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We examine the validity of the time-dependent Ginzburg-Landau equation of granular
fluids for a plane shear flow under the Lees-Edwards boundary condition derived
from a weakly nonlinear analysis through the comparison with the result of discrete
element method. We verify quantitative agreements in the time evolution of the area
fraction and the velocity fields, and also find qualitative agreement in the granular
temperature. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4812816]

. INTRODUCTION

Flows of granular particles have been extensively studied due to their importance in powder
technology, civil engineering, mechanical engineering, geophysics, astrophysics, applied mathemat-
ics, and physics.!™ The characteristic properties of granular flows are mainly caused by inelastic
collisions between particles.® In particular, studies of granular gas under a plane shear play an impor-
tant role in applications of kinetic theory,®~!> dense plugs in moderately dense flows,'%!7 long-time
tail and long-range correlations, 8?7 pattern formation in dense flows,”®33 the determination of the
constitutive equation for dense flows,>*3¢ as well as the jamming transition.’’*3

The granular hydrodynamic equations based on the kinetic theory well describe the dynamics of
moderately dense granular gases,®' even though its applicability is questionable because of the lack
of scale separation, the existence of long range correlations, etc. The two-dimensional granular shear
flow is an appropriate target to check the validity of the granular hydrodynamic equations, where
two denser regions are formed near the boundaries and collide to form a single dense plug under
a physical boundary condition.'®!” A similar dense plug is also observed under the Lees-Edwards
boundary condition. The transient dynamics of the dense plug and the hydrodynamic fields can be
described by the granular hydrodynamic equations, where reasonable agreements with the discrete
element method (DEM) simulation have been verified.'” It is also known that a homogeneous state of
the two-dimensional granular shear flow is intrinsically unstable as predicted by the linear stability
analysis.*>0

To understand the dense plug formation after the homogeneous state becomes unstable, we
have to develop a weakly nonlinear analysis. Recently, Shukla and Alam carried out a weakly
nonlinear analysis of the sheared granular flow in finite size systems, where they derived the Stuart-
Landau equation for the disturbance amplitude of the hydrodynamic fields under a physical boundary
condition.’'=>> They found the existence of subcritical bifurcation in both dilute and dense regimes,
while a supercritical bifurcation appears in both medium and extremely dilute regimes. The Stuart-
Landau equation, however, does not include any spatial degrees of freedom and cannot be used to
study the slow evolution of dense plug. We also notice that the shear rate is fixed to unity and cannot
be used as a control parameter in their analysis.

It is also notable that several authors found coexistence of solid and liquid phases in their
molecular dynamics simulations of dense granular shear flows. >335 In particular, Khain showed
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a hysteresis loop of the order parameter defined as a density contrast between the boundary and the
center region.’>33 It should be noted, however, that the mechanism of the subcritical bifurcation
based on a set of hydrodynamic equations differs from that observed in the jamming transition of
frictional particles.*? Indeed, the hysteresis loop in the jamming, which is observed for polydisperse
grains, is originated from the frustrated and metastable configurations of frictional grains, while the
hysteresis for monodisperse grains observed by Khain*>3? is from the coexistence of crystal and
liquid structures.

In our previous work, we have developed the weakly nonlinear analysis of the two-dimensional
granular shear flow and derived the time dependent Ginzburg-Landau (TDGL) equation for the
disturbance amplitude. We introduced a hybrid approach to the weakly nonlinear analysis, where
the derived TDGL equation is written as a two-dimensional form and has time dependent diffusion
coefficients.®” We have also discussed the bifurcation of the amplitude. However, study of the
numerical solution of the TDGL equation and comparison with DEM simulation had been left as an
incomplete part of our previous paper.®’ Part of this study without comparison with DEM simulation
has been published in another paper.®’

In this paper, we quantitatively examine the validity of the derived TDGL equation for a two
dimensional granular shear flow from the comparison with DEM simulation. In Sec. II, we review the
weakly nonlinear analysis and the hybrid approach. In Sec. III, which is the main part of this paper,
we compare the numerical solutions of the TDGL equation with the results of DEM simulation. In
Sec. IV, we discuss and conclude our results.

Il. OVERVIEW OF WEAKLY NONLINEAR ANALYSIS

In this section, we review our previous results of the weakly nonlinear analysis, where the time
evolution of the disturbance amplitude is described by the TDGL equation.’® We also apply the
hybrid approach to the TDGL equation to describe the structural changes of the dense plug.%® In
Sec. IT A, we introduce the basic equations. In Sec. II B, we review the weakly nonlinear analysis to
derive the TDGL equation. In Sec. II C, we derive a two-dimensional TDGL equation adopting the
hybrid approach to the weakly nonlinear analysis.

A. Basic equations

Let us explain our setup and basic equations. To avoid difficulties caused by the physical
boundary condition, we adopt the Lees-Edwards boundary condition,®> where the upper and lower
image cells move to the opposite directions with a constant speed U/2. Here, the distance between
the upper and lower image cells is given by L. We assume that the granular disks are identical, where
the mass, the diameter, and the restitution coefficient are given by m, d, and e, respectively. In the
following argument, we scale mass, length, and time by m, d, and 2d/U, respectively. Therefore,
the shear rate U/L is nondimensionalized as € = 2d/L which becomes a small parameter in the
hydrodynamic limit L >> d.

We employ a set of hydrodynamic equations of granular disks derived by Jenkins and Richman.
Although their original equations include the angular momentum and the spin temperature, it is
known that the spin effects are localized near the boundary®® and the effect of rotation can be
absorbed in the normal restitution coefficient, if the friction constant is small.!7-6+%5 Thus, our system
is reduced to a system without the spin effects and the dimensionless hydrodynamic equations are
given by

4
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TABLE I. The functions in Egs. (4)—(6).
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where v, v = (u, w), 0,1, and V = (9/9,, 0/9,) are the area fraction, the dimensionless velocity fields,
the dimensionless granular temperature, the dimensionless time, and the dimensionless gradient,
respectively. The pressure tensor P = (P;;), the heat flux q, and the energy dissipation rate x are
given in the dimensionless forms as

P; = [p)0 —EW)O'* (V- W] 8; — n(w)o' ey, 4)

q=—k()0'?Vo — 11> *Vv, ®)
_l=e 5 12 a2 a2

X ——4mv g(v)o |:449 3\/;9 (Vv v):|, (6)

respectively, where p(v)8, £(1)8"2, n(v)'2, Kk (v)8"2, and A(v)9¥? are the dimensionless forms of
the static pressure, the bulk viscosity, the shear viscosity, the heat conductivity, and the coefficient
associated with the gradient of density, respectively. Here, e;; = (V;v; + Viv; —§;;V - v)/2(3, j
= x, y) is the deviatoric part of the strain rate tensor. The explicit forms of them are listed in
Table I, where we adopt the radial distribution function at contact

1—7v/16

T "

gv) =

which is only valid for v < 0.7.9% A set of homogeneous solutions of Egs. (1)—(3) is readily
found as ¢g = (v, €y, 0, 8y), where vy and 6 are the mean area fraction and the mean granular
temperature, respectively.

B. Weakly nonlinear analysis

To study the slow dynamics of dense plug, we need to develop a weakly nonlinear analysis. For
this purpose, we introduce a long time scale T = €’ and long length scales (£, ¢) = €(x, y). We also
introduce the neutral solution around the most unstable mode q. = (0, g.) as

b = AL, r)¢(];re"q”5 +c.c., (8)

where c.c. represents the complex conjugate and qb;_ corresponds to the Fourier coefficient of the

hydrodynamic fields at q.. We notice that the amplitude of the layering mode A%(¢, 7) depends on ¢
but is independent of £, because any non-layering modes g, # O are linearly stable. Then, we expand
A%(z, 7) into the series of € as

AL ) =eAl AL EAL L )

Substituting Egs. (8) and (9) into the hydrodynamic equations (1)—(3) and collecting terms in each
order of €, we obtain an amplitude equation.
The first non-trivial equation at O(e?) is the TDGL equation

9 A} = oA} + DAY + BAT|ATP, (10)
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where D and B are listed in Table 2 of Ref. 60. Here, o is the maximum growth rate at q. scaled
by €2. Because of the scaling relations D = D and 8 = €, we can rewrite Eq. (10) as the equation
for the scaled amplitude Al = €!/2AL,

9. A} = oA} + D37 A} + BAY|AT. (11)

It should be noted that the TDGL equation (10) or (11) can be only used for 8, 8 < 0, i.e., the case
of a supercritical bifurcation.
Developing a similar procedure till O(e”), we also find the amplitude equation

9. A" = 0, A" + DO A" + BA™| A" + ey AV AV + O(€) (12)

for AM(¢, ) = €'2[AV(¢, 1) + €AY(¢, T) + €2AL(¢, T)], where 7 is also listed in Table 2 of
Ref. 60. Equation (12) can be used for 8 > 0 and 7 < 0, i.e., the case of a subcritical bifurca-
tion.

C. Hybrid approach to the weakly nonlinear analysis

Although we derived the TDGL equations (11) and (12), these equations do not include & and
they are still not appropriate to study the two-dimensional structure of dense plug. Therefore, we
need a new approach, where the non-layering mode is coupled with the layering mode. For this
purpose, we add a small deviation to the most unstable mode as q(r) = q. + 5q(7) and assume ¢A>n
does not change if the deviation §q(7) is small. Then, Eq. (8) can be rewritten as

b = AYE, ¢, D)L MO e, (13)

where we have introduced z = (£, ¢) and a £-dependent amplitude A™(%, ¢, 7). If we take into
account the contribution from the non-layering mode, a hybrid solution is introduced as
o= {ANE ¢, gy + ANE ¢ Tdgi | €N e
> AG. 5. [y + by 1T+ e, (14)

where ANM(€, ¢, ) and ¢>g1(];) are the amplitude and the Fourier coefficient of the non-layering mode,

respectively. Here, we have used a strong assumption that A~(£, ¢, T) and AN(&, ¢, 1) are scaled by
common amplitude A(€, ¢, 7) in the second line of Eq. (14). Expanding A(§, ¢, ) as

A, L, 1) = €A1(E, 0, T+ € AxE LT+ E€MAE, T+ (15)

and carrying out the weakly nonlinear analysis for the hybrid solution ¢y, we find that the rescaled
amplitude A, (£, ¢, T) = €'/?A (£, ¢, T) satisfies

9: Ay = 0. Ay + Di(0)0; Ay + Dy(1)0:0; A + Do Ay + BA| A, (16)

at O(e?), where D;(t) and D,(t) are the time dependent diffusion coefficients. Similarly, we find
the higher order equation

- v v

9. A =0, A+ Di(1)0; A + Dy(1)3:9; A + DO; A + BA|AP + €7 A|A|* + O(€) (17)

for A(€, ¢, 1) = €' 2{A\(E, £, T) + €As(E, £, T) + €2 A3(£, £, T)}. The time dependent diffusion co-
efficients D;(z) and D,(t) whose explicit forms are given by Egs. (64) and (65) in Ref. 60 decay to
zero as time goes on. Therefore, Eqs. (16) and (17) are respectively reduced to Eqgs. (11) and (12) in
the long time limit.
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lll. DISCRETE ELEMENT METHOD SIMULATION

In this section, we perform the DEM simulation of a two-dimensional granular shear flow to
compare the results with the weakly nonlinear analysis. In Sec. III A, we introduce our setup. In
Sec. III B, we show the time evolution of the density field obtained from the DEM simulation, where
the typical transient dynamics can be reproduced. In Sec. III C, we exhibit the time evolution of the
velocity fields and the granular temperature. In Sec. III D, we compare the numerical solution of the
TDGL equation with the DEM simulation. In the following, we use the same units of mass, length,
and time as those in the weakly nonlinear analysis.

In Eq. (16), B < 0 for vy < 0.245, where the supercritical bifurcation is expected.®® If 0.245
< vy <0275, >0, and y < 0, thus Eq. (17) should be used and the subcritical bifurcation is
expected. Unfortunately, 8 > 0 and 7 > 0 for vo > 0.275 and neither Eqgs. (16) nor (17) can be
used. Therefore, we exhibit our numerical results with vy = 0.18 and 0.26 for the supercritical and
subcritical cases, respectively.

A. Setup

We adopt the linear spring-dashpot model f, = k,8 — 1,6 for the normal force between two
colliding disks, where 8, 8, k,, and 7, are the overlap, the relative speed, the spring constant, and
the viscosity coefficient, respectively. For simplicity, we ignore tangential contact forces, because
we have already verified the results are unchanged for the realistic value of the friction coefficient
by introducing the effective restitution coefficient.'”-% In our simulations, we use k, = 500mU?/d*
and 1, = 1.0mU/d. In this case, the normal restitution coefficient given by Refs. 70 and 71,

T
—exp| o2 |, 18
e =exp |: TN 1:| (18)

is e 22 0.9 which may not be sufficiently large to ensure elastic limit. We adopt the periodic boundary
condition and the Lees-Edwards boundary condition with the relative speed U for the boundaries of
the &- and ¢ -axes, respectively. We randomly distribute N = 8192 particles in L* x L* square boxes
with the dimensionless lengths L* = L/d = 189 and 155 for vy = 0.18 and 0.26, respectively. Then,
we randomly distribute the initial velocities around the linear velocity profile with the dimensionless
shear rate € >~ 1072,

B. Dense plug formation

Figure 1 (upper panel) displays the time evolution of disks in our DEM simulation for
vo = 0.18. Hydrodynamic fields can be obtained by the coarse graining (CG) procedure devel-
oped by Goldhirsch et al.,”>%! where the CG function is defined as ¥(z) = e /matz = (&,9).
Figure 1 (middle panel) shows the time evolution of the area fraction defined as

N
o2, T) = 7 )Wz —1), (19)
i=1

where z; = (&;, ;) is the dimensionless position of ith disk. Figure 1 (lower panel) exhibits the
numerical solution of Eq. (16).

In Fig. 1, a typical transient dynamics exhibits that (a) fluctuations with short wave lengths
are suppressed, (b) clusters are generated and merged, and (c) a dense plug is generated and the
system reaches a steady state. Such transient dynamics of dense plug is qualitatively similar to the
numerical solution of Eq. (16). We should stress that these results can be explained by neither the
one-dimensional TDGL equation nor the Stuart-Landau equation obtained from the ordinary weakly
nonlinear analysis.”' =
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FIG. 1. (Upper panel) Time evolution of disks in the DEM simulation for vo = 0.18. (Middle panel) Time evolution of
vpEM(Z, 7). (Lower panel) Numerical solution of Eq. (16). Here, T = (a) 0, (b) 4.8, (c) 11.2, and (d) 20.0, respectively.

C. Velocity fields and granular temperature

The velocity fields and the granular temperature are defined as

ViY@ —1;)

upepm(z, T) = m7 (20
. Zi V,'ZW(Z —-2;)

Opem(z, T) = m, 21

respectively, where v; and V; = v; — upgm(z;, T) are the dimensionless velocity and the dimen-
sionless local velocity of ith disk, respectively. Figure 2 (upper, middle, and lower panels) displays
the time evolution of upgm(z, 7), wpem(Z, 7), and Oppm(z, T), respectively, where upgpm(z, ) and
wpem(z, T) are the £ and ¢ components of upgMm(Z, T), respectively. As time goes on, upgm(z, T) in
the ¢ direction deviates from the linear profile and wpgwm(z, T) is almost homogeneous. The time
evolution of Oppm(z, T) is accompanied with vppm(z, T), where Oppm(z, T) is lower in the dense
region and higher in the dilute region.

D. Comparison of the TDGL equation with the DEM simulation

To test the quantitative validity of the TDGL equation, we compare the numerical solution with
the DEM simulation. At first, we average out vpgm(z, 7), upem(Z, T), Wpem(Z, T), and Oppm(zZ, T) over
the £ direction and take sample averages from the different 100 time steps. Then, the hydrodynamic
fields are written as one-dimensional forms vpem(¢, T), upem(¢, T), wpem(¢, T), and Opem(¢, T),
respectively. Because vpgm (¢, T) and Oppm(¢, T) are approximately symmetric at { = 0, we introduce
the averages as

1
UpEm(¢, T) = 3 {voem(¢, T) + vpem(—¢, 1)} (0 < ¢ < L*/2), (22)
_ 1
Opem(Z, T) = = {6pem(¢, T) + Opem(—¢, 7)) (0 < ¢ < L*/2), (23)

2
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FIG. 2. Time evolution of (upper panel) upgm(z, 7), (middle panel) wpgm(z, 7), and (lower panel) 6pgm(z, 7). Here,
7 =(a)0, (b) 4.8, (c) 11.2, and (d) 20.0, respectively.

respectively. On the other hand, the velocity fields are approximately antisymmetric at { = 0. Thus,
we introduce the averages as

1

ipem(¢, T) = 3 {upem(¢, ) —upem(=¢, 1)} (0 < ¢ < L*/2), 24)
1

wpeM(¢, T) = 3 {wpem(¢, T) — wpem(—¢, 7)) (0 <¢ < L*/2), (25)

respectively.
In the weakly nonlinear analysis, the hydrodynamic fields are given by the summation of the
base state ¢o = (vo, ¢, 0, ) and the hybrid solution ¢y. At first, we project ¢y on the ¢-axis as

Pn(¢, 7) = A, T)PL e tcoc, (26)

where g, (t) = g. — 7 is the { component of q(7).%* Here, we ignore ¢37,, because ¢y7) exponentially

decays to zero and the following results are unchanged even if we take into account (])(I;I(I;). We note

that ¢} is defined as ¢ = (vg,, i, , iwg,, qu)T with the imaginary unit i, where v,_, u,_, w,, , and
0,. are the Fourier coefficients of the area fraction, the velocity fields # and w, and the granular
temperature, respectively. The explicit forms of them are given in our previous paper.®” If we ignore
the higher order terms in Eq. (15), A(Z, T) may be given by projecting the numerical solution of
Eq. (16) or (17) on the ¢-axis. Then, the hydrodynamic fields are given by ¢rpgL(¢, T) = ¢o +
q3h(§, 7), where each component of ¢prpgL(¢, T) is written as

VIDGL(L. T) = Vo + 2v, A(Z, T) cos(qc (1)0), 7)
wrpaL(C. T) = ¢ — 2ug AL, T) sin(g; (1)0), (28)
wrpGL({. T) = —2w,, A(Z, ) sin(gc (1)0), (29)
OrpGL(C. T) = O + 20, A(L, T) cos(qe (T)C), (30)

respectively. Here, the factor 2 comes from the complex conjugate.
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FIG. 3. Time evolution of (a) the area fraction, (b) the £- and (c) ¢-components of the velocity field, and (d) the granular
temperature for the supercritical case (vo = 0.18), where the solid squares, circles, and triangles represent Xpgm(¢, T)
(X =v,u, w,0)att =4.8,11.2, and 20.0, respectively. The solid, hashed, and dotted lines are XtpgL(¢, T) (X = v, u, w, 6)
att =4.8,11.2,and 20.0, respectively. Here, the scaling factors are introduced as t* ~0.14,ay >~ 0.24,q; >~ 0.02,a;; >~ 1.96,
and a; >~ 0.02, respectively. We also use ¢(r) = 1.6,0.9,0.75, ¢(r) ~ 0.8,0.8,0.8, and ¢5(r) ~ 1.5, 1.1, 1.8 at t = 4.8,
11.2, and 20.0, respectively, and {H*(r) ~ 1.6,1.35 at T = 11.2 and 20.0, respectively. It should be noted that we do not
show the result of the granular temperature at T = 4.8, because it homogeneously distributes around 6 and its fluctuation
is too large to plot in the same figure. The relative standard deviations are Err. ~ (a) 0.09, (b) 0.07, (c) 0.10, and (d) 0.35,
respectively.

Figures 3 and 4 display the time evolution of the hydrodynamic fields for the supercritical (v
= 0.18) and subcritical (vy = 0.26) cases, respectively, where the symbols represent Egs. (22)—(25)
and the lines represent the scaling functions

XTDGL(C’ T) = aBk(XTDGL(C/é‘;(T)’ T/T*) (X =v,u,w, 9), (31)

with the scaling factors a¥, ¢3(7) and t*. We quantify the difference between Eqgs. (22)—(25) and
Eq. (31) by introducing the relative standard deviation

= S 2
X - X
Err. = (DEM_2 ooL) (X =v,u,w,0), (32)
XTDGL

where we omit the arguments (¢, 7). In Figs. 3(a)-3(c), rpeL(¢, T), étpcL(¢, T), and WrpgL(S, T)
quantitatively agree with Pppm(¢, T), ipem(¢, T), and wpem(¢, T), respectively, where Err. is less
than or equal to 0.1. In Figs. 4(a) and 4(b), drpgL(¢, T) and #tpgL(¢, T) quantitatively agree with
pem(¢, T) and éppm(¢, T), respectively. We should note that we could not get any reasonable
agreements between the ¢ component of the velocity field obtained from the DEM simulation under
the physical boundary condition and the numerical solution of the set of granular hydrodynamic
equations in our previous work.'” We can also confirm the qualitative agreements in the ¢ component
of the velocity field for the subcritical case (Fig. 4(c)) and the granular temperature for both the
supercritical and subcritical cases (Figs. 3(d) and 4(d)), where Err. is less than or equal to 0.43.
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FIG. 4. Time evolution of (a) the area fraction, (b) the £- and (c) {-components of the velocity field, and (d) the granular
temperature for the subcritical case (vo = 0.26), where we use the same sets of T and scaling factors used in Fig. 3. Here, the
relative standard deviations are Err. 2~ (a) 0.10, (b) 0.07, (c) 0.40, and (d) 0.43, respectively.

IV. DISCUSSION AND CONCLUSION

In this paper, we examine the validity of the TDGL equation for a two-dimensional sheared
granular flow from the comparison with the DEM simulation. The results of the TDGL equation, at
least, qualitatively agree with the results of the DEM simulation. Such transient dynamics can be
reproduced by neither the one-dimensional TDGL equation nor the Stuart-Landau equation derived
from the ordinary weakly nonlinear analysis.

We compare the one dimensional hydrodynamic fields obtained from the DEM simulation with
the scaled forms of the numerical solution of the TDGL equation, where we find the quantitative
agreements in the area fraction and the § component of the velocity field. In the supercritical
regime, we also find the quantitative agreement in the ¢ component of the velocity field. We can
also observe the qualitative agreements in the { component of the velocity field for the subcritical
case and the granular temperature for both the supercritical and subcritical cases. In our previous
work, the hydrodynamic fields obtained from the DEM simulation are reasonably explained by
the numerical solutions of the granular hydrodynamic equations by Jenkins and Richman except
for w(z, 7).'4'517 In the present work, even though we need to introduce the scaling factors, the
results of the DEM simulation is qualitatively reproduced by the numerical solution of the TDGL
equation. It is needless to say that more precise analyses will be important to remove the scaling
factors. In addition, quantitative comparison with the DEM simulations in quasi elastic limit should
be performed in our future studies.

In conclusion, the numerical solution of the TDGL equation can qualitatively explain the time
evolution of the hydrodynamic fields obtained from the DEM simulation.
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