jenkins and Richman, 1985)

C ¼ �4aTð1� eÞ
d2 ; ð4Þ

where a � 8mm2g0�rT
1
2=dp3

2 is the bulk viscosity, m is the disk’s mass,
�r � ð1þ eÞ=2, and
g0ðmÞ ¼
16� 7m

16ð1� mÞ2
ð5Þ

is the radial distribution function for disks in contact (Verlet and
Levesque, 1982). Additionally, we define G � mg0.

The pressure tensor is

Pab ¼ ðp� aDccÞdab � 2lDab: ð6Þ

The isotropic pressure is given by the equation of state,

p ¼ qð1þ 2G�rÞT ð7Þ

and the viscosity (Jenkins and Richman, 1985) is

l ¼ l0ð1þ G�rÞ þ a
2
; ð8Þ

where

l0 ¼ mmT1=2

Gdð5� 3�rÞ
ffiffiffiffi
p
p ½1þ G�rð3�r � 2Þ�: ð9Þ

The shear stress is, then,

Pxy ¼
�mmT1=2 _c

Gd
ffiffiffiffi
p
p
ð5� 3�rÞ

½1� G�r þ ð3G� 2G2Þ�r2 þ 3G2�r3� � a _c
2
: ð10Þ

Eqs. (4) and (10) used in the energy equation yield an expression for
T� � T=d2 _c2:

T� ¼ 1
16ð1� �rÞ

p½1� G�r þ ð3G� 2G2Þ�r2 þ 3G2�r3�
4G2�rð5� 3�rÞ

þ 1

" #
: ð11Þ

Eq. (11) is plotted for several restitution coefficients in Fig. 1. Note
that as the area fraction increases we expect increased collision fre-
quency which, in turn, decreases the velocity fluctuations about the
mean. Lowering the restitution coefficient has a similar effect, as
fluctuations are damped further by the more dissipative collisions.

We note that the nature of these curves agrees with the numer-
ical findings of Walton and Braun (1986) who measured the gran-
ular temperature for shearing flows of dissipative, frictional disks.

2.2. Speed of sound

By definition (Anderson, 2000), the speed of sound, a, in a mate-
rial is

a2 ¼ @p
@q

� �
s
¼ 1

qs

@p
@m

� �
s
; ð12Þ

where the partial derivatives are taken with entropy s held fixed –
an isentropic process. The isentropic sound speed is certainly an
approximate measure since it does not incorporate the collisional



Fig. 3. Mach number M divided by dimensionless radial displacement y�. Restitu-
tion coefficient values of e = 0.3, 0.5, 0.8 are chosen for area fractions m between 0.2
and 0.65.
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dissipation (i.e. here �r ¼ 1). However, this provides an upper limit,
as inelastic collisions would only decrease the sound speed. In ther-
modynamic equilibrium, the general expression for the sound speed
is (Anderson, 2000)

a2 ¼ 1
qs

@p
@m

� �
s

¼
@h
@m

� �
T

@m
@T

� �
p
þ @h

@T

� �
m

h i
qsm2 @/

@m

� �
T
� p

h i
qs qsm2 @h

@m

� �
T

@m
@p

� �
T
� m

h i
@/
@T

� �
m

; ð13Þ

where /(m,T) is the internal energy per unit mass and h = / + p/(qsm)
is the enthalpy. For hard disks in two dimensions, / is strictly a
function of the temperature: /(T) = T. Additionally, for planar flow
of uniform disks, an equation of state relates the particle pressure
p and temperature:

p ¼ qsm½1þ 2GðmÞ�T ¼ qsm
m2 þ 8

8ð1� mÞ2

 !
T: ð14Þ

Because we can express any thermodynamic potential as a function
of two state variables, we choose these to be m and T, and write the
enthalpy as

hðm; TÞ ¼ T þ m2 þ 8

8ð1� mÞ2
T; ð15Þ

Upon substituting this expression in Eq. (13), we obtain the
temperature-normalized sound speed in terms of the area fraction:

a2

T
¼ 9m4 � 32m3 � 24m2 þ 128

64ð1� mÞ4
: ð16Þ

In Fig. 2 we plot Eq. (16) along with the dilute limit where G(m)� 1
and the sound speed becomes strictly a function of the temperature
ad �

ffiffiffi
T
p

as in a perfect gas. We observe that as the density increases
we have a greater sound speed due to the higher collision
frequency.

2.3. Mach number

With expressions (11) and (16) for the temperature and sound
speed, respectively, we specify the Mach number, M = u/a, as the
ratio of flow speed to sound speed; then M = 1 defines the transi-
tion from subsonic (M < 1) to supersonic (M > 1). In Keplerian flow
with a shear rate _c, we may write the azimuthal speed as a function
of the radial distance y from the moonlet’s azimuthal axis. Defining
the dimensionless distance y� � y/d, we have

u ¼ _cy�d: ð17Þ

We use this in the expression for the temperature from Eq. (11), and
eliminate any dependence upon d and _c:
Fig. 2. Variation of normalized sound speed, a, with area fraction for m = [0.0 0.65].
The dilute limit ad which has no density dependence is plotted for comparison.
u2

T
¼ 64G2y�2ð5�r � 8�r2 þ 3�r3Þ

pþ ð20G2 � GpÞ�r þ ð3pG� 2pG2 � 12G2Þ�r2 þ 3pG2�r3
h i :

ð18Þ

Thus, we may divide by (16) and write the square of the Mach num-
ber as,

M2 ¼ 4096G2y�2ð5�r � 8�r2 þ 3�r3Þð1� mÞ4

1ðmÞ½pþ ð20G2 � GpÞ�r þ ð3pG� 2pG2 � 12G2Þ�r2 þ 3pG2�r3�
;

ð19Þ

where

1ðmÞ ¼ 9m4 � 32m3 � 24m2 þ 128: ð20Þ

The Mach number can thus be expressed as a function of restitution
coefficient, area fraction, and the radial distance from the moonlet’s
semi-major axis; see Fig. 3.

The qualitative shape of the curves in Fig. 3 is due to the com-
peting effects of the temperature and sound speed in the shear
flow, as shown previously in Figs. 1 and 2. At dilute area fractions,
the flow has a relatively low sound speed due to less frequent col-
lisions, but the granular temperature is accordingly higher. Con-
versely, denser area fractions yield higher sound speeds through
increased collisions, which serve to lower the temperature.
3. Simulation

To model the problem numerically, a two-dimensional N-body
simulation of identical, frictionless, circular disks was developed,
ignoring any moonlet and interparticle gravitation. We fix the ori-
gin of a translating and rotating reference frame to a moonlet of
diameter D, which moves on a circular orbit at a distance R from
a central gravitating body (e.g., Saturn). In our local coordinate sys-
tem, the positive radial direction y is taken towards the planet and
x is the azimuthal direction, positive in the direction of the orbit.
Flow particles have diameter d. A sketch of the simulation is given
in Fig. 4.

Assuming frictionless surfaces, our contact forces are purely
along the center-to-center line of colliding particles and the rota-
tional degree of freedom is ignored. Defining the vector g � c1 � c2

as the relative velocity between a pair of particles, interactions are
treated as instantaneous binary collisions, with energy dissipation
modeled via a constant restitution coefficient, e:

g0bkb ¼ �egaka; ð21Þ



Fig. 4. Simulation layout. The inset shows a pair of flow particles with pre-collision
velocities c1 and c2.
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where the unit vector k defines the direction from the center of par-
ticle 1 to the center of particle 2 and the prime denotes a post-
collision quantity. Vector components (denoted with Greek indices)
are given with respect to a set of orthogonal basis vectors in the
plane and we sum over a repeated index. The restitution coefficient
ranges from 0 to 1, the latter corresponding to a perfectly elastic
interaction. In combination with the linear momentum balance
for identical particles, we can write the post-collisional velocities as

c01a ¼ c1a �
1þ e

2

� �
gbkbka ð22Þ

and

c02a ¼ c2a þ
1þ e

2

� �
gbkbka: ð23Þ

The particle dynamics in our local reference frame (x,y) are gov-
erned by the homogeneous Hill equations (Murray and Dermott,
1999)

d2y

dt2 þ 2X
dx
dt
� 3X2y ¼ 0 ð24Þ

and

d2x

dt2 � 2X
dy
dt
¼ 0; ð25Þ

where X is the orbital angular speed of the moonlet appropriate to
its radial distance R, and is given by Newton’s second law as
X2 = Ggms/R3 (gravitational constant Gg, mass of planet ms). In the
absence of gravitational forces from the moonlet, the equations
are homogeneous.

We define dimensionless time s� �Xt and scale all distances by
the small particle’s diameter d(y� = y/d,x� = x/d) to obtain non-
dimensional Hill equations,

d2y�

ds�2 þ 2
dx�

ds� � 3y� ¼ 0 ð26Þ

and

d2x�

ds�2
� 2

dy�

ds�
¼ 0: ð27Þ

The non-dimensional shear rate is _c� ¼ du�=dy� ¼ 3=2, where
u� � dx�/ds� is the non-dimensional speed in the azimuthal
direction.

The simulation domain (�w�/2 6 x� 6w�/2, h�/2 6 y� 6 h�/2)
makes use of the boundary conditions of Lees and Edwards
(1972), which are periodic in the azimuthal direction, and incorpo-
rate appropriate transformations of position and velocity for peri-
odicity in the radial direction,
if jy�j > h�=2 : y�	 ¼ y� 
 h�; u�	 ¼ u� 
 _c�h�; x�	 ¼ x� 
 _c�h�s�;

where the negative sign corresponds to particles exiting the top
boundary and vice versa. The 	 subscript denotes the transformed
position or speed. The Hill equations are invariant under such trans-
formations of position and velocity (Wisdom and Tremaine, 1988)
when particles cross the radial boundaries. The azimuthal extent
of the simulation is taken to be large enough that apparent posi-
tional correlations/structure are destroyed by the shear flow and
do not approach the boundaries. For our simulations we take
(w�,h�) = (2500,300), which creates a calculation domain that is
approximately 125D� � 15D�, as our moonlets vary from D� = 10
to D� = 30, where D� = D/d. For comparison, Lewis and Stewart
(2009) employ a simulation domain that is �500 times their moon-
let diameter in the azimuthal direction and �20 times larger in the
radial direction. However, as noted in our discussion, their simu-
lated propeller gap features are significantly longer in the azimuthal
direction than those observed in our study. Additionally, we period-
ically circulate the particles by sampling from an unperturbed shear
flow, in the spirit of Seiß et al. (2005), to minimize possible correla-
tions that could persist across the periodic azimuthal boundaries.

Because of the scaling, control of the simulation is limited to the
specification of scaled domain size (w�,h�), moonlet size D�, restitu-
tion coefficient e, and global area fraction, m. Particles are initially
homogeneously distributed with a specified area fraction and are
given azimuthal speeds appropriate for their radial distances from
the moonlet, u� ¼ 3

2 ðy� � h�=2Þ. After this, particle motions are gov-
erned by the Hill equations and collisional interactions with the
moonlet and each other. Simulations are performed for increasing
durations to ensure that a steady state has been reached. Typical
simulation times correspond to �102 orbits.
4. Results

Owing to the dissipative nature of the ring material (Goldreich
and Tremaine, 1978; Hatzes et al., 1991; Supulver et al., 1995;
Brilliantov et al., 1996; Porco et al., 2008, Fig. 14.3 in Schmidt et
al. (2009)) and the flow conditions incident to the moonlet, the azi-
muthal speed in the shearing flow of Saturn’s rings can be shown
to be supersonic beyond several particle diameters of the moon-
let’s radial position. Since information about the presence of the
moonlet cannot be transmitted upstream, shocks can develop.

We employ two-dimensional simulations to understand the ef-
fects of energy dissipation (the restitution coefficient), the collision
frequency (area fraction), and the moonlet’s relative size compared
to the characteristic ring particle. In the following figures, only a
portion of the entire simulation is pictured – the full simulation ex-
tends significantly further in both the radial and azimuthal direc-
tions. Simulation durations are on the order of 102 orbits, but we
note that the propeller-like features are created and reach steady
state far more rapidly. In one orbit, particles typically experience
15–100 collisions.

In Fig. 5, we vary the restitution coefficient and observe the
change in both the detached shock feature and the vacancy down-
stream of the moonlet. Fig. 3 has demonstrated that the Mach
number increases with decreasing restitution coefficient; in Fig. 5
we see the density in the shocked region is greater for more dissi-
pative collisions, indicating a stronger shock. When particles are
less elastic, smaller rebound speeds will occur, corresponding to
decreased thermal/fluctuation velocities (or colder flows) and,
thus, stronger shocks. It is also apparent that the more elastic col-
lisions lead to a shorter vacant region downstream of the moonlet.
Corresponding to the restitution coefficients of e = 0.3, 0.5, 0.6, 0.8
we measure azimuthal gaps of approximately 2.2D�, 2D�, 1.8D�,
and D�, respectively. This decrease in gap length is consistent with
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Fig. 5. Propeller formation for several different collisional restitution coefficients
e = 0.3, 0.5, 0.6, 0.8 from top to bottom. In all cases here, the size ratio is D� = 25 and
the initial global area fraction is m = 0.5. Each image is plotted for a window of
(700 � 120) small particle diameters.
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Fig. 7. Propeller formation for several different area fractions. From top to bottom:
m = 0.7, 0.5, 0.3. In all cases shown here, coefficient of restitution is e = 0.3 and the
size ratio is D� = 25. Each image is plotted for a window of 700 � 120 small particle
diameters.

388 B.P. Lawney et al. / Icarus 220 (2012) 383–391
the greater temperature that the more elastic particles possess. At
the same packing fraction, the higher granular temperature results
in increased collision frequency and a faster diffusion of particles
into the vacancy. This suggests that the variation in the length of
the empty region depends on factors other than the orbital dynam-
ics (as described by the Hill equations); for example, collisional dif-
fusion is likely to be relevant.

In Fig. 6, we vary the size of the moonlet relative to that of the
small particles. We note that the resulting shock formations vary in
size and intensity (density): for smaller moonlets (D� = 10) only a
very minimal shock forms and the global area fraction of the sim-
ulation is almost spatially uniform. For the larger size ratios, the
shock does not begin at the orbital radius of the moonlet; the bot-
tom of the shock, instead, starts several small particle diameters
away from this line. Both of these observations suggest a threshold
speed for shock creation, which we identify as the sound speed.
The minimal shock for D� = 10 indicates that incident shear flow
is approximately sonic at no more than five particle diameters
from the moonlet’s semi-major axis. For the restitution coefficient
of e = 0.3 and global area fraction of m = 0.5, Fig. 3 suggests that
M = 1 occurs at approximately 2.5–3 particle diameters, which
matches our simulations well.

Another striking feature of these images is the size of the vacant
regions. Some studies (Seiß et al., 2005; Sremčević et al., 2007) sug-
0 100100 200200300 300

Fig. 6. Propeller formation for moonlet sizes D� = 30, 25, 15, 10, from top to bottom.
In all cases shown here, the restitution coefficient is e = 0.3 and the initial global
area fraction is m = 0.5. Each image is plotted for a window of 700 � 120 small
particle diameters.
gest the azimuthal extent of these features is dependent on the Hill
radius (where a moonlet’s gravity is included), while others (Tisca-
reno et al., 2008) do not see this scaling. Since the moonlet has no
gravitational effect on the particles in our model, the Hill radius –
the region when a moon’s gravity dominates the planet’s (Murray
and Dermott, 1999) – has no meaning. Nonetheless, it is clear that
the body’s size alone (without regard for its mass) has an apprecia-
ble effect on the resulting structure of the propeller. The vacant re-
gions scale well with the moonlet size, with an approximate
azimuthal extent of �2.0–2.2 moonlet diameters.

Fig. 7 presents results from steady-state simulations for three
values of global area fraction. We see shock formation in all three,
as expected, but the width and shape of the shock vary signifi-
cantly. As suggested by Fig. 3, we expect M > 1 beyond several par-
ticle diameters of the moonlet’s axis for all of the densities shown.
Even at the highest area fraction, we may still characterize the up-
stream flow as supersonic. The significant thickness and dark
appearance of the shock in the top panel (m = 0.7) does not neces-
sarily imply a stronger shock where the analysis predicts a lower
Mach number; shock strength is characterized by the relative
change in flow properties between the pre- and post-shock re-
gions. We note that the lengths of the vacant regions decrease with
increasing area fraction. We see that the denser situations exhibit
shorter empty regions if a propeller is identified by the transmis-
sion (or reflection) of light relative to the surrounding ring material
(Tiscareno et al., 2010). Although the increased density, in turn,
lowers the velocity fluctuations, the collision frequency is higher
and, hence, particles will diffuse faster into the empty region. As
in the simulations where the restitution coefficient was varied, this
emphasizes that the spatial extent of ‘‘propeller’’ features is not so-
lely determined by the orbital dynamics, but collisional effects also
have an influence.

Fig. 8 displays a portion of the top half of one of our simulations
in order to illustrate the velocity field of the particles near the
moonlet. This confirms that the shock is not a static aggregate of
particles, but rather represents the locus of a continuing stream
of particles past the moonlet. As the flow is abruptly turned by
the body, it experiences changes in its properties. The shock’s aver-
age spatial characteristics are steady in time, but there is a flux of
mass entering and exiting the shocked region. A plot displaying the
velocity field even closer to the moonlet (Fig. 9) reveals that parti-
cles in the shocked region have slowed as a result of mass and
momentum considerations across the shock surface.

Our findings may be compared to those of Lewis and Stewart
(2009), who include the moonlet’s gravity; this allows some esti-
mate of the relative importance of collisional and gravitational ef-
fects. In Lewis and Stewart’s simulations, the moonlet’s gravity has
the effect of accreting flow particles on the body’s perimeter and



Fig. 8. The velocity field for a portion of the top half of a simulation with D� = 25, m = 0.5, and e = 0.3. The colors and arrow lengths denote the non-dimensional velocity
magnitude u�. Scales on the respective axes denote the distance in small particle diameters. The collimated nature of the flow along the shock is apparent as is the incoming
Kepler shear visible on the left edge (speeds are zero on the axis and increase linearly with distance off the axis). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 9. A close-up of the velocity field plotted in Fig. 8. The colorbar and arrow lengths denote the non-dimensional velocity magnitude u�. Scales on the respective axes
denote the distance in small particle diameters. This clearly shows the slowing of the flow inside the shock local to the moonlet. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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also altering the shape and orientation of the high-density regions.
We see that, with the inclusion of gravity, the high-density propel-
ler feature is oriented in a more radial direction. Images (Lewis and
Stewart, 2009) of particle clusters surrounding the moonlet show
significant accretion on the ‘‘top’’ and ‘‘bottom’’ of the moonlet,
depending upon the size ratios, particle size distribution, and
self-gravitation. In contrast, our purely collisional simulation does
not develop clumping and the particles comprising the shock fea-
ture do not remain attached to the moonlet. We do not believe that
clustering precludes shock development, however. The size of the
obstructing body is effectively expanded with gravitational accre-
tion, but this may not appreciably change the upstream flow prop-
erties to prevent development of shocks. This needs future study.

In the gravitational simulations, the vacant regions are larger in
both the radial and azimuthal directions. Collisional propellers, like
ours, extinguish within several moonlet diameters whereas those
including gravitation remain apparent for the entire azimuthal ex-
tent shown in Lewis and Stewart’s images (see Fig. 4 in Lewis and
Stewart (2009)). Until the size of the responsible moonlet and pro-
pellers is resolved from spacecraft images (or occultations), it will
not be possible to determine the relative importance of the two ef-
fects. However, we recall that while the two-dimensional simula-
tions show clear vacancies, the brighter regions appearing in the
Cassini images are not necessarily empty regions. In fact, Tiscareno
et al. (2008, 2010) indicate that the observed features in spacecraft
images may, in fact, be due to local increases in the optical depth
rather than mass density. The reader is directed to Sremčević
et al. (2007) for discussion and modeling of the increase in optical
depth. For the moment, we note that numerical simulations (with
or without moonlet gravity) create visible gaps with bordering
density increases (aggregation, shocks), and propeller observations
are still subject to further interpretation as discussed by Tiscareno
and co-workers (2010).

Secondary, high-density features border the vacant regions in
simulations both with and without gravity. At significant distances
from the moonlet where gravitational effects due to the moonlet
are much less than that of the central planet, the creation of these
structures may be determined solely by the dynamics that drive
particle collisions. Indeed, collisional effects are, in part, responsi-
ble for some observed ‘‘wake’’ structures; inhomogeneous cluster-
ing has been observed in collisional flows for terrestrial
applications. Hopkins and Louge (1991) quantified the microstruc-
ture created by inelastic shearing flows and their simulation
images show very similar cluster features to the simulations of
Lewis and Stewart (2009), in which self-gravity is included. We
note that the findings of Hopkins and Louge (1991) contradict
those of Salo (1995) and Daisaka and Ida (1999) who state that
both inelasticity and self-gravitation are necessary for clustering.



Fig. 10. Overlay of particle positions and trajectories of sample particles for a simulation (that shown in Fig. 5) with D� = 25, m = 0.5, and e = 0.3. The figure’s aspect ratio has
been altered to allow for easier differentiation of particles and the trajectories. Scales on the respective axes denote distances in small particle diameters.
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Moreover, shearing flows alone have been shown to lead to strong
density concentrations in simulations with walls (Saitoh and
Hayakawa, 2007) and with Lees–Edwards boundary conditions
(Tan and Goldhirsch, 1997).

Fig. 10 displays particle positions with sample trajectories over-
laid for a portion of the simulation shown in the top panel of Fig. 5.
These trajectories display the epicyclic paths consistent with
objects perturbed (in this case, by the moonlet and interparticle
collisions) from their appropriate radial positions (cf. Fig. 3.30 in
Murray and Dermott (1999)). Such epicycles are usually attributed
to being initiated by the radial acceleration due to the moonlet’s
gravity (cf. Showalter and Burns, 1982), which is absent in our sim-
ulations. Instead, from our collisional simulations, we now recog-
nize that the radial component of the rebound velocity caused by
a collision will prompt such an oscillation just as effectively. The
trajectories are observed to converge in the same region where
the high-density structure is present. The higher density of particle
paths suggests an increase in collision probability and this, of
course, will lead to additional enhancement of the density struc-
ture through inelastic collisions which further augment the con-
centration of particles. The correlation of trajectories with these
features suggests that the Hill equations dominate the formation
of the secondary structures.
5. Summary and conclusions

We have examined formations reminiscent of propellers in Sat-
urn’s rings without invoking the moonlet’s gravity, in the context
of a granular shock. The effects of collisions, surface density, and
moonlet size were qualitatively investigated with the use of two-
dimensional discrete particle numerical simulations. Using an
expression for the sound speed in classical thermodynamic equi-
librium and the determination of the granular temperature in stea-
dy shear, we were able to estimate the nature of ‘‘cold’’, dissipative
planar flows, which are assumed to be a simple representative
model of Saturn’s rings. Our analysis suggests that such flow is
inherently supersonic and that granular shocks may play a role
in propeller formation.

Our findings have similarities to aspects of simulations that
include gravity, but some distinct differences also, namely, the azi-
muthal extent of low-density regions and the orientation and
thickness of higher-density formations. However, without addi-
tional spacecraft observations at sufficient resolution, the details
of the propeller gaps and adjacent density enhancements are not
accessible. It remains to definitively quantify the relative impor-
tance of collisional effects and the gravitational forces. Inclusion
of the moonlet’s gravity introduces terms in the inhomogeneous
Hill equations that depend on the moonlet’s mass (see Section
9.5.3 in Murray and Dermott (1999); cf. Duncan et al., 1989); thus,
such terms scale as the cube of the moonlet size and linearly with
the mass density. Accompanying an increase in size or density, we
expect the contribution of the gravitational terms to be increas-
ingly significant. However, it may be that smaller or less dense
moonlets exhibit behavior more consistent with that of a granular
shock. Indeed, the shock conditions that we have studied may be
relevant to the development and subsequent evolution of self-
gravity wakes and clusters of gravitationally accreted particles
(Schmidt et al., 2009).

Our heuristic two-dimensional simulation and analysis is in-
tended to present a suggestive and, perhaps, predictive cartoon
that collisional interactions alone are sufficient, but certainly not
necessary, to explain the existence of propeller-like structures in
a thin, dense ring. We accept that inhomogeneities in the concen-
tration of ring particles that result from their gravitational interac-
tion can influence the energy balance and can affect the
determination of the granular temperature, and there certainly will
be a change of thickness in the ring across the shock. However, we
do not regard the existence of these structures nor the change in
thickness as sufficiently important to invalidate our thesis that col-
lisional interactions are responsible for some part of the morphol-
ogy of propeller-like features.

Acknowledgments

The authors acknowledge helpful discussions with M.S. Tisca-
reno, M.M. Hedman, and J.N. Cuzzi as well as support from the
Cassini project and NASA’s Planetary Geology and Geophysics
Program. Comments from two anonymous reviewers on an earlier
draft have been instrumental in improving this manuscript.

References

Anderson, J., 2000. Hypersonic and High Temperature Gas Dynamics. AIAA.
Brilliantov, N., Spahn, F., Hertzsch, J., Pöschel, T., 1996. A model for collisions in

granular gases. Phys. Rev. E 55, 5382–5392.
Charnoz, S., Dones, L., Esposito, L., Estrada, P., Hedman, M., 2009. Origin and

evolution of Saturn’s ring system. In: Dougherty, M., Esposito, L., Krimigis, S.
(Eds.), Saturn from Cassini–Huygens. Springer, Dordrecht, pp. 537–575.

Cuzzi, J. et al., 2009. Ring particle composition and size distribution. In: Dougherty,
M., Esposito, L., Krimigis, S. (Eds.), Saturn from Cassini–Huygens. Springer,
Dordrecht, pp. 459–512.

Cuzzi, J., Burns, J., Durisen, R., Hamill, P., 1979. The vertical structure and thickness
of Saturn’s rings. Nature 281, 202–204.



B.P. Lawney et al. / Icarus 220 (2012) 383–391 391
Cuzzi, J. et al., 2010. An evolving view of Saturn’s dynamic rings. Science 327, 1470–
1475.

Daisaka, H., Ida, S., 1999. Spatial structure and coherent motion in dense planetary
rings induced by self-gravitational instability. Earth Planet Sci. 51, 1195–1213.

Duncan, M., Quinn, T., Tremaine, S., 1989. The long-term evolution of orbits in the
Solar System: A mapping approach. Icarus 82, 402–418.

Goldreich, P., Tremaine, S., 1978. The velocity dispersion in Saturn’s rings. Icarus 34,
227–239.

Gray, J., Cui, X., 2007. Weak, strong and detached oblique shocks in gravity-driven
granular free-surface flows. J. Fluid Mech. 579, 113–136.

Haff, P., 1983. Grain flow as a fluid-mechanical phenomenon. J. Fluid Mech. 134,
401–430.

Hatzes, A.P., Bridges, F., Lin, D., Sachtjen, S., 1991. Coagulation of particles in Saturn’s
rings – Measurements of the cohesive force of water frost. Icarus 89, 113–121.

Hopkins, M., Louge, M., 1991. Inelastic microstructure in rapid granular flows of
smooth disks. Phys. Fluids A 3 (1), 47–57.

Jenkins, J., Richman, M., 1985. Kinetic theory for plane flows of a dense gas of
identical, rough, inelastic, circular disks. Phys. Fluids 28, 3485–3494.

Jenkins, J., Richman, M., 1988. Plane simple shear of smooth inelastic circular disks:
The anisotropy of the second moment in the dilute and dense limits. J. Fluid
Mech. 192, 313–328.

Lees, A., Edwards, S., 1972. The computer study of transport processes under
extreme conditions. J. Phys. C 5, 1921–1929.

Lewis, M., Stewart, G., 2009. Features around embedded moonlets in Saturn’s rings:
The role of self-gravity and particle size distributions. Icarus 199, 387–412.

Michikoshi, S., Kokubo, E., 2011. Formation of a propeller structure by a moonlet in
a dense planetary ring. Astrophys. J. 732, L23–L26.

Murray, C., Dermott, S., 1999. Solar System Dynamics. Cambridge University Press.
Porco, C., Weiss, J., Richardson, D., Dones, L., Quinn, T., Throop, H., 2008. Simulation

of the dynamical and light scattering behavior of Saturn’s rings and the
derivation of ring particle and disk properties. Astron. J. 136, 2172–2200.

Rericha, E., Bizon, C., Shattuck, M., Swinney, H., 2002. Shocks in supersonic sand.
Phys. Rev. Lett. 88, 014302.

Saitoh, K., Hayakawa, H., 2007. Rheology of a granular gas under a plane shear. Phys.
Rev. E 75, 021302.

Salo, H., 1995. Simulations of dense planetary rings – III: Self-gravitating identical
particles. Icarus 117, 287–312.
Schmidt, J., Ohtsuki, K., Rappaport, N., Salo, H., Spahn, F., 2009. Dynamics of Saturn’s
dense rings. In: Dougherty, M., Esposito, L., Krimigis, S. (Eds.), Saturn from
Cassini–Huygens. Springer, Dordrecht, pp. 413–458.
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