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Summary. Thin silicon nitride films (100-  210 nm) with re- 
fractive indices varying from 1.90 to 2.10 were deposited on 
silicon substrates by low pressure chemical vapour depo- 
sition (LPCVD) and plasma enhanced chemical vapour de- 
position (PECVD). Rutherford backscattering spectrometry 
(RBS), ellipsometry, surface profiling measurements and 
Auger electron spectroscopy (AES) in combination with 
Ar § sputtering were used to characterize these films. We 
have found that the use of (p-p)heights of the Si LVV and 
N KLL Auger transitions in the first derivative of the energy 
distribution (dN(E)/dE) leads to an accurate determination 
of the silicon nitride composition in Auger depth profiles 
over a wide range of atomic Si/N ratios. Moreover, we 
have shown that the Si KLL Auger transition, generally 
considered to be a better probe than the low energy Si LVV 
Auger transition in determining the chemical composition 
of silicon nitride layers, leads to deviating results. 

1 Introduction 

The growth of silicon nitride films by Low Pressure Chemi- 
cal Vapour Deposition (LPCVD) and Plasma Enhanced 
Chemical Vapour Deposition (PECVD) has attracted a great 
attention in the field of microelectronics during the last 
years. 

LPCVD is a process in which two types of gases react at 
about one atmosphere and at high temperature to form a 
solid and a gas phase. Using ammonia (NH3) and silane 
(Sill4) as reactants, the formation of silicon nitride (Si3N4) 
occurs according to: 

AN.TIJ[ 1 ~  Si3N4 q- 12H2 3 Sill4 + . . . . .  3 900oc 

PECVD is also a gas phase reaction leading to a solid 
silicon nitride film on a substrate, the reaction temperature, 
however, being significantly lower, i.e. about 300~ In 
PECVD, the chemical reactions are promoted by a glow 
discharge. The high energy electrons which constitute the 
discharge ionize and dissociate the gaseous molecules re- 
sulting in chemically active radicals and ions. The major 

Offprint requests to: E. G. Keim 

advantage of PECVD over LPCVD is the fact that thermal 
energy is not needed in order to induce the chemical reac- 
tions, thus making PECVD an ideal method to deposit ma- 
terials on temperature sensitive substrates like polymers and 
metals having a low melting point. 

Silicon nitride layers obtained by PECVD are used 
mainly in integrated circuits for final passivation because of 
their impermeability to mobile ions, their hardness (scratch 
resistance) and low temperature processing, allowing depo- 
sition after aluminium metallization. The film composition 
critically depends on the deposition parameters like gas pres- 
sure, gas phase composition, rf frequency, power, and tem- 
perature. The quality of the silicon nitride film can be di- 
rectly related to the atomic composition. Therefore, it is 
crucial to have a reliable technique which can determine the 
atomic composition of such films. 

The characterization of these films requires a complex 
study and the techniques used by a number of authors to 
determine the chemical composition is questionable. Auger 
electron spectroscopy (AES) combined with Ar § sputter 
profiling is often used to determine the compositional uni- 
formity of the silicon nitride film as a function of depth. 
Important work with respect to the quantitative aspects 
of an Auger in-depth analysis has been performed by van 
Oostrom and co-workers [1]. A quantitative analysis with 
an accuracy of ~ 10% could be made. A disadvantage of 
their method is that an extensive calibration of the Auger 
spectrometer is needed. By combining AES and electron 
energy loss spectroscopy (EELS) Lieske and Hezel [2] were 
able to provide quantitative information about the chemical 
composition in thin amorphous silicon nitride layers. They 
used the peak-to-peak ( p - p )  heights of the Si KLL and N 
KLL Auger transitions in the first derivative (dN(E)/dE) of 
the energy distribution to obtain the atomic ratio of the 
silicon to nitrogen concentration, Si/N. It has been argued 
that the high energy Si KLL Auger peak is a better probe 
than the stronger and easier obtainable Si LVV Auger peak 
[ 1 -  5], since the Si KLL Auger lineshape is less influenced 
by the surface chemistry. However, many authors have used 
the Auger ( p - p )  ratio Si(LVV)/N(KLL) as an indicator of 
silicon nitride composition [3,6,7-11]. A number of them 
used this ratio even without a Si3N4 standard [7, 12, 13] 
which, to our opinion, may lead to erroneous results. 

The aim of this paper is to demonstrate that the Si(LVV)/ 
N(KLL) Auger (p--p) ratio is a reliable indicator of the 
silicon nitride composition in Auger depth profiles over a 
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Fig. I. Auger spectrum of an LPCVD silicon nitfide (sample 
LPCVD in Table 1) at the surface region before Ar § sputtering 
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Fig. 2. Auger spectrum of the silicon substrate after removal of the 
LPCVD silicon nitride layer by argon ion sputtering 

wide range of Si/N ratios. For that purpose 4 thin silicon 
nitride films (1 prepared by LPCVD and the other 3 by 
means of PECVD and a (100) oriented silicon substrate) 
with atomic Si/N ratios ranging from 0.68 to 0.95 [as mea- 
sured by Rutherford Backscattering Spectrometry (RBS)] 
were investigated. 

2 Experimental 

The LPCVD silicon nitride films were grown on 2 and 4 
inch silicon wafers ( p - t y p e ,  (100) orientation, 10 ~cm). The 
wafers were cleaned prior to the deposition with a standard 
procedure including a dip in a 1% HF solution in order to 
remove the native oxide. The deposition conditions were: a 
SiHzC12/NH3 gas mixture, temperature (T) of 800~ total 
pressure (P) of  25 Pa and a growth rate of 5.0 nm/min. 

The PECVD silicon nitride films were prepared in a 
TEMPRESS hot-wall reactor (OMEGA-5000) under the 
following conditions: a SiH4/NH3 gas mixture, T = 300~ 
P =  133 Pa, deposition rate of  30.0 nm/min. Both silicon 
and nitrogen rich layers were prepared by varying the Sill4/ 
NH3 ratio. 

The refractive index is also a good indicator of the ratio 
Si/N. A refractive index n = 2.0, however, does not neces- 
sarily mean stoichiometric Si3N4 as shown by Allaert et 
al. [13]. The refractive index was measured by ellipsometry 
(wavelength incident laserbeam = 632.8 nm, angle of 
incidence = 70~ Step measurements with a surface profiler 
(DEKTAK) and ellipsometry were applied to determine the 
silicon nitride film thickness with high accuracy. 

The RBS analyses were performed on each sample pre- 
sented in this paper, using a 2 MeV He beam with a cross 
sectional area of  approximately 1 mm 2 at a working pressure 
of about I x 10 .6 Torr. The backscattered alpha particles 
were counted by a solid state detector (energy resolution: 
15 keV). 

For the analysis of the silicon nitride layers we used a 
PHI 600 SAM (scanning Auger microscope) system with 
facilities for scanning electron microscopy (SEM), the 
achieved lateral resolution being 19 rim, and Ar § depth pro- 
filing. 

In the PHI 600 system the primary beam (beam energy = 
10 keV, beam current = 500 nA, beam diameter = 0.7 lam, 

angle of incidence with the surface normal = 30 ~ was 
rastered over a surface area of 400 ~m 2. Under these con- 
ditions possible electron beam induced effects (desorption, 
dissociation) were not observed. The resolution of the cylin- 
drical mirror analyser was set at 0.6%. 

The differentially pumped ion gun was adjusted to prod- 
uce an argon ion beam with an ion energy of 3.5 keV and a 
FWHM of 200 gm. The angle of  incidence with the sample 
surface was 45 ~ and the ion beam was rastered to produce 
a crater of 2 x 2 mm 2. The sputter rate of silicon nitride was 
calibrated and found to be 5.7 nm/min. Calibration was 
performed on an LPCVD layer of thickness, d, 106.0 nm 
(sample LPCVD in Table 1), as independently established 
from ellipsometry, surface profiling (DEKTAK), and RBS. 
Alternate sputtering and Auger analysis were used during 
an in-depth analysis. 

3 Results and discussion 

Figure 1 shows the Auger spectrum of the LPCVD silicon 
nitride surface region. It reveals oxygen and a small amount 
of carbon in addition to nitrogen and silicon (the low energy 
Si LVV (Si 1) and high energy Si KLL (Si 2) Auger peaks). 
The small amount of surface oxygen (see Fig. 1) present on 
all four samples investigated, arises from a slight post- 
growth oxidation of the nitride in air [14]. Carbon surface 
contamination is a phenomenon which is usually observed 
with samples which have been exposed to air. The thickness 
of the C layer was found to be less than 5 A on all nitride 
films investigated. 

Displayed in Fig. 2 is the Auger spectrum after complete 
removal of  the nitride film. The spectrum now only shows 
free silicon and a small amount of  implanted argon. 

The measured Auger in-depth profile of  a 106 nm 
LPCVD silicon nitride film, considered as a reference sam- 
ple, is shown in Fig. 3. The ( p - p )  heights of the Si LVV 
(Si 1), Si KLL (Si 2), N KLL (N 1) and O KLL (O 1) Auger 
peaks in the dN(E)/dE mode have been plotted as a function 
of sputtertime. The small oxygen signal near the interface 
between the nitride and the silicon substrate is due to re- 
growth of a thin silicon oxide layer after the HF dip (see 
section 2). In the silicon nitride itself the oxygen concen- 
tration is below the detection level of 0.1%. From RBS it 
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Fig. 3. AES in-depth profile of an LPCVD silicon nitride film 
(sample LPCVD in Table 1). The Auger peak-to-peak heights of the 
Si LVV (Si 1), Si KLL (Si 2), N KLL (N 1) and O KLL (O l) peaks 
in the dN(E)/dE mode are plotted as a function of sputter time 

was established that the atomic Si/N ratio of  this sample 
(LPCVD in Table 1) is 0.75 (experimental error _< 2%). The 
quantitative elemental composition from the measured 
Auger in-depth profile (Fig. 3) was deduced using either 
the Si LVV or Si K L L  ( p - p )  heights following a relation 
extensively discussed in the literature [5, 15]. Using the Si 
LVV Auger ( p - p )  height (Si 1) the relative sensitivity factor 
(rsf) for Si I had to be changed from 0.15 [15] to 0.203 in 
order to obtain 0.75 for the atomic Si/N ratio (for N1 and 
O1 the handbook  rsf values were used [15]). Use of  Si 2 rsf 
(Si 2) had to be increased to 0.179, this value being almost 
4.5 times larger than the handbook value of  Si KLL in 
elemental silicon [15]. This large deviation in rsf (Si 2) may 
be due to more complex factors than proposed by van 
Oost rom et al. [1]. A detailed study of  this matter is in 
progress. 

The elemental composition of  the three PECVD silicon 
nitride layers (see Table 1) was derived using the rsf (Si 1, 
Si 2) values as determined from the Auger in-depth profile 
of  the LPCVD sample, i. e., rsf (Si 1) = 0.203 and rsf(Si 2) = 
0.179. All three PECVD films were found to be homo- 
geneous [16]. 

Table 1 summarizes the most  important  results. The first 
column of  Table 1 shows the way the film is grown, the 
second shows the refractive index n, the third shows the 
thickness d of  the silicon nitride film, the fourth contains the 
atomic Si/N ratio as determined by RBS, the fifth and sixth 
display the atomic Si/N ratio as derived from the Si LVV- 
and Si K L L  ( p -  p) heights, respectively, using the modified 
rsf values. F rom Table 1 it can be seen that agreement be- 
tween RBS and AES (using Si LVV) results is striking. 
Atomic Si/N ratios as derived using Si K L L  (sixth column) 
show a much larger deviation from the RBS values (fourth 
column). This deviation may be ascribed to (strong) matrix 
effects of  the high energy Si K L L  Auger electrons, as pro- 
posed earlier by Garner  et al. [17]. 

4 C o n c l u s i o n s  

We have shown that an accurate chemical composition, in 
terms of  atomic Si/N ratio, can be deduced from the peak- 
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Table 1. Summary of the results showing the refractive index n, the 
thickness of the silicon nitride layer d, the atomic Si/N ratio as 
measured by RBS and the ratio derived from the Auger in-depth 
profiles 

Sample n d(nm) Si/N 

RBS Si LVV Si KLL 

LPCVD 2.00 106 0.75 0.75 0.75 
PECVD1 1.91 115 0.67 0.66 0.71 
PECVD2 2.09 130 0.95 0.92 0.81 
PECVD3 1.98 210 0.68 0.66 0.72 

to-peak heights of  the Si LVV and N K L L  Auger transitions 
in the first derivative of  the energy distribution, dN(E)/dE, 
over a rather wide range of  Si/N ratios. 

As the Si K L L  Auger lineshape is less sensitive to the 
chemical environment than the Si LVV Auger lineshape [1, 
5], its use in Auger in-depth profiles to determine the chemi- 
cal composition of  silicon nitride layers leads to less accurate 
results. 

The reference silicon nitride sample does not need to be 
stoichiometric Si3N~. Once the elemental composition of  the 
reference sample has been determined by RBS, the relevant 
relative sensitivity factors (for Si LVV or Si KLL)  can be 
adjusted in a very simple way to yield the RBS atomic Si/N 
ratio. This procedure is valid for silicon nitride samples with 
significant variation in chemical composition relative to the 
reference sample. 
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