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In this paper, a previous coarse-grain model [J. T. Padding and W. J. Briels, J. Chem. Phys. 117,
925 (2002)] to simulate melts of linear polymers has been adapted to simulate polymers with more
complex hierarchies. Bond crossings between highly coarse-grained soft particles are prevented by
applying an entanglement algorithm. We first test our method on a virtual branch point inside a
linear chain to make sure it works effectively when linking two linear arms. Next, we apply our
method to study the diffusive and rheological behaviors of a melt of three-armed stars. We find
that the diffusive behavior of the three-armed star is very close to that of a linear polymer with the
same molecular weight, while its rheological properties are close to those of a linear chain with
molecular mass equal to that of the longest linear sub-chain in the star. © 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4811675]

I. INTRODUCTION

Polyethylene is among the most important commercial
plastics with a variety of applications in our daily lives,
such as films, extrusion coating, food packaging.1 It can
be produced in a variety of different forms based on two
main structural types: high density linear polyethylene and
low density branched polyethylene. It has been found that
the properties of polymer melts depend sensitively on the
details of the chain architecture.2–12 Thus to have a good
understanding of the properties of polymers in relation to the
various possible topologies would be of great use to optimize
the processing and synthesis techniques from both industrial
and scientific perspectives.

The dynamical and rheological properties of linear poly-
mer systems are described quite well by the Rouse model for
short chains13 and the reptation model for entangled chains.14

The experimentally observed scaling laws for the melt self-
diffusion coefficient and viscosity as a function of molecular
weight are explained successfully by these models.15–17 Be-
sides this, computational methods have been developed to test
theoretical predictions and reveal new phenomena along with
experiments in this field.

Among the computer simulations, fully atomistic molec-
ular simulations are usually carried out to acquire accurate
fundamental information on polymer structures and dynam-
ics in relation to their chemical details.18–22 However, with
current computer capabilities these goals become unaccom-
plishable with highly entangled systems, where long relax-
ation times and large simulation boxes have to be dealt with.
In cases when less detailed information is needed to un-
derstand the basic physical phenomena of interest, coarse-
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graining techniques offer an alternative and efficient way to
reach long time and length scales. For example, when study-
ing the flow properties of linear polymers, one is mainly in-
terested in some generic properties of entire chains.23–28

Despite the advantages of coarse-grain simulations, one
should be aware of the fact that the coarse-grain potential
will become increasingly softer on lumping more and more
atoms together, and consequently bonds will finally be capa-
ble of crossing each other. Such illegal bond crossings may
be prevented by a number of uncrossability constraints. One
has been developed by Padding and Briels in a method, called
TWENTANGLEMENT, based on introducing an “entangle-
ment” at the touching location of two elastic bonds.25 Dur-
ing the remaining part of the run, the entanglement points
are updated with every time step by minimizing the elas-
tic energy in the two entangled bonds, until they disentan-
gle again. This model has been shown to be able to describe
the effects of entanglements and to reproduce effectively
experimental data of moderately entangled linear polymer
melts.26

In this work, we extend the program to be applicable to
architecturally complex systems. Roughly speaking, we have
updated the entanglement algorithm to prevent crossings be-
tween all branches of all polymers. Star polymers with a sin-
gle branch point architecture presents the simplest example of
a branched polymer, and have attracted scientific interests for
a long time.29–34 We therefore first apply our model on star
polymers.

The organization of this paper is as follows: in Sec. II,
we describe the coarse-grained simulation model and intro-
duce the uncrossability constraint. The topology specification
is also discussed in this part. In Sec. III, the properties of star
polymer are presented and we make the comparisons between
3-arm star and linear chains. Section IV contains the conclu-
sions of this work.
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II. MODEL OVERVIEW AND SIMULATED SYSTEMS

A. Coarse-graining method and Brownian dynamics

Considering that the chemical details are unimportant
when studying the dynamical properties of polymers at large
time and length scales, we group a large number, λ = 20,
of monomers together into one coarse-grained bead (also re-
ferred to as blob). Accordingly, a coarse-grained chain can be
described by several consecutive blobs. For example, a linear
polyethylene chain C140H282 in this work is represented by
seven blobs and named B7.

For each blob, the center of mass position R is the aver-
age of λ monomer locations ri, which are weighted by their
mass mi,

R = 1

M

λ∑
i=1

miri , (1)

where M is the blob’s total mass. Blobs are simply treated
as Brownian particles and their center of mass positions are
evolving through a time dependent first-order Langevin equa-
tion, which includes displacements due to forces and random
displacements δRi,

dRi = −1

ξ
∇i�dt + δRi , (2)

where � is the potential energy and ξ is the blob friction
coefficient. We assume that the friction coefficients are in-
dependent of the blob configurations, and are related to the
stochastic displacements through the fluctuation-dissipation
theorem

〈δRiα · δRjβ〉 = 2kBT

ξ
dtδij δαβ, (3)

where Greek subscripts refer to coordinate directions, kB is
Boltzmann’s constant, and T is the temperature of the system.

Forces between blobs are derived from the potential of
mean force, which is related to the n-blob probability distri-
bution function Pn according to

�(Rn) = −kBT ln Pn(Rn), (4)

where Pn may be obtained from an appropriate atomistic
simulation.

We assume that the total potential of mean force can be
approximately expressed by three independent contributions:
a sum over all non-bonded pairs, one over bonded blobs, and
one over bond angles,

�(Rn) =
∑
i<j

ϕnb(Ri,j ) +
∑

i

ϕb(Ri,i+1) +
∑

i

ϕθ (θi). (5)

The inter- and intra-molecular interactions together with
potential functions are shown in Table I. A Gaussian pair
potential is used to describe repulsive forces between non-
bonded ϕnb and bonded ϕbrep blobs. The attractive part ϕbatt

for bonded interaction is described by a single power law. And
the bending potential ϕθ is a cosine function of the angle θ be-
tween two consecutive bonds.

The blob interactions are of course more complicated
than assumed here. However, it is known that entanglement

TABLE I. Interactions between non-bonded and bonded blobs.

Interaction type Potential expression

Non-bonded ϕnb(R) = c0e
−(R/b0)2

Bonded repulsive ϕbrep (R) = c1e
−(R/b1)2 + c2e

−(R/b2)2

Bonded attractive ϕbatt (R) = c3(R)μ

Bending potential ϕθ (θ ) = c4(1 + cos θ )ν

effects play a dominant role in the rheology of polymeric sys-
tems. This allows us to neglect to a large extent all details
of the interactions in our simulation work. Similar assump-
tions are made in several other rheological simulation meth-
ods like in the works of the Naples group,35–37 and in the work
of Schieber,38, 39 and Likhtman.40–42 All these entanglement-
based methods have the drawback that the diagonal elements
of the stress tensor are not necessarily correct and that ther-
modynamic properties in general are not described at all. A
coarse-grain model that does describe both thermodynamics
and rheology correctly was introduced by our group some
time ago and now goes with the name RaPiD.43–47 This
model, however, does not explicitly include the architectural
issues that we want to address in this paper.

B. Uncrossability constraint

As mentioned in Sec. II A, every 20 monomer units are
lumped together to form a highly coarse-grained particle. Due
to the high coarse-graining level, the interaction potential of
blobs becomes very soft and bonds can cross each other. In
order to prevent the occurrence of this kind of unrealistic phe-
nomenon, we implement an uncrossability constraint algo-
rithm (see below), which introduces entanglements when im-
minent bond crossings are detected. The number of monomers
mapped on one blob on the one hand satisfies the need for a
large integration time step, and on the other hand assures that
the size of the blobs is smaller than one reptation tube diame-
ter. This allows for the possibility of reptation to emerge from
the simulation. A coarse graining to blobs larger than the tube
diameter will smear out confinement effects, resulting from
the potential interactions and the imposed uncrossability con-
straints, and show reptation at an incorrect length scale, un-
less reptational moves are introduced by hand at the level of
the blobs.

The uncrossability constraint is based on the consider-
ation that bonds between blobs have elastic properties. By
means of a geometric check, as soon as two bonds are detected
to touch each other, an entanglement point X will be created at
the crossing site. Concomitantly, the attractive potential con-
tributed by the two crossing bonds is changed by replacing
the two blob distances Ri, i + 1 by pathlengths Li, i + 1,

ϕatt (Li,i+1) = c3(Li,i+1)μ. (6)

The pathlength Li, i + 1 is the contourlength of the path
that starts at blob i and goes via a number of entanglement
points X1, X2, . . . , Xp, to the next blob i + 1,

Li,i+1 = |Ri − X1| + |X1 − X2| + · · ·
+ |Xp−1 − Xp| + |Xp − Ri+1|. (7)
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FIG. 1. Schematic representation of B(B3)2 with a branch point and three
arms.

With every time step the “entanglements” so created are
updated such as to minimize the total attractive bond energy,
and thereby forbid chain crossing. We stress that the num-
ber of entanglements so defined is not the same as the en-
tanglement number Z as it is used in reptation theory. It is
rather the long-lasting entanglements which define the entan-
glement number. We refer to the original paper by Padding
and Briels26 for a distribution of entanglement lifetimes for
the linear chains.

C. Topology specification and simulation details

We conduct our simulations with linear and star
polyethylene melts at a temperature of 450 K. The number-
ings of a 3-arm star polymer are shown in Fig. 1. The name
of a star polymer is defined by putting information of the
branch point into the first bracket, and after that the length
and number of star arms. For example, B(B3)3 consists of one
branch point to which three arms are attached, each consist-
ing of three blobs. Linear chains of n blobs in this scheme are
simply called Bn. Notice that the properties of, for example,
B7 and B(B3)2 should be the same.

The main complication with the simulation of star poly-
mers is due to the presence of a branch point. In this paper,
we build stars by linking together linear chains to one central
branch point. Any two linear chains connected at a branch
point should then communicate through appropriate potential
forces not present before the connection. Moreover, entangle-
ments should be dealt with correctly.

In view of the algorithmic complications, we first imple-
mented a simple test to ensure that a branch point works prop-
erly when linking together two linear chains. The general idea
is displayed in Fig. 2, where two B4 chains are connected at
a branch point by overlapping the tail and head blob of the
first and second B4 chains. Consequently, a new chain, called

FIG. 2. Sketch of B(B3)2 on the right with a branch point made by joining
two B4 chains on the left.
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FIG. 3. Diffusion of B7 and B(B3)2. For both center of mass and blobs, these
two chains diffuse in the same way.

B(B3)2 with a branch point B and two side arms (B3)2, is cre-
ated. We assume that the branch point has a mass and friction
equal to that of a normal blob. Provided that the two origi-
nally separated B4 chains now communicate their entangle-
ments through the shared branch point in a correct way, the
newly formed B(B3)2 should be equivalent with a single B7

according to the effective blob number. Therefore, entangle-
ments which slip over the branch-end of one chain should not
be eliminated, as they would be at a regular end of a chain,
but be recognized as entanglements at the partner chain at
the other side of the branch point. Only if this is done cor-
rectly will the correct results be obtained for the longer chain.
The procedure followed by us at branch points of functional-
ity three will be described below.

Blob and center of mass mean square displacements of
B(B3)2 and B7 chains are shown in Fig. 3. The simulation pa-
rameters are given in Table II. From this plot, it is seen that
the new linear chain with a branch point inside diffuses in ex-
actly the same way as B7. We also make a comparisons of the
rheological properties of both systems expressed by their zero
shear stress relaxation moduli. In Fig. 4, the shear relaxation
modulus of B(B3)2 very well follows that of B7. We conclude
that the branch point works perfectly well in terms of chain
dynamics.

Now shifting our attention to branch points in multi-
armed stars, we need to take care that the angle between two
bonds connected through a branch point should be treated

TABLE II. Parameters for potential of mean force.

Types Parameter Value Unit

Non-bonded c0 5.56 kJ mol−1

b0 0.49 nm
Bonded repulsive c1 10.46 kJ mol−1

b1 0.26 nm
c2 3.49 kJ mol−1

b2 0.67 nm
Bonded attractive c3 6.46 10−3 kJ mol−1 nm−μ

μ 9.73
Angular c4 3.01 kJ mol−1

c5 24.08 kJ mol−1

ν 1.2
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FIG. 4. Stress autocorrelation function of B7 and B(B3)2, they are following
the same relaxation behavior.

differently than the one in a linear chain. The bonds inside
a linear chain form angles taking any value between zero
and π . With three-armed stars we expect that the arms at the
branched point will on average be co-planar and make angles
of 2/3π . In order to encourage our coarse-grained system to
take this configuration, we have changed the bending poten-
tial at the branch point to

ϕθ
bp(θ ) = c5

(
cos θ − cos

2

3
π

)2

. (8)

In Fig. 5, we have plotted the observed probability distri-
butions (pdf), both for the bond angles along the arms (panel
(a)) and for those at the branch points (panel (b)), with pa-
rameters given in Table II. Notice that the pdf for the branch
points has its maximum at a value of cos θ slightly higher than
−0.5, i.e., at angles slightly smaller than 2/3π . The reason for
this is that with non co-planer bonds the total sum of the bond
angles is less than 2π .

We finally must decide what happens to entanglement
that slip over the branch point. Consider an entanglement that
“lives” on arm number one and slips over the branch point,
as illustrated in Fig. 6. After this move the entanglement may
find itself in one of four situations, it may have been anni-
hilated, it may be entangled either with arm number two or
number three, or it may be entangled with both arms number
two and number three. We have implemented the following al-
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FIG. 5. Probability distributions of bending angles in arbitrary unit. Panel
(a) shows the bond angles along the arms, and curve in panel (b) for those at
the branch points.

FIG. 6. Diagram of an entanglement slipping past a branch point.

gorithm. After the slip, we randomly choose either arm num-
ber two or arm number three. For the chosen arm, we perform
the usual entanglement checks after a slip over a blob. If an
entanglement occurs with this arm, we stick to this entangle-
ment ignoring other possibilities. If no entanglement occurs
with this arm, we perform the entanglement checks for the
remaining arm. If an entanglement does occur with this arm,
we stick to this one and continue the run. In case also with
this arm no entanglement survives, we annihilate the entan-
glement and continue the run. This algorithm will give the
correct result in case the entanglement is finally annihilated.
In case, exactly one entanglement should remain, the algo-
rithm will find the correct arm. In case, two entanglements
should occur, the algorithm only creates one on a randomly
chosen arm. A large number of geometrical checks would be
required to check for double entanglements. All results with
the present algorithm are therefore valid under the assumption
that double entanglements are relatively rare.

To generate an equilibrated box, we randomly place a
number of polymers into the simulation box, keeping the mass
density equal to its melt value of ρ = 0.761 g/cm3. Unentan-
gled simulations are performed first to allow a thorough equi-
libration. Then the uncrossability constraints are switched on
to add the entanglement effect. The parameters for the poten-
tial of mean forces of this model are shown in Table II. They
apply when λ = 20, and are fit to the distribution functions
obtained in atomistic simulations.25

III. RESULTS

In this section, we discuss typical blob time dependent
mean square displacements. To this end, we number the blobs
along the arms of each star from zero to three. With each star
and each arm, blob number zero is the branch point and blob
number three is the end point, shown in Fig. 1. Blob number
one is the blob which is topologically closest to the branch
point and blob number two is closest to the end point. The
mean square displacement for blobs of type i is then

MSDi = 〈[Ri(t) − Ri(0)]2〉, (9)

here the pointy brackets denote the usual average over initial
times and an average over all blobs of type i, i.e., over all stars
and all arms. Besides these, we will also discuss the averaged
blob mean square displacement, MSDbl = 3

10

∑3
i=1 MSDi

+ 1
10 MSD0 and MSDcm = 〈[Rcm(t) − Rcm(0)]2〉, with the Rcm

being the center of mass of the star.
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Furthermore, we will discuss the shear relaxation modu-
lus G(t), i.e., the linear stress response to a step strain. It can
be measured from equilibrium fluctuations of the stress tensor
as follows:

G(t) = V

kBT
〈σαβ(t)σαβ(0)〉, α �= β, (10)

with V the total volume of the simulation box, α, β ∈ {x, y, z}
are different coordinate directions, and σαβ is the microscopic
stress tensor

σαβ = − 1

V

∑
i,j

(ri,β − rj,β)Fij,α, (11)

where r is the blob position vector, and Fij, α is the α compo-
nent of the force on blob i exerted by blob j. From G(t) we
obtain the storage G′(ω) and loss modulus G′′(ω) in the usual
way

G′(ω) = ω

∫ ∞

0
sin(ωt)G(t)dt,

G′′(ω) = ω

∫ ∞

0
cos(ωt)G(t)dt.

(12)

A. Dynamics and rheological properties
of star polymer

In order to confirm the complete relaxation of our stars
at the longest chain length possible, we have calculated time
dependent autocorrelation functions (ACF) for the unit vec-
tors directed from the branch point to the end-points of the
star arms. The results are shown in Fig. 7 below, together
with those for the end-end vectors of linear chains. It is clear
from this picture that, even when the decay of the branch-end
vectors for our star is very slow, many decay-times fit within
the total runtime 106 ps. We are assured, therefore, that
our system is well equilibrated. Similar conclusions may be
drawn from the mean-square displacements discussed next.

In Fig. 8, we display the blob and center of mass mean
square displacements both when entanglements are accounted
for (black curves) and when entanglements have been ig-
nored (red curves). As is clear from the plots, entanglements

0 2×10
4

4×10
4

6×10
4

Time   /   [ps]

0.0

0.2

0.4

0.6

0.8

1.0

<
R

e(t
)R

e(0
)>

/ <
R

e2 >
 B(B

3
)
3

B
7

B
4
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FIG. 8. Blob mean square displacement (dashed) and center of mass
mean square displacement (solid) of B(B3)3 with (black) and without (red)
entanglement.

substantially slow down the almost Rouse-like mean square
displacements obtained for non-entangling polymers.

In order to better understand the structural diffusion of
entangled stars, we have measured typical blob mean square
displacements and plotted them in Fig. 9. As a result of
the symmetrical arrangement of the various blobs in B(B3)3,
blobs on equivalent positions along the three arms diffuse ac-
cording to identical curves. The curves in Fig. 9 can there-
fore be separated into four groups, from bottom to top corre-
sponding to segmental motions of the innermost branch point
to the outermost free ends of each of the arms of the star.
At early times, because of topological constraints originat-
ing along three different arms, the central branch point moves
very slowly, in fact almost immediately as slow as in its final
diffusive regime (solid black). The blobs next to the branch
point move substantially faster than the branch point and be-
come diffusive at a much later time. This trend continues with
blobs being situated increasingly further outwards along the
arms, with the arm end being the fastest of all, becoming dif-
fusive only at a very late time.

In order to analyse the dynamics of the various blobs
even further, we have calculated Rouse modes and their
time correlation functions. In the Appendix, we shortly re-
view the application of the Rouse model to nonlinear poly-
mers. From a mathematical point of view, the analysis in the
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Appendix amounts to a transformation from blob-coordinates
Rk to Rouse coordinates Xk which are chosen such that the
coupled motion of the blobs in the Rouse model becomes de-
coupled. The time correlation functions of the Rouse coordi-
nates, Rouse mode correlation functions for short, within the
Rouse model decay exponentially with relaxation times τ k. In
case the Rouse model does not apply, the Rouse coordinates
still provide interesting coordinates to describe the motion of
the blobs, in particular to reveal deviations from Rouse behav-
ior. Due to interactions between non-bonded blobs and the un-
crossability constrains, the Rouse mode time correlation func-
tions will not follow the exponential decay, and may usually
be described reasonably well by the so-called stretched expo-
nentials according to

Ck(t) = 〈(Xk(t) · Xk(0))〉/〈X2
k

〉 = exp[−(t/τ ∗
k )βk ], (13)

the relaxation time τ ∗
k and stretching parameter βk are ob-

tained for each Rouse mode number k by fitting Eq. (13) to
the simulated normalized Rouse mode autocorrelation Ck(t).
Notice that βk is equal to one in case the Rouse model applies.

In Fig. 10, we have plotted Ck(t) both for simulations
with and without taking entanglements into account. For all
modes, the unentangled Rouse mode correlations are per-
fectly well described by simple exponentially decaying func-
tions, indicating that the soft potential Eq. (5) does not lead
to non-Rouse behavior. Moreover, at very short times, the
Rouse mode correlation functions of the entangled and non-
entangled simulations are tangential to each other. Quickly,
however, entanglements severely slow down the Rouse mode
correlations such that they cannot be described anymore by
simple exponentials, although the stretched exponentials of
Eq. (13) still do a very good job.

According to Eq. (A12), the blob positions can be calcu-
lated from the Rouse mode coordinates. Assuming that in the
real system Rouse modes are still not correlated, blob mean
square displacements may be calculated according to

〈[Rn(t) − Rn(0)]2〉

= 6DRt + 2
N−1∑
k=1

S2
nk〈Xk · Xk〉(1 − Ck(t)). (14)
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culations from the modes: the upper groups are using the Rouse exponential
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In Fig. 11, the solid curves are the blob displacements
calculated from the simulation. The dotted lines are calculated
according to Eq. (14) using the simulated diffusion coefficient
DR and the exponential representation of the Rouse mode cor-
relation functions (upper group of curves, left vertical axis) or
the stretched exponential representation of the Rouse mode
correlation functions (lower group of curves, right vertical
axis). It is clearly seen that the Rouse model representation,
i.e., the exponential representation of the Rouse mode cor-
relation functions, leads to blob motions much faster than the
actual motions, while the stretched exponential representation
gives almost correct results. The remaining deviations in the
latter case may be caused by correlations between different
Rouse modes, or by small deviations of the Rouse mode cor-
relation functions from their stretched exponential fits.

We now turn our attention to the viscoelastic proper-
ties of our star polymer B(B3)3 melt. In Fig. 12, the storage
and loss moduli, G′(ω) and G′′(ω), are plotted as a func-
tion of frequency. Both curves are calculated as the appro-
priate Fourier transform of the stress relaxation modulus G(t),
shown in the inset. In the low frequency region, G′(ω) and
G′′(ω) are proportional to ω and ω2, respectively. The crossing
of both curves occurs when ω approximately equals 10−3/ps,
which means that the longest relaxation time of B(B3)3 is
roughly equal t = ω−1 = 103 ps. At frequencies beyond the
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FIG. 12. The storage and loss moduli, G′(ω) and G′′(ω), of B(B3)3 system,
transformed from stress relaxation curve G(t) on top left.
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crossing point, G′(ω) becomes larger than G′′(ω), and both
curves continue to increase up to the highest frequency that
can be investigated with the present coarse-grain model. The
continuous increase of the loss modulus after crossing the
storage modulus is in agreement with experimental4 and
theoretical2, 3 predictions for small stars. Since our star is
rather short, the slope of the loss modulus is still rather large.
Only for very large stars will the slope practically become
zero; this holds true both for Rouse stars as well as for entan-
gled stars.

B. Comparisons between star and linear polymers

Segmental motions in general reveal (part of) the topo-
logical constraints in complex polymers. In order to better
understand the relation between topological constraints and
architectural complexity, we compare the conformational and
dynamical properties of B(B3)3 and those of related linear
chains. We selected three linear chains for comparison: B4,
which corresponds to the length of one arm, B7, which cor-
responds to the longest linear backbone in B(B3)3 between
two ends, and B10, corresponding to a linear chain having the
same number of blobs or molecular weight as the target star.

The radius of gyration Rg can be calculated directly from
the simulated configurations, or assuming Rouse-like behav-
ior and using

Rg =
√√√√ 1

N

N−1∑
k=1

〈Xk · Xk〉 = b

√√√√ 1

N

N−1∑
k=1

1

λk

, (15)

where b is the Kuhn length and λks are the eigenvalues of
the connectivity matrix T (see the Appendix). The value of
R2

g for B(B3)3 is 4.065 nm2, and the ratio of R2
g of B(B3)3 to

that of B10 turns out to be 0.86, which is a bit larger than the
theoretical or experimental value 0.848, 49 obtained with very
large molecular weights.

It is interesting to compare the branch-end vector auto-
correlation function of the star arms with the end-end vector
autocorrelation functions of various linear chains as shown in
Fig. 7. As is to be expected, the star arms relax much slower
than the corresponding linear chain B4. The slowing down
effect of connecting three arms together is actually so strong
that the arm relaxation is even much slower than the end-end

10
2

10
3

10
4

10
5

10
6

Time   /   [ps]

10
-1

10
0

10
1

10
2

10
3

M
S

D
   

/  
 [

nm
2 ]

B(B
3
)
3

B
10

B
7

FIG. 13. Comparisons of center of mass mean square displacement in
B(B3)3, B10, and B7.
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FIG. 14. Comparisons of zero shear relaxation in B(B3)3, B10, and B7.

vector relaxation of the longest chain present in the star,
i.e., B7.

We next compare star and linear chains by their center
of mass mean square displacements and zero shear relaxation
moduli. Fig. 13 reveals that the MSD curve of B(B3)3 (solid
line) strongly overlaps with the one of B10 (circle symbol) and
is substantially slower than that of B7. Notice that our linear
stars are too small to show the various regimes in the (blob-)
mean square displacements that are so characteristic for rep-
tational motion. In fact, our longest chain is a bit shorter than
two entanglement lengths. We refer to the original papers of
Padding and Briels for further information on this issue.26 Al-
though somewhat boldly, we conclude/surmise that relatively
small stars diffuse similar to linear polymers of equal mass;
on the basis of the present results, nothing can be said about
the diffusive behavior of much larger stars.

In contrast, Fig. 14 shows that the stress relaxation of
B(B3)3 is much faster than that of B10, very akin to that of B7.
Intuitively, one may say that stress fluctuations are roughly
proportional to the largest distance between two points of ap-
plied forces. These are very similar in B(B3)3 and B7, and
substantially shorter than in B10. By integrating G(t), we have
calculated zero shear rate viscosities, finding η0(B7) = 9.22
× 10−3 Pa s, η0(B10) = 32.3 × 10−3 Pa s, and η0(B(B3)3)
= 9.19 × 10−3 Pa s. For the two linear polymers, these results
are in agreement with those in Ref. 26, and in good agreement
with experiments. We could not compare the star polymer to
experimental results, because synthesized stars typically have
much larger arms.

IV. CONCLUSIONS

In this work, the TWENTANGLEMENT code to perform
coarse-grain simulations of linear polymers has been made
applicable to polymers of more complex architectures. In or-
der to deal with complex architectures we have included the
possibility to connect several polymers at one branch point
(of course, one complex polymer may contain more than one
branch point). We have tested our code by connecting two
linear chains into a longer linear chain. Next, we applied our
method to build a star polymer B(B3)3 and investigated its
dynamical and rheological properties. The results were com-
pared with those of linear melts with molecular weight equal
to that of the entire molecule or that of the main back bone
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chain consisting of two arms and the branch point of our
three-arm star.

From our simulations, we found that the shape of the
polymer has an important effect on the properties of the
melt. We observed different dynamics for different star poly-
mer segments. Rouse mode correlation functions could be
well described by stretched exponentials. Assuming uncorre-
lated Rouse modes we recovered the blob mean square dis-
placements almost completely, meaning that different Rouse
modes are only slightly correlated. The comparison with lin-
ear chains revealed that (relatively short) star polymers diffuse
as linear chains of equal mass, whereas they display rheolog-
ical behavior very similar to that of the linear polymer with a
molecular mass equal to that of the longest linear chain avail-
able in the star.

Obviously, each arm of our B(B3)3 represents a rather
short polymer, approximately a bit less than one entanglement
length, but still long enough to capture some characteristics
of a star polymer melt that is different from a linear polymer
melt. Future work will focus on simulations of stars having
longer entangled arms and different numbers of arms to un-
derstand the chain length and branching degree effect. Efforts
are also in progress aiming at simulating branched polymers
of other shapes.
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APPENDIX: ROUSE MODEL OF NONLINEAR
POLYMERS

In this Appendix, we quickly review the salient features
of the Rouse model as applied to nonlinear polymers. We col-
lect all position vectors Rn in one long vector R. To be clear,
every entry of R is a vector, not one of its Cartesian coordi-
nates. The total number of entries in R is therefore equal to the
number of blobs N in each polymer. The equation of motion
then reads

dR

dt
= −wT R + F, (A1)

here T is a symmetric matrix reflecting the topology of the
polymer and F is a vector of random displacements, for which

〈F (t)〉 = 0,

〈F (t) · F (0)T 〉 = 6DIδ(t),
(A2)

Here, I denotes the N × N unit matrix. Finally, w denotes the
elementary Rouse rate and D = 1

3b2w with b being the Kuhn
length.

As an example, we mention that equations of motion for
the smallest possible three arm star BB3 read as

dR0

dt
= −w(3R0 − R1 − R2 − R3) + f0,

dR1

dt
= −w(R1 − R0) + f1,

dR2

dt
= −w(R2 − R0) + f2,

dR3

dt
= −w(R3 − R0) + f3,

(A3)

from which we see that the matrix T reads

T =

⎡
⎢⎢⎢⎢⎣

3 −1 −1 −1

−1 1 0 0

−1 0 1 0

−1 0 0 1

⎤
⎥⎥⎥⎥⎦. (A4)

Likewise for B(B3)3, we find

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −1 0 0 −1 0 0 −1 0 0

−1 2 −1 0 0 0 0 0 0 0

0 −1 2 −1 0 0 0 0 0 0

0 0 −1 1 0 0 0 0 0 0

−1 0 0 0 2 −1 0 0 0 0

0 0 0 0 −1 2 −1 0 0 0

0 0 0 0 0 −1 1 0 0 0

−1 0 0 0 0 0 0 2 −1 0

0 0 0 0 0 0 0 −1 2 −1

0 0 0 0 0 0 0 0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(A5)

We solve Eq. (A1) by diagonalizing matrix T,

R = SX,

dX

dt
= −w�X + G,

� = S−1T S,

G = S−1F,

(A6)

here S is chosen such that � is diagonal, i.e., such that the
columns of S are mutually orthogonal eigenvectors of T. The
entries of X are called Rouse vectors. It is convenient to nor-
malize these eigenvectors to unity, in which case S−1 = ST. In
that case,

〈G〉 = 0,

〈G(t) · G(0)T 〉 = 6DIδ(t).
(A7)

Always one of the eigenvalues of T is equal to zero,
with corresponding normalized eigenvector having all entries
equal to 1/N. The corresponding Rouse-vector X0 and random
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displacement vector G0 are given by

X0 = 1√
N

N∑
k=1

Rk,

G0 = 1√
N

N∑
k=1

Fk.

(A8)

Solving the equation of motion in this case, we find

X0(t) = X0(0) +
t∫

0

dt ′G0(t ′),

(A9)
〈[X0(t) − X0(0)]2〉 = 6Dt.

Notice that X0 is
√

NRcm, so the diffusion coefficient is
DR = D/N.

For the Rouse-vectors with non-zero eigenvalues, we
obtain

Xk(t) = X0(0)e−wλkt +
t∫

0

dt ′e−wλk (t−t ′)Gk(t ′). (A10)

Noticing that 〈Xk(t) · Xk(t)〉 = 〈Xk(0) · Xk(0)〉, we find

〈Xk · Xk〉 = 6D/(2wλk) = b2/λk,

(A11)

〈[Xk(t) − Xk(0)]2〉 = 2b2

λk

(1 − e−wλkt ),

with these results we are now in the position to calculate blob
mean square displacements. For this purpose, notice that

Rn = 1√
N

X0 +
N−1∑
k=1

SnkXk. (A12)

We then easily obtain

〈[Rn(t) − Rn(0)]2〉

= 6DRt + 2
N−1∑
k=1

S2
nk〈Xk · Xk〉(1 − e−ωλkt ). (A13)

The example of BB3 given above has eigenvalues λk = 0,
1, 1, 4. The corresponding S-matrix reads

S =

⎡
⎢⎢⎢⎢⎢⎣

1
2 0 0 1

2

√
3

1
2

1
2

√
2 0 0

1
2 − 1

2

√
2 1 0

1
2 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

. (A14)

Similarly, the S for B(B3)3 can be calculated.
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