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a  b  s  t  r  a  c  t

Cloud  contamination  impacts  on the  quality  of hyper-temporal  NDVI  imagery  and  its subsequent  inter-
pretation.  Short-duration  cloud  impacts  are  easily  removed  by using  quality  flags  and  an  upper  envelope
filter, but  long-duration  cloud  contamination  of NDVI  imagery  remains.  In this  paper,  an  approach  that
goes  beyond  the  use  of  quality  flags  and  upper  envelope  filtering  is  tested  to detect  when  and  where
long-duration  clouds  are  responsible  for unreliable  NDVI  readings,  so  that  a user  can  flag  those  data  as
missing.  The  study  is  based  on  MODIS  Terra  and  the combined  Terra-Aqua  16-day  NDVI  product  for  the
south of  Ghana,  where  persistent  cloud  cover  occurs  throughout  the year.  The  combined  product  could
be assumed  to have  less  cloud  contamination,  since  it  is  based  on  two  images  per day.  Short-duration
cloud  effects  were  removed  from  the  two  products  through  using  the  adaptive  Savitzky–Golay  filter.  Then
for each  ‘cleaned’  product  an  unsupervised  classified  map  was  prepared  using  the  ISODATA  algorithm,
and,  by  class,  plots  were  prepared  to depict  changes  over  time  of  the  means  and  the  standard  deviations
in  NDVI  values.  By  comparing  plots  of  similar  classes,  long-duration  cloud  contamination  appeared  to
display  a decline  in  mean  NDVI  below  the  lower  limit  95%  confidence  interval  with  a coinciding  increase
in  standard  deviation  above  the  upper  limit  95%  confidence  interval.  Regression  analysis  was  carried  out
per NDVI  class  in  two  randomly  selected  groups  in  order  to statistically  test  standard  deviation  values
related  to long-duration  cloud  contamination.  A  decline  in  seasonal  NDVI  values  (growing  season)  were
below the  lower  limit  of  95%  confidence  interval  as  well  as  a concurrent  increase  in  standard  deviation
values  above  the upper  limit  of  the 95%  confidence  interval  were  noted  in  34  NDVI  classes.  The  regres-
sion  analysis  results  showed  that  differences  in  NDVI  class  values  between  the  Terra  and  the  Terra-Aqua
imagery  were  significantly  correlated  (p <  0.05)  with  the  corresponding  standard  deviation  values  of  the

Terra  imagery  in  case  of  all NDVI  classes  of  two selected  NDVI  groups.  The  method  successfully  detects
long-duration  cloud  contamination  that  results  in unreliable  NDVI  values.  The  approach  offers  scientists
interested  in  time  series  analysis  a method  of  masking  by  area  (class)  the periods  when  pre-cleaned  NDVI
values  remain  affected  by  clouds.  The  approach  requires  no  additional  data  for execution  purposes  but
involves  unsupervised  classification  of the  imagery  to carry  out  the evaluation  of class-specific  mean
NDVI  and  standard  deviation  values  over  time.
. Introduction

The availability of accurate land cover information is important
or policy formulation and the management of natural resources,
ncluding biodiversity, forestry and the issue of food security
Cihlar, 2000; Defries and Belward, 2000). Climate change issues

urther enhance the general interest in the availability and use
f accurate land use/land cover information at regional to global
cales (Cihlar, 2000). The common method of generating land cover
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information is the use of satellite imagery (Cihlar, 2000; Lillesand
et al., 2004). During the past decade Normalized Difference Veg-
etation Index (NDVI) time series imagery has increasingly been
used for land use/land cover mapping and monitoring (Zhang et al.,
2003; Xiao et al., 2006; Wardlow et al., 2007; Bontemps et al., 2008;
Zhang et al., 2008; de Bie et al., 2011; Nguyen et al., 2011). NDVI
provides a measure of photosynthetically active biomass (Sarkar
and Kafatos, 2004). The available NDVI time series data suffer from
cloud contamination, thus limiting the quality of the maps gen-
erated (Jonsson and Eklundh, 2002; Fensholt et al., 2006; Ma  and
Veroustraete, 2006; Hird and McDermid, 2009; Clark et al., 2010).
The presence of clouds and haze reduces the spectral reflectance
in infra-red, causing reduced NDVI readings (Gu  et al., 2009). To
overcome contamination caused by clouds and atmospheric effects
at data supplier level, the preprocessing routines for satellite data

dx.doi.org/10.1016/j.jag.2013.02.001
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http://www.elsevier.com/locate/jag
mailto:amjad@itc.nl
mailto:amjadalee65@yahoo.com
dx.doi.org/10.1016/j.jag.2013.02.001


A. Ali et al. / International Journal of Applied Earth Observation and Geoinformation 24 (2013) 22–31 23

l distr
S

i
p
r
l
a

o
c
e
i
N

e
a
a
t
l
p
e
2

Fig. 1. Rainfall map  of Ghana, showing spatia
ource:  Ghana Meteorological Services Department, Leigon, Ghana.

nclude the generation of quality flags, and maximum value com-
osite (MVC) imagery (Holben, 1986; Stowe et al., 1991). The
emaining cloud corrections and adjustments are made at user
evel through the use of provided quality flags and data adjustment
lgorithms.

The quality flags provide pixel-level information about presence
f atmospheric aerosols, cloud cover, presence of snow and ice
over, likelihood of shadow, and bidirectional reflectance (Stowe
t al., 1991, 1999; Ackerman et al., 1998). At user level, they provide
mportant information that serves to reduce the use of spurious
DVI data (Jonsson and Eklundh, 2002).

The maximum value composite technique (Holben, 1986; Stowe
t al., 1991) selects the highest recorded value for each pixel during

 pre-defined period of time. The technique has improved the over-
ll data quality, reducing the effects of clouds and haze. However, in
he tropics and some coastal regions where cloud cover persists for

ong duration, maximum value composite technique is known to be
oor in dealing with cloud contamination (Holben, 1986; Goward
t al., 1991; Verhoef et al., 1996; Cihlar et al., 1997; Roerink et al.,
000; Fensholt et al., 2010).
ibution of mean annual rainfall (1961–1997).

To adjust NDVI values affected by undetected clouds and those
marked missing using quality flags, researchers have proposed a
number of methods. These include best index slope extraction
(BISE) (Viovy et al., 1992), the weighted least squares regression
approach (Swets et al., 1999), geostatistical methods (Addink and
Stein, 1999; Van der Meer, 2012), modified BISE filtering (Lovell
and Graetz, 2001), Fourier analysis (Verhoef et al., 1996; Roerink
et al., 2000; Moody and Johnson, 2001; Wagenseil and Samimi,
2006), mean value iteration (Ma  and Veroustraete, 2006), function
fitting approaches (adaptive Savitzky–Golay and logistics func-
tion fitting) (Jönsson and Eklundh, 2004), the whittaker smoother
(Atzberger and Eilers, 2011b),  wavelets (Lu et al., 2007) and iter-
ative interpolation for data reconstruction (Julien and Sobrino,
2010). However, scientists have reported that, although they are
able to adjust data affected by short-duration clouds, they are
unable to correct the long-duration cloud contamination prob-

lem (Jonsson and Eklundh, 2002; Chen et al., 2004; Jönsson and
Eklundh, 2004; Lu et al., 2007; Atzberger and Eilers, 2011a). The
characterization of cloud duration as short or long is relative and
changes with different correction tools applied; depending upon
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Fig. 2. Schematic diagram of the method used.
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Fig. 3. Average and minimum divergence statistics of maps with 10–100 class

heir robustness to deal with data contamination resulted due to
louds.

The NDVI time series data affected by long-duration clouds
educe the quality of any subsequent interpretation. The authors
ecognized the need and aims to develop a procedure to detect
hich data are affected by long-duration cloud contamination par-

icularly in the case of hyper-temporal NDVI time series. After
etection, a user can flag those values as missing and avoid their
se during subsequent analysis. The method builds on statistically
erived unsupervised classification of the time series imagery.

. Materials and methods

.1. Study area

Ghana was  selected as study area because of the high fre-
uency of cloudy days (Fig. 1). It has a tropical savanna climate
Peel et al., 2007), with annual temperatures above 24 ◦C (Ghana
nvironmental Protection Agency, 2001). Ghana has two  distinct
ainfall regimes in two different parts of the country. Southern
hana has a high frequency of cloudy days and receives more rain-

all than the northern parts (Kakane and Sogaard, 1997; Shahin,
002; Fensholt et al., 2007). Annual average rainfall varies from 600
o 2100 mm in the southern regions and is marked by two wet  sea-
ons: March–July, and September–November (Owusu et al., 2008).
n northern Ghana, rainfall occurs in one season (May–October),

ith annual rainfall ranging from 700 to 1100 mm.

.2. Data preprocessing

MODIS Terra (MOD13Q1) and MODIS Aqua (MYD13Q1) 16-day
aximum value composite NDVI imagery with a 250 m spatial res-

lution was downloaded from https://wist.echo.nasa.gov/wist-bin
accessed February 2010). The imagery covered the period from 1
anuary 2003 to 31 December 2009.

Terra and Aqua sensors acquire images at two different times of
he day (Terra 10:30 am and Aqua 01:30 pm local standard time).
he downloaded Terra and Aqua 16-day maximum value composite
magery has similar spatial, spectral and radiometric characteris-
ics. NDVI values of Terra and Aqua are reported to be strongly

orrelated (R2 = 0.97, RMSE = 0.04) (Gallo et al., 2005).

The Vegetation Index Quality (VIQ) layers provide pixel values
ffected by clouds, haze and other atmospheric effects, which were
sed to set the value of those pixels to missing. All NDVI values
e arrow points to the coinciding peak in both separability values (97 classes).

were transformed to DN values (0–255) using Eq. (1),  where DN = 0
is coded as missing.

NDVI (DN − value) = integer16-bit signed of NDVI ∗ 0.02133 + 43.117 (1)

The Terra-Aqua dataset was generated by combining both Terra
and Aqua maximum value composite NDVI imagery. The com-
bined dataset was expected to suffer less from cloud contamination
because it is based on two  images a day instead of one.

Pixel-specific date stamps were used to combine the two
images. They have an 8-day difference in the start dates of their
16-day maximum value composite periods, meaning that an 8-
day shift between the two  imagery series occurred. We  retained
the Terra 16-day period as default when merging the Aqua data.
Using pixel-specific date stamps, the pixel-specific Aqua values
were compared with the corresponding maximum value composite
values of the Terra imagery; the highest values (maximum compos-
ite) were kept to represent the relevant Terra period and pixel.

Finally, the adaptive Savitzky–Golay method built in TIMESAT
was used to remove short-duration impacts on cloud-affected pixel
values of the Terra and Terra-Aqua NDVI datasets (Jönsson and
Eklundh, 2004; Beltran-Abaunza, 2009). This method is widely
used and found useful for noisy and non-uniform NDVI time series
datasets (Jönsson and Eklundh, 2004; Feng et al., 2008; Beltran-
Abaunza, 2009; Boschetti et al., 2009).

2.3. Long-duration cloud contamination detection

The preprocessed Terra hyper-temporal NDVI dataset, com-
posed of 161 layers, was  classified into 10–100 classes using the
Iterative Self-Organizing Data Analysis (ISODATA) algorithm (Ball
and Hall, 1965; Tou and Gonzalez, 1974). ISODATA is used for an
unsupervised classification of patterns in remote sensing into clus-
ters or classes (Jain et al., 1999). It is iterative and self-organizing,
which repeats itself and locates classes with minimum user input
(Tou and Gonzalez, 1974; Swain and Davis, 1978). No prior knowl-
edge is needed to train the processing. This has more consistent
results and easy to reproduce. Similarly different forms of statistics
such as divergence statistics; Jeffries-Matsushita can be calculated
for each class to finally select the optimum classification result (de
Bie et al., 2012).

The ISODATA algorithm was  run with the convergence threshold

set to 1 and iterations set to 50. After classification, the average
and minimum divergence values between cluster centroids were
plotted against the number of classes generated. Coinciding high
average and minimum divergence values were used as guidance

https://wist.echo.nasa.gov/wist-bin
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Fig. 4. Terra-derived NDVI class profiles arranged in groups: (a) characterized by suspicious decline in NDVI values during the growing season (marked with circles) and (b)
two  groups of NDVI class profiles showing no suspicious decline in NDVI values. 1-sided 95% confidence interval (95% CI) is shown in dashed line.
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imilar  areas in southern Ghana.

o select the optimal classified image (Swain and Davis, 1978). The
tatistics generated by the ISODATA algorithm for selected NDVI
lasses were used to detect areas affected by long-duration cloud
ontamination.

NDVI profiles representing the mean NDVI values of all the pix-
ls of the respective class were plotted over time (2003–2009) to
isualize their temporal behavior, and based on shape and intensity
he NDVI profiles were assigned to different groups.

The mean NDVI 95% confidence interval lower limit and the
tandard deviation 95% confidence interval upper limit were cal-
ulated to objectively define cloud contamination in NDVI values.
o calculate the lower limit of the 95% confidence interval of NDVI,
rst the mean annual NDVI profiles (23 values) were calculated by
veraging each decade from 2003 to 2009. After that a single mean
DVI profile of all the classes in a group was created and used as

 reference for calculating the lower limit 95% confidence interval
or that group. The mean profile of all the classes portrayed the
ormal behavior of all the classes in a group and was  used as a
eference for defining a suspicious decline. Similarly the standard
eviation values of each class in a group were first averaged (pooled
tandard deviation) on decadal basis across the years (2003–2009)
o create a mean profile of each class (23 values) in a group. They
ere then averaged (pooled standard deviation) per group to cre-

te a single standard deviation profile as a reference to find an

pper limit 95% confidence interval of standard deviation values.
he 95% confidence interval is used to indicate a statistically safe
ange within which a value can be considered closer to the actual
alues (Burns and Burns, 2008). The upper limit 95% confidence
erived from the Terra and Terra-Aqua products. The classes of each product cover

interval of standard deviation values was used because cloud con-
tamination negatively affects NDVI values therefore increases the
standard deviation values (Fig. 2).

To identify long-duration cloud contamination within a group of
NDVI profiles, the NDVI and standard deviation profile of each class
within that group were plotted. The mean NDVI 95% confidence
interval lower limit and the standard deviation 95% confidence
interval upper limit were added to the NDVI standard deviation
plots. A decline in NDVI value below the lower limit of the 95%
confidence interval and a concurrent increase in standard devia-
tion above the upper limit of the 95% confidence interval indicate
long-duration cloud contamination.

2.4. Validation

Two  groups of Terra-NDVI classes with a suspicious decline in
NDVI values were randomly chosen for the validation analysis.
Firstly, the level of differences between NDVI values extracted from
Terra and Terra-Aqua NDVI imagery was  inspected by comparing
two NDVI classes from one of the selected group. It was  checked
to see whether the period showing high differences between the
two imagery products coincided with an increase in the standard
deviation values of the Terra-based NDVI classes.
Secondly, regression analyses were carried out per NDVI class
to statistically test whether standard deviation values related
to long-duration cloud contamination. The analysis was per-
formed using the differences in the NDVI values of the Terra and
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erra product for all the NDVI classes in the two selected groups.

. Results

.1. Long-duration cloud contamination detection

Using the ISODATA algorithm, the preprocessed Terra dataset
as classified into maps with 10–100 NDVI classes. Divergence

tatistics revealed a high average separability for the 97-class map,

oinciding with a peak in minimum divergence statistics (Fig. 3).
he 97-class map  was selected as the optimal classification result.
his map  and derived statistics were used onwards for detecting
ong-duration cloud contamination.
-Aqua products and the standard deviation derived from the Terra product of two

The NDVI and standard deviation plots were organized in groups
on the basis of comparable temporal behavior, as shown in Fig. 4.
NDVI class profiles of those classes showing a decline in seasonal
NDVI values (growing season) below the lower limit of the 95%
confidence interval as well as a concurrent increase in standard
deviation values above the upper limit of the 95% confidence inter-
val (marked with circles) were found having suspicious NDVI values
(Fig. 4a). These long term drops in NDVI values were considered
suspicious because they were not consistent with the historical
trends of the classes in same group and it is unlike the annual

growth and the decline periods of vegetation of the same group.
Similarly high increase in standard values indicates spread of NDVI
values, which may  be associated with cloud contamination. Simi-
larly high standard deviation values show spread of data values and
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Fig. 7. The spatial distribution of conta

ence make it suspicious. Fig. 4a shows 34 NDVI classes found with
uspicious NDVI values. These NDVI classes were located mainly in
he annual average rainfall zone of 1200–2100 mm (Figs. 1 and 7).

Compared with Fig. 4a, groups of the NDVI classes that have a
onsistent behavior over time as well as a mean NDVI value that
oes not decline below the NDVI 95% confidence interval experi-
nced no sharp increase in standard deviation values above the
pper limit of the 95% confidence interval (Fig. 4b). These NDVI
lasses have smooth and consistent historical trends as compared
o profiles of NDVI classes shown in Fig. 4a. Fig. 4b shows only
wo randomly selected NDVI groups which have no suspicious
DVI values. They occur mainly in drier northern zones with less

han 1200 mm rainfall (Fig. 1). The spatial distribution of the NDVI
lasses is shown in Fig. 7.
.2. Validation

The differences between the NDVI values of the Terra
nd Terra-Aqua products became large with the decline in
ed and uncontaminated NDVI classes.

seasonal Terra NDVI. The Terra-Aqua profiles do not dis-
play such seasonal decline and synchronous sharp increase
in standard deviation values (Fig. 5). It also showed that
declines were not related to actual changes in greenness
of present land cover but rather to long-duration cloud
cover.

Regression analysis results given in Fig. 6 showed that the
NDVI difference in the Terra product, compared with the Terra-
Aqua product, was  significantly (p < 0.05) correlated with the
standard deviation values of the Terra product. The R2 values of
0.73, 0.45, 0.57, 0.61, 0.60, 0.74 and 0.76 was found in case of
NDVI classes 78, 83, 85, 88, 94, 95 and 96, respectively (Fig. 6a).
Similarly the second group of NDVI classes (65, 69 and 72)
recorded R2 of 0.58, 0.60 and 0.71, respectively (Fig. 6b). From
Fig. 6 it can also be deduced that standard deviation values

above a 95% confidence interval upper limit relate to cloud con-
tamination, as discriminated by NDVI classes showing decline
in seasonal NDVI values below a 95% confidence interval lower
limit.
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2011. Analysis of multi-temporal SPOT NDVI images for small-scale land-use
mapping. International Journal of Remote Sensing 32, 6673–6693.
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. Discussion

This study has introduced an exploratory method that detects
ong-duration cloud contamination that in turn results in unreli-
ble NDVI values. The method presented in this article requires no
dditional source of information or external data for execution pur-
oses but requires the unsupervised classification of the imagery to
arry out the evaluation of class-specific mean NDVI and standard
eviation values over the time. Including this method in the pre-
rocessing routines of NDVI time series data can help to avoid the
se of anomalous NDVI data in time series studies. The method can
e applied to any type of time series data, irrespective of spatial and
emporal variations. The method is simple to implement and repro-
uce. This technique can be beneficial for NDVI spectro-temporal
nalysis based land use/land cover mapping and monitoring, par-
icularly in the tropics.

A synchronous decline in seasonal NDVI values below a lower
imit 95% confidence interval and an increase in the standard devia-
ion above an upper limit 95% confidence interval indicate possible
ong-term cloud contamination that was not removed by prepro-
essing routines. From Fig. 4 it is obvious that the decline in NDVI,
hich is linked to an increase in standard deviation values above

he threshold (95% confidence interval), marks the periods when
he NDVI values are affected by long-duration cloud cover. This is
lso proved in the regression analysis, which shows a positive and
inear relation between differences in the Terra and Terra-Aqua
magery products versus standard deviation values of the Terra
magery (Fig. 6). The use of the 1-sided 95% confidence interval
elps to objectively define the contamination. This also eliminates
he short time effects in NDVI values unrelated to long-term miss-
ng data.

The validation using regression analysis to compare standard
eviation and differences between the Terra and Terra-Aqua prod-
cts was undertaken because standard deviation is considered the
ost common indicator to explain spread of data values (Myers,

997). The Terra-Aqua product suffers less from cloud contami-
ation, since it is a combination of two images per day. Fensholt
t al. (2006) also used differences between Terra and Aqua as
roxy for cloud cover. However, it is also notable that standard
eviation alone can mislead interpretations because standard devi-
tion normally increases in summer and decreases in winter owing
o contrast in the reflectance of vegetation and soil (Gonza’Lez
oyarte and Menenti, 2000; Loyarte and Menenti, 2008). It is also
lear from the results that the coinciding of seasonal decline in
bserved NDVI with increased standard deviation readings is sus-
icious.

This is the first study if its kind that successfully attempts
o detect long-duration cloud contamination affects in hyper-
emporal NDVI imagery. In contrast, the available cloud contam-
nated data correction techniques are unable to correct long data
aps due to the inherent limitations associated with the mod-
ls used (Holben, 1986; Swets et al., 1999; Jonsson and Eklundh,
002; Fensholt et al., 2007; Lu et al., 2007; Gu et al., 2009; Hird
nd McDermid, 2009; Julien and Sobrino, 2010). By including this
ethod in the preprocessing routines of NDVI time series analysis

an help to mark the period and location of long-duration cloud
ontaminated NDVI values, which can be avoided in subsequent
ata analysis.

The spatial distribution of cloud-contaminated NDVI classes
ver an areas receiving more rainfall (>1200 mm)  signify that areas
eceiving more rainfall and cloud cover experienced cloud contam-
nation. More prevalent rainfall in southern Ghana is also reported
y Kakane and Sogaard (1997),  Fensholt et al. (2006, 2007).  While

n contrast those NDVI classes having no obvious contamination

roblem are distributed through northern Ghana, which is drier
egion with less chances of persistent cloud cover (Figs. 1 and 7).
servation and Geoinformation 24 (2013) 22–31

5. Conclusion

In this paper a simple exploratory method is introduced to
detect long-duration cloud contamination effects in hyper tempo-
ral NDVI imagery analysis. This is an approach, that goes beyond the
use of quality flags and upper envelope filtering is tested to detect
when and where long-duration clouds are responsible for unreli-
able NDVI readings. The approach offers the scientists interested
in time series analysis, a method of masking by area (class) the
periods when pre-cleaned NDVI values remain affected by clouds.
It requires no additional data for execution purpose but involves
unsupervised classification of the imagery to carry out the evalua-
tion of class-specific mean NDVI and standard deviation values over
the time. The method was  validated with secondary dataset; how-
ever, in future real cloud cover data should be used for validation.
The method will be useful for time series imagery based land cover
mapping and monitoring specifically in areas where cloud cover is
prevalent such as tropics.
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