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The channel size distribution in hard sphere systems, based on the local neighbor correlation of four
particle positions, is investigated for all volume fractions up to jamming. For each particle, all three
particle combinations of neighbors define channels, which are relevant for the concept of caging.
The analysis of the channel size distribution is shown to be very useful in distinguishing between
gaseous, liquid, partially and fully crystallized, and glassy (random) jammed states. A common mi-
crostructural feature of four coplanar particles is observed in crystalline and glassy jammed states,
suggesting the presence of “hidden” two-dimensional order in three-dimensional random close pack-
ings. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4880236]

I. INTRODUCTION

The hard-sphere particle interaction limit is a tremen-
dously versatile physical model, being widely used for
structural studies of liquids,1 glasses,2, 3 colloids,4 granular
materials,5 and many others.6, 7 Its relevance in such a va-
riety of physical systems suggests that many macroscopic
properties arise by the fundamental fact of impenetrabil-
ity of the systems constituents.8 The ultimate goal then be-
comes to establish relations between physical properties and
the geometry of the arrangement of hard bodies in two or
three-dimensions. Many decades of research, heavily driven
by numerical experiments,2 have led to various geometrical
structure variables, with different levels of success in either
uniquely characterizing each state or in deriving macroscopic
physical properties from them.9

Our study is motivated by the structural phase transi-
tions observed in molecular fluids and also replicated in hard-
sphere systems under compression.10 We also consider anal-
ogous phenomena observed in granular materials, where the
hard-sphere approximation is commonly used to successfully
model complex rheological behaviours.5 As the volume frac-
tion is increased, hard-spheres enter an entropy minimization
driven phase where glass formation competes with the nu-
cleation and growth of the crystalline phase.11 Hard-sphere
models are known to successfully reproduce the main struc-
tural properties of these states for various physical systems,
either for crystallization,12, 13 or the amorphous solid phase
transition.14 One of the main reasons for using the hard-sphere
model over classical condensed matter systems is that simu-
lations – as also colloidal suspensions experiments, which are
a very good approximations of the hard-sphere model13, 15 –
have particle-size spatial resolution, and thus the statics and
dynamics can be studied from a microscopic perspective. Fur-
thermore, due to the lack of long-range or non-binary inter-
actions, and the simple geometry of the constituents, hard-
sphere models are theoretically tractable.12, 16, 17

Inspired by the highly ordered and easily describable
crystalline phase, many researchers have searched for inher-

ent geometrical relations in disordered (amorphous) packings.
The straightforward approach is to analyze the static structure
factor, which is a direct measure of the local microstructure of
particles.18 The pair correlation function g(r) is also a popular
quantity for the analysis of non-crystalline materials.19, 20

The problem with such quantities is that the detailed three-
dimensional information is lost as a result of statistical
averages, as also by considering only pairs of particles. In
particular, they do not provide much information about the
topology of the local structures in the particle-size scale,
which are believed to distinguish different kinds of amor-
phous arrangements. It therefore becomes highly significant
to exploit some other methods of three-dimensional charac-
terization of these structures. Many attempts have already
been made to quantify local or long-range ordering, providing
further characterization of disordered packings.21–31

In the following we analyze local arrangements of par-
ticles recognizing the importance of caging and voids in the
overall structure and properties of the arrangement. Here we
extend the previous studies22, 23, 26 by considering all particle
triples in the particles neighbourhood that do not include the
central particle. The distribution of voids allows us to clearly
distinguish between the different structural phases, as also be-
tween different kinds of crystals and the relative number of
each specific ordering, in systems presenting partial or many
types of crystallization. Our analysis shows that in amorphous
states there is a preferred local structure of four co-planar
particles.

II. METHOD OF ANALYSIS

We consider systems of N non-overlapping spheres ar-
ranged in a three-dimensional cubic space of volume V . The
spheres are located at positions xi and have radii r. Our
main parameter is the sphere volume fraction, defined as
ν = (4/3)π

∑N
1 r3/V .

To determine the neighbors of a particle, we first com-
pute the weighted Delaunay triangulation of the set of points

0021-9606/2014/140(21)/211102/5/$30.00 © 2014 AIP Publishing LLC140, 211102-1
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FIG. 1. (Left) The central particle (white) is shown together with its near-
est neighbours, defined by Delaunay-edges. The channels for neighbour-
triangles DBA (middle) and ABC (right) are shown in the neighbor-triangle
plane. The particles A, B, and C are lying almost on the same plane with the
central particle and are practically touching it, so the channel almost coin-
cides with the central particle. This is not the case for the BDA triangle.

corresponding to the centers of the particles, {xi}.32 Neigh-
boring particles are then defined as those particles connected
by the edges of the triangulation. For each particle we con-
sider every possible combination of three neighbors, that is,
all possible triangles that can be formed by the centers of any
three of its neighbors. We refer to these triangles as neighbor-
triangles. Notice that the neighbor-triangles do not contain
the central particle. We then proceed to quantify the over-
all mobility of the particle by defining all channels through
which the particle can pass. A channel is defined as the circle-
area in the plane of a neighbor-triangle through which the
central particle could move. This is computed by consider-
ing the Apollonius circle, i.e., the circle which is simultane-
ously tangent to all other three circles defined by the projec-
tion of the three spheres in the neighbor-triangle plane. There
are at most eight possible Apollonius circles for each case,
which are obtained analytically by solving a system of three
quadratic equations.33 From the set of eight possible solutions
we choose the one which corresponds to the circle that does
not contain any particle center of the neighbor-triangle, as it
is the only one that corresponds to our definition of channel.43

The radius of the respective channel is then defined as the ra-
dius of this circle, Rj, as shown in Fig. 1.

Having obtained Rj for all neighbor-triangles of every
particle, we then compute the normalized probability distribu-
tion function of (scaled) channel sizes, f(Rj/r). The ratio Rj/r
is calculated for all neighbor triples j with channel size Rj of
every particle. Note that Rj/r has a direct physical interpreta-
tion, as less than unity corresponds to a closed channel, while
greater than unity corresponds to an open channel, through
which eventually the central particle could escape. Further-
more, the function f is well defined for spheres with any size
distribution, since the radius of the central particle is scaled
out. We analyze both the individual structure of f as also its
evolution with volume fraction, for various particle systems.

In order to refine our definition of channels, we consider
f(Rj/r) for very low volume fractions, where no structure is
expected (see Fig. 2). When considering all triangles the dis-
tribution presents a recognizable wide tail structure, but after
excluding from the distribution the channel sizes that corre-
spond to non-acute neighbor-triangles, i.e., those where one of
the angles is greater than 90◦, the distribution becomes Gaus-
sian, with high accuracy over three orders of magnitude.44

The exclusion of non-acute triangles makes physical sense
considering that channels defined by them cannot block the
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FIG. 2. Normalized distribution of the channel sizes scaled with the parti-
cle radius in the gas regime (ν ≈ 0.0014) using full statistics (red pluses)
and with non-acute neighbor-triangles excluded (blue crosses). The solid line
is a Gaussian fit g(x) = (σ

√
2π )−1 exp[−(x − μ)2/(2σ 2)] with parameters

σ ≈ 4 and μ ≈ 15.9. The bin-size is 0.1.

central particle, thus conflicting with our initial definition of
a channel. For the rest of the analysis, non-acute triangles are
never considered.

III. SIMULATION DETAILS

We use an event-driven molecular dynamics algorithm, as
it is fundamentally suited for the simulation of hard spheres
systems. The number of particles is by default N = 163

= 4096, unless stated otherwise. Given the large amount of
possible neighbor-triangles for each particle, the statistical
significance rapidly increases with the number of particles in
the system. We observed that 4096 particles were adequate,
as increasing the number of particles did not produce any no-
ticeable change in any of the results. Periodic boundary con-
ditions are imposed to mimic an infinite system, i.e., a statis-
tically homogeneous medium.

Starting from zero volume fraction, we compress the
system towards a jammed state using a modification of the
Lubachevsky-Stillinger algorithm,34, 35 which allows the ra-
dius of the particles to grow linearly in time with a dimen-
sionless rate �.45 The kinetic energy, E, is kept constant using
a re-scaling thermostat procedure.36, 37

If the growing is sufficiently slow, � < 0.0007,38 the
monodisperse system stays in a gas-fluid state in approx-
imate equilibrium during the densification phase, and ex-
hibits a fluid-solid transition (crystallization) for volume frac-
tions between νf ≈ 0.492 (freezing point) and νm ≈ 0.543
(crystal melting point). For infinitely slow compressions, it
is expected that the system finally reaches a stable solid
(crystalline) phase with close-packing fraction νcp ≈ 0.7405,
corresponding to face-centered close packing. In our sim-
ulations, due to finite compression rates, we reach a crys-
talline phase with defects and different local arrangements,
and packing fractions up to ν ≈ 0.73. This corresponds
to a thermodynamically stable branch in the hard sphere
phase diagram.10 On the other hand, for fast compression
rates the system enters a metastable state for ν > νm, which
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extrapolates continuously from the fluid branch and is con-
jectured to end at some random close packing state, around
νrcp ≈ 0.64, the interpretation of which is beyond the scope
of this study, as its value depends on the details of the
procedure.39

IV. RESULTS AND DISCUSSION

We now observe the evolution of f(Rj/r) with ν for fast
and slow compression rates.

A. Crystallization path

As the volume fraction increases, the distribution of
channel radii fundamentally changes, see Fig. 3(a). The dis-
tribution changes to non-Gaussian for fluid densities above
ν ≈ 0.15–0.25. We speculate that this change corresponds
to the percolation gas-to-fluid transition observed by
Woodcock40 at similar packing fractions, although we did
not investigate this in detail. As the volume fraction in-
creases, two smooth humps continuously grow, that at higher
ν > 0.5 evolves into two well defined peaks, centered above
Rj/r ≈ 0.15 and near Rj/r = 1. These values can be under-
stood in terms of the geometry of the local arrangements: Rj/r
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FIG. 3. Normalized distribution of the channel sizes scaled with the particle
radius for slow compression (� = 16 × 10−6) and various volume fractions
given in the inset. The bin-size is 0.01.

≈ 0.15 ideally corresponds to the channel size expected for
three touching equal spheres, and thus the appearance and
growth of this peak shows the appearance of triples in contact
as well as the relative importance of density fluctuations. It is
also the absolutely smallest possible channel size for equally
sized spheres. The peak at unity, on the other hand, is obtained
for three particles lying on the same plane with the central
particle and practically touching it, i.e., when the channel es-
sentially coincides with the central particle; we confirmed that
the majority of particles corresponding to the peak at unity are
indeed practically touching the central particle.

As expected for very slow compression, � = 16 × 10−6,
the system exhibits (partial) crystallization near the melting
point νm ≈ 0.54; crystallization at the freezing point is kineti-
cally suppressed.41 The distribution is able to capture the crys-
tallization transition by the development of two new peaks, at
Rj/r ≈ 0.4 and Rj/r ≈ 1.4. This transition is shown with more
detail in the inset of Fig. 3(a). The new peak at Rj/r ≈ 0.4
corresponds to a square crystalline arrangement. On the other
hand, the peak at Rj/r ≈ 1.4 groups several distinct arrange-
ments which can be distinguished as ν further increases, as
shown below. This was confirmed for many runs with differ-
ent initial particle velocities and positions.

Finally, as the maximum volume fraction is reached (i.e.,
as the pressure diverges), the distribution is mostly domi-
nated by steep peaks, see Fig. 3(b). In analogy with Bragg
peaks from common diffraction techniques, these peaks can
be traced to the crystal structures present in the particles’
arrangement. Figure 4 shows f(Rj/r) for perfect FCC, HCP,
BCC, and SC crystals of about 103 particles, as a reference.
They all present significant differences, which allows to dis-
tinguish between the types of crystals. A detailed discussion
of these peaks is beyond the scope of this study.

B. Glassification path

Let us now focus on the case of fast compression,
� = 16 × 10−3, for which crystallization is not happening.
The channel size distributions for different volume fractions
are shown in Figure 5. For volume fractions below ν ≈ 0.2,
there is no appreciable difference with the slow compression
case described in Subsection IV A. For values well above
ν ≈ 0.2, the same peaks at Rj/r ≈ 0.15 and unity can be
observed, but no other peaks are developed. Contrary to the
crystallisation path at the melting point, f(Rj/r) does not show
sharp signs of the glass transition at ν ≈ 0.57. The lack of
defined peaks in the distribution, as in the previous slow com-
pression cases, is a clear signal that the system remains, to
very high degree, amorphous. Nevertheless, there exists par-
tial order, as suggested by the high values of the peak at unity.
While the peak at 0.15 can be interpreted in the same way
as in the slow compression rate case, the peak at unity, on
the other hand, is not as easily interpretable. While present in
both crystalline and glassy configurations, its relative impor-
tance and shape are considerably different. The unity value
corresponds to those configurations where three neighboring
particles all touch the central particle and lie in the same plane
with it. There are of course other cases where the value of Rj/r
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FIG. 4. Normalized distribution of the channel sizes scaled with the particle radius for perfect FCC, BCC, HCP, and SC crystals with 1099, 1024, 1254, and
1000 particles, respectively. The bin-size is 0.002. Insets in the FCC case show triangle, square, and the typical local ordered described in the next, projected in
the plane, at their corresponding peaks.

could be one. By looking at the distribution of distance of each
neighbor-triangle particle to the center particle, we confirm
that by far the most common case is when the three particles
are indeed touching the central one. This suggests the exis-
tence of “hidden” local order in random close packings that
cannot be easily measured by order parameters because such
local planes, corresponding to Rj/r ≈ 1, are not oriented with
respect to each other as in a periodic crystal structure. We
have no explanation for this preference of the system struc-
ture, suggesting a direction of future research. Furthermore,
we have confirmed that the same qualitative features are ob-
served in polydisperse systems.42

Let us now take a look at the structure of f for values close
to the minimal channel size, shown in the inset of Figure 5.
The high values between the two ideal cases, corresponding
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FIG. 5. Normalized distribution of the channel sizes scaled with the parti-
cle radius for fast compression (� = 16 × 10−3) of a monodisperse system
with various volume fractions ν given in the inset. The region of low Rj/r is
zoomed in the inset for the curve with ν = 0.637. The data with non-Delaunay
neighbour-triangles excluded for the system with ν = 0.637 are shown in the
inset with green pluses. The bin-size is 0.01.

to the three touching spheres (Rj/r ≈ 0.15) and a square ar-
rangement (Rj/r ≈ 0.41), signal a significant presence of “in-
termediate” configurations. The drop at Rj/r ≈ 0.41 is due to
exclusion of non-acute neighbor-triangles from the statistics.
A similar distribution of channel sizes, up to Rj/r ≈ 0.41, was
obtained in the studies of interstitial holes in random close
packings of spheres.22, 23, 26 They concluded that for monodis-
perse packings the spread in the channel sizes between 0.15
and 0.41 cannot be reduced to lead to a single distribution of
channel sizes allied with mechanical stability.

V. CONCLUSIONS

The analysis of channel size distributions was shown to
be able to distinguishing between gaseous, liquid, partially
and fully crystallized, and glassy (random) jammed states.
Unlike the usually computed pair-distribution functions or
structure factors, the channel size distribution is highly sen-
sitive to changes in volume fraction, and presents unique fea-
tures for each phase. States of partial crystallization can be
recognized and characterized by the development and posi-
tion of specific peaks, which can be traced to specific crys-
talline configurations, and could be used to quantify the de-
gree of crystallization of the system. On the other hand,
we confirm that random glassy configurations of isotropi-
cally (rapidly) grown hard particle systems present a common
structural feature, as shown by looking at the channel size dis-
tributions. The overpopulation of many three neighboring par-
ticles lying in the same plane as the central particle, almost
touching it, could be considered a first microscopic trace of
crystals in a plane. As different planes are not oriented with
dominant relative angles as in a crystal, there is no apprecia-
ble global three dimensional ordering. Finally, we remark that
our analysis should be easily extendable to other particle sys-
tems even in different dynamic regimes. Further work on the
behaviour of the distribution near the state transitions could
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lead to deeper relations with previously known distribution
functions or thermodynamic variables.
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