
Chemical Engineering and Processing 39 (2000) 323–334

Neural networks for modelling of chemical reaction systems with
complex kinetics: oxidation of 2-octanol with nitric acid

E.J. Molga a,*, B.A.A. van Woezik b, K.R. Westerterp b

a Chemical and Process Engineering Department, Warsaw Uni6ersity of Technology, ul. Warynskiego 1, 00-645 Warsaw, Poland
b Department of Chemical Engineering, Chemical Reaction Engineering Laboratories, Twente Uni6ersity, P.O. Box 2177,

7500 AE Enschede, The Netherlands

Received 2 June 1999; received in revised form 13 September 1999; accepted 13 September 1999

Abstract

Application of neural networks to model the conversion rates of a heterogeneous oxidation reaction has been investigated —
oxidation of 2-octanol with nitric acid has been considered as a case study. Due to a more complex and unknown kinetics of the
investigated reaction the proposed approach based on application of neural networks is an efficient and accurate tool to solve
modelling problems. The elaborated hybrid model as well as the modelling procedure have been described in detail. Learning data
used to train the networks have been extracted from the experimental results obtained in an extensive investigation programme
performed with a RC1 Mettler-Toledo reaction calorimeter. The influence of different operating conditions on the accuracy and
flexibility of the obtained results has been investigated and discussed. It has been found that with the proposed approach the
behaviour of a semi-batch reactor, i.e. its concentration and heat flow time profiles, can be predicted successfully within a singular
series of experiments; however, the generalisation of the neural network approach to all series of experiments was impossible.
© 2000 Elsevier Science S.A. All rights reserved.
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1. Introduction

From performance and safety points of view an
efficient modelling of chemical processes is needed for
fast, reliable and accurate predictions of the reactor
behaviour to optimise the process. But the development
of a reactor model becomes often a laborious and
expensive stage in the whole design or optimisation
procedure. Usually the development of the reaction
kinetics is a highly complicated task, particularly for
complex reacting systems — as multiphase systems,
polymerisation reactions or catalytic reactions. In such
systems active, non-stable intermediates may influence
significantly the reaction progress, but usually the exact
reaction mechanism is not known as a result of the
difficulties with the identification and quantitative de-
termination of these intermediates.

The application of neural networks seems to be a
promising tool to solve modelling problems for the
cases where as a result of insufficient knowledge the
governing mechanisms can not be formulated. Recently
the application of neural networks has become more
popular also in chemical engineering, particularly for
control and fault diagnosis; the use of neural networks
for modelling of chemical processes is relatively new —
e.g. see Ref. [1].

Two main modelling strategies employing neural net-
works may be distinguished: the first one called ‘the
black-box approach’, when the entire process is repre-
sented with the appropriate neural net, and ‘the hybrid
approach’, which is a combination of both — tradi-
tional modelling of the process and a neural network
representing the less known phenomena of the process.
In the former case a generalisation of the obtained
results to other systems, e.g. differing in size or operat-
ing conditions, is hardly possible, while the latter ap-
proach gives an exciting opportunity for knowledge
generalisation provided the reaction kinetics are repre-
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sented with the trained neural network. This hybrid
approach, since its introduction by Psichogios and Un-
gar [2], has been found to be smart and efficient to
model complex reacting systems with unknown kinetics
— e.g. see Ref. [3] where an application of this ap-
proach to model the pyrolysis of ethane is presented.

In our previous papers, the kinetics of a homoge-
neous catalytic esterification and heterogeneous aro-
matic nitration [4], a catalytic gas-liquid-solid
hydrogenation [5] and a catalytic liquid-liquid hydroly-
sis [6] have been successfully modelled with neural
networks. Neural networks have the ability to fit arbi-
trary complex non-linear relationships [7] and may thus
be well suited for the approximation of kinetic
expressions.

In this paper an application of neural networks to
model the conversion rate of the oxidation of 2-octanol
with nitric acid has been investigated. The flexibility
and accuracy of the neural network approach, depend-
ing on the net architecture and treatment of available
experimental data, have been studied. Some conclu-
sions, useful for other studies, are formulated and
discussed.

2. Experimental installation and procedure

The oxidation of 2-octanol with nitric acid has been
studied in a reaction calorimeter (RC1). This apparatus
provides an accurate measurement of the heat removal
by cooling, which can be used to determine the rate of
heat generation in the reaction mass, see e.g. Ref. [8].

The experimental set-up is shown in Fig. 1. The RC1
(1) forms the basis of the experimental set-up. It is
equipped with a jacketed 1-l glass vessel of the type
SV01. Baffles made of glass are placed in the reactor
vessel. The reactor content is stirred by a propeller
stirrer. The stirring speed is adjusted to 700 rpm. For
further details and drawings of the RC1 see Refs [8,9].

The reactor is operated in the semi-batch mode under
isothermal conditions. To operate below room tempera-
ture an external cooling device (2) of the type Haake
KT40 has been installed. The reactor is initially loaded
with 0.4 kg of a 60 wt.% HNO3-solution. Before the
experiment is started, a small amount (0.1 g) of NaNO2

is added as initiator. When the temperature of the
reactor has reached a constant value the feeding system
is started by activating the Mettler dosing controller
RD10 (6). The feed consists of pure 2-octanol in the
supply vessel, which is located on a balance of the type
Mettler pm3000 (3). The organic compound is fed to
the reactor by a Verder cogwheel pump (4) with a
constant feed rate in the range of 0.05–0.4 kg/h. The
nitric acid solution and the organic solution are immis-
cible and form a heterogeneous dispersion in the reac-
tor. The nitric acid is used in excess and forms the
continuous phase during the whole experiment. During
the oxidation of 2-octanol, NOX-gases are formed,
which are washed in a scrubber (5) with water. After
addition of 0.1 kg 2-octanol the dosing is automatically
stopped by the RD10 (6). The experiment is continued
after dosing and stopped as soon as the maximum
amount of 2-octanone has been formed. This maximum
can be found by analysis of the organic phase, which is
explained below.

During an experiment 4–10 samples of the dispersion
are taken with a syringe as indicated by (7) in Fig. 1.
The dispersion in the syringe separates directly in two
phases. The concentration of acids in the aqueous
phase is determined by titration with a 0.1 M NaOH-
solution. The organic phase is first stabilized by wash-
ing it with water to remove small amounts of nitric acid
and unstable nitro-compounds. The organic phase is
then analyzed by GC to determine the concentration
2-octanol, 2-octanone, and carboxilic acids.

During all runs the temperatures are measured of the
reactor content, the cooling oil, the feed and of the
surroundings. The temperatures and the measured mass
of the 2-octanol on the balance are monitored and
stored by a computer. In case of an emergency, the
computer opens the emergency cooling and the electric
valve in the reactor bottom. The dumped reactor con-
tent is quenched in ice (8).

The reaction system is investigated in the tempera-
ture range of 0–40°C for dosing times of 900–7200 s,
see Table 1 where all performed experiments are listed.

3. Reaction pathways and observed phenomena

Oxidation reactions with nitric acid in general are
very complex and usually several intermediates are
formed, see Ref. [10]. The major uncertainty in describ-
ing this type of oxidation reaction is its mechanism,
which is unknown. Different reacting species are pro-

Fig. 1. Simplified flow-sheet of the experimental set-up. Ti, tempera-
ture indicator; FC, flow controller. See text for further details.
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Table 1
Experiments performed (data for learning have been extracted from runs written in bold)

Series Reactor temperature, TR [C]Dosing time, t–dos [s] Experiment name

0I E–1927200
0 E–204
5 E–196

10 E–191
15 E–194
20 E–190
25 E–193
40 E–195

3600II 0 E–178
10 E–169
10 E–229
15 E–186
20 E–181
25 E–189
30 E–170
40 E–175

III 1800 0 E–179
10 E–173
10 E–228
15 E–185
15 E–225
20 E–223
20 E–182
25 E–188
30 E–171
40 E–176

0IV E–180900
10 E–174
15 E–184
15 E–224
20 E–183
20 E–222
25 E–187
25 E–221
30 E–172
30 E–220

posed like N2O4 by Ref. [11], NO+ by Ref. [12] and
NO2

+ by Ref. [13]. This uncertainty makes elucidation
of the real pathway extremely difficult or even impossi-
ble. The oxidation of cyclohexanol with nitric acid,
which is very similar to the oxidation of 2-octanol, has
been critically reviewed by Castellan et al. [14]. They
concluded that at low temperatures — around 20°C —
the oxidation proceeds mainly via an ionic-molecular
mechanism, whereas it proceeds via a radical molecular
mechanism at temperatures higher than 60°C. We are
interested in obtaining 2-octanone, which can be pro-
duced at a temperature around 20°C. We now assume
that nitrosonium (NO+) is the reactive component,
which reacts with the organic compound transferred
from the organic phase into the aqueous phase. How-
ever, at high temperatures the radical mechanism prob-
ably may become important and care must be taken at
this temperature level.

The oxidation of 2-octanol with nitric acid can be
represented as a consecutive pathway as shown in Fig.
2. In this simplified reaction scheme the main reactions
and components are depicted. First 2-octanol is par-
tially oxidized to 2-octanone, which forms a stable
product. This reaction does not start without adding an
initiator like NaNO2, which forms nitrous acid. The
oxidation of 2-octanol to 2-octanone is an autocatalytic
reaction whereby nitrous acid is formed and nitric acid
is consumed.

Fig. 2. Schematic reaction pathway for the oxidation of 2-octanol
with nitric acid. Distribution of the obtained carboxylic acids is not
shown in this scheme — see Longstaff and Singer [15] for more
details.
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The produced 2-octanone can be further oxidized to
carboxylic acids. Depending on which carbon bond is
broken hexanoic acid and acetic acid or heptanoic acid
and formic acid are formed. The formic acid can again
be oxidized to CO2, see Ref. [15]. The amount of
hexanoic acid as experimentally found is approximately
two times larger than the amount of heptanoic acid.
During the reaction nitrous acid and nitric acid are
consumed. This reaction proceeds via some intermedi-
ate products, which are so unstable that they could not
be found.

We have restricted ourselves to oxidation experi-
ments of pure 2-octanol with 60 wt.% nitric acid. A
small amount of nitrite is added to prevent the induc-
tion. The reaction system is still under investigation and
it will the subject of another publication [16]. Although
the complexity of the oxidation of 2-octanol (A) and
2-octanone (P) is high the stoichiometry can be sim-
plified to only two equations as follows:

A+B�P+2B (1)

P+B�X (2)

where B is the nitrosonium ion, which contributes for
the autocatalytic effect, and X are carboxylic acids.

4. Neural network approach to model the conversion
rates

The conventional kinetic model supplies the conver-
sion rates as a function of the concentration of each
relevant reactant as well as of the temperature. This
kinetic modelling procedure consists of two essential
steps: at first the reaction mechanism must be deter-
mined (assumed) and then the model parameters and
their temperature dependencies are estimated. For some
complex reacting systems non-stable or not measurable
intermediate compounds must be introduced into the
kinetic model, so the estimation of parameters and the
verification of the model in this case is really difficult.

Using neural nets the modelled object or the phe-
nomenon (here the reaction kinetics) is treated as a
‘black-box’, so merely the relevant input variables and
their influence on the output signals are observed and
mapped. From a mathematical point of view the neural
network approximates a complex functional depen-
dence and it is a mathematical superposition of all the
expressions derived for a reliable and representative
(but here unknown) kinetic model, without any explicit
knowledge of these expressions.

The modelling procedure with the application of
neural nets has been here executed in the following
steps:
1. choice of input–output variables, relevant for the

investigated system;

2. extraction of learning data from the experimental
results;

3. choice of the network topology and learning
method.

While point 3 is related directly to the existing calcu-
lation techniques, the first two points are integrally
related to the system, so to execute them successfully
quite a significant knowledge about the properties of
the investigated system is required.

4.1. Choice of the input–output 6ariables

A neural network, which at any operating conditions
supplies the appropriate values of the conversion rates
for the key reactants present in the system, works in
fact as a kinetic model. Taking into account the proper-
ties of the investigated reacting system the input–out-
put variables have been chosen as below.

From experimental data and the simplified reaction
scheme (Eqs. (1) and (2)) it results that the state of the
investigated reacting system can be uniquely described
with the concentrations of the following reactants in the
aqueous phase: cA (2-octanol), cP (2-octanone), cX (total
carbon acids) and cN (nitric acid). The concentration of
nitrosonium ion cB, appearing in the stoichiometric
equations, is a mathematical superposition of the previ-
ously listed variables (cA, cP, cX, cN), so it is expressed
simultaneously with these variables. Including the reac-
tion temperature, the set of the inlet signals finally
consists of the following vector: [T, cA, cP, cX, cN]T.

To estimate the listed concentrations, ci, we have to
know (determine, calculate) the solubility of each com-
pound in the aqueous phase. But usually the distribu-
tion coefficients depend, for each reactant, on the
temperature and also on the concentrations of other
soluble compounds. Additionally, to study the investi-
gated system accurately we probably need to use molar
activities instead of simple molar concentrations. To
avoid these problems the use of the global molar con-
tent of each compound in the entire reacting liquid-liq-
uid system has been proposed. These global
concentrations are defined for the investigated oxida-
tion system as follows:

Xi=
ni

% ni

(3)

where ni is a global molar amount of the i-th com-
pound in the reacting system. The molar contents nA,
nP, nX can be evaluated from, e.g. chromatographic
analysis, while the values of nN have to be estimated
assuming that the initial concentration of this reactant
equals to: cN,in=cHNO3,o−cNaNO2,o:cHNO3,o. The
above defined global fractions have been introduced as
an arbitrary, but a very convenient measure, for the
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Fig. 3. Schematic diagram of the neural network representing the
reaction kinetics.

volume of the reacting system and per second. To avoid
a need for corrections of the reaction mixture volume
as a result of possible changes of temperature and the
mixture composition, it is more convenient to express
each conversion rate per total initial number of moles
of substrates (2-octanol and nitric acid) according to
the relationship:

Ri=
riV

nAo+nNo

(4)

The sum (nAo+nNo) used in the definition of Eq. (4)
has been used to normalise the obtained numerical data
of the conversion rates ri.

The scheme of the proposed neural network repre-
sentation of the reaction kinetics is shown in Fig. 3.

As a consequence of the used global concentrations
and global conversion rates the proposed net represents
not only the intrinsic reaction kinetics but also incorpo-
rates the simultaneous mass transfer phenomena, which
play a role in the entire process. From the net perfor-
mance point of view this fact is not relevant but it may
be important for the knowledge generalisation. For the
fast reaction regime the used overall reaction rates may
incorporate the influence of the external mass transfer
resistances, which are dependent on the interfacial area
— so also on mixing and geometrical conditions. This
problem will be discussed in detail later.

4.2. Extraction of the learning data from experimental
results

To train a neural network successfully a representa-
tive set of learning data has to be prepared based on the
available experimental results. This step has a decisive
influence on the quality of the approximation of the
reaction kinetics, and as such on the accuracy of pro-
cess modelling as well as on the usability of the network
for knowledge generalisation.

For the experimental investigations performed in this
study two methods of extraction of learning data can be
proposed:
� the learning data set is extracted only from the

concentration measurements, so the available heat-
flow results obtained in a RC1 reaction calorimeter
are used as additional testing data — method M1;

� the learning data set is extracted on the basis of the
concentration results obtained for the compound X
and simultaneously of the heat-flow results, so the
concentration results obtained for compound P are
used only for testing — method M2.

The detailed algorithms for the preparation of the
learning data are listed in Appendix A for both meth-
ods, respectively. Both algorithms result in an appropri-
ate set of inlet-outlet learning data: [T, XA, XP, XX, XN,
R1, R2]T. Usually as many as 100 learning patterns have
been extracted from each experimental run.

purpose of the neural networks application. Using Xi,
which expresses, as is shown in Eq. (3), the molar
content of each reactant in the total heterogeneous
liquid-liquid reaction mixtures, the input vector can be
simplified. This is in contrast to the use of the well
known concept of relative concentrations, which ex-
presses separately the appropriate concentrations of
any reactant in the organic and aqueous phases, respec-
tively, one more input variable — being the volumetric
fraction of the dispersed phase od — has to be intro-
duced into the input vector. Taking the above into
account the concept of global concentrations has been
chosen for the further analysis of the considered react-
ing system. The performed series of experiments differ
mainly in the addition rate of the 2-octanol, so a
possibility of incorporating of this feeding rate into the
set of input variables has been also considered. But
from the conceptual and practical reasons this possibil-
ity has been eliminated. The employed neural net is to
represent the kinetics (in our case it incorporates also
possible mass transfer resistances) so, it should work as
kinetic expressions — i.e. for the set of intrinsically
independent variables describing uniquely the state of
the reacting system this net should supply the conver-
sion rates for relevant reactants. The feeding rate of the
2-octanol is not related to the kinetics, it of course has
an influence on the state of the system because at any
moment of time the concentration of all reactants
present in the reactor is a function of the feeding rate
and the integrated conversion rate. This influence has
been taken into account introducing the global concen-
trations as the input variables. These global concentra-
tions uniquely define the state of the reaction mixture,
independently on the history of the reaction mixture, so
from practical point of view there is no need to intro-
duce the feeding rate as an additional input variable.
The feeding rate appears in Eq. (8) of the proposed
below hybrid model to predict the behaviour of the
reactor. Some comments on a possible inaccuracy intro-
duced into the description as a result of use of the
global concentrations are given below.

Using the simplified stoichiometric equations (Eqs.
(1) and (2)) the behaviour of the reacting system, i.e. its
rates of change, can be uniquely described with the
overall conversion rate of the 2-octanol (A) into the
2-octanone (P) — r1, and the overall conversion rate of
the 2-octanone (P) into carboxylic acids (X) — r2,
where both r1 and r2 are expressed in moles per total
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To compare and discuss properties of both methods
used for the evaluation of the learning data the calcula-
tions described in the Appendix A have been performed
with the use of the experimental results obtained for a
singular run E–192. The obtained learning data are
displayed in Figs. 4 and 5, respectively as a function of
the dimensionless reaction time. Comparing the
results plotted in these diagrams we can observe the
following:
� as a result of the scarce sampling only a few concen-

tration measurements during each oxidation run

have been performed, so the interpolation polynomi-
als for zP and zX versus u are usually of an order as
low as 2. In consequence, for method M1, exactly
linear dependencies of Ri versus u have been ob-
tained — see Fig. 4;

� for method M2, the calculated dependence of R1

versus u strictly follows the shape of the curve QR

versus u obtained from the RC1 heat-flow measure-
ment, although the absolute values of the conversion
rate R1 are not far from those obtained with method
M1.

Fig. 4. Learning data extracted from run E–192 following the method M1 — see Appendix A.

Fig. 5. Learning data extracted from run E–192 following the method M2 — see Appendix A.
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Table 2
Accuracy of learning

Series Net topologyNet code Learning data set Learning patterns P rms error

5-4-2 LS1: E–204, E–191, E–190, E–195I 200N1 6.06 10−4

5-4-2 LS2: E–178, E–229, E–181, E–170, E–175 250II 2.00 10−3N2
5-4-2 LS3: E–179, E–228, E–223, E–171, E–176N3 250III 2.85 10−3

N4IV 5-4-2 LS4: E–180, E–174, E–184, E–222, E–220 250 4.44 10−3

N5I–IV 5-5-4-2 LS5: LS1+LS2+LS3+LS4 450 8.41 10−2

5-10-2 LS6: LS1+LS2+LS3 350N6 3.51 10−2I–III

The two neural networks trained with learning data
obtained from both method M1 and M2, respectively
predict experiment E–192 with a very good accuracy,
although method M2 exhibits significant inaccuracies in
the predicted zA versus u line at the beginning and at
the end of the process. Taking this into account we
have ultimately chosen the first method M1 to evaluate
all data for learning.

Four sets of learning data, a separate set for each
experimental series, have been produced with method
M1 extracting learning data from approximately each
second experiment performed — see Table 1, where
experiments used for creating learning data are written
in bold font. These runs taken for learning are listed
also in Table 2.

Before presenting to the network, the learning data
have been normalised and randomly mixed within each
set.

4.3. Learning of the net to approximate the reaction
rates

The net architecture has been optimised during the
learning procedure to find the net topology as simple as
possible but sufficiently complex to map accurately the
chosen input and output variables. Usually only one
hidden layer was enough to approximate the investi-
gated reaction kinetics.

During the learning procedure a vector of the net
parameters (weights) W has been modified to minimise
differences between the outputs predicted with the net,
y, and outputs used for learning, d. The following
target function has been minimised:

E(W)=
1
2

%
P

j=1

%
M

k=1

(yk
( j)−dk

( j))2 (5)

where the index j (in brackets) is a superscript not a
power exponent. Basing on the methods described
among others by White and Sofge [7] the optimis-
ation of the net has been performed by pruning of
each i-th neurone from the hidden layer(s) for which
�j=1

N �Wij �:0..

For the net with only one hidden layer, which con-
sists of N neurones in the input layer, K neurones in the
hidden layer and M neurones in the output layer,

respectively-each k-th output can be calculated as
follows:

yk= f
� %

K

i=0

Wki
(o)f

� %
N

j=0

Wij
(h)xj

��
(6)

where f is the so-called activation function.
In this study a Levenberg–Marquardt method [17]

has been employed as a very efficient method for
non-linear optimisation to find the optimal weight vec-
tor W. Not only the target function E but also the root
mean square (rms) has been used as a criterion of the
fitting quality, which is defined as:

rms=
'E

P
(7)

where P is a number of learning patterns used for
training.

The accuracy of learning obtained with different sets
of learning data is shown in Table 2. A comparison of
the output data (normalised values of the conversion
rates R1 and R2) calculated by the trained network with
the experimental data as used for learning is performed
in Fig. 6 for the set LS2. As is visible in the diagram, a
quite good accuracy of fitting has been obtained in case
the net is trained with data extracted from singular
series of experiments. Unfortunately, the accuracy of
learning deteriorates significantly in case that the set of

Fig. 6. Learning quality-comparison of the output data calculated
with the trained network to the experimental ones; the learning data
set — LS2.
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Fig. 7. Schematic diagram of a numerical representation of the hybrid
first principle — neural network model.

dnP

dt
= (R1−R2)(nAo+nNo) (9)

dnx

dt
=R2(nAo+nNo) (10)

dnN

dt
= (−R1+R2−2R2)(nAo+nNo)

= (−R1−R2)(nAo+nNo) (11)

The energy generated as a result of the reaction can be
estimated according to the relationship:

QR= (R1 DHP+R2 DHx)(nAo+nNo) (12)

The set of equations (Eqs. (8)–(12)), together with the
heat balance equation which for a stirred tank reactor
with a cooling jacket reads as follows:

nRcp

dTR

dt
=QR−QC−8AdcpA(TR−TA)−QL, (13)

makes a hybrid model for the considered semi-batch
reactor, provided the conversion rates are supplied by
the trained network. In Eq. (13) the cooling rate QC is
equal to UA(TR−TC), while QL is the rate of heat
losses. For the isothermal experiments carried out in a
RC1 reactor, we have immediately from the heat bal-
ance of Eq. (13), that the heat generation rate as a
result of the reaction progress, QR — as it is calculated
with Eq. (12) — is equal to that as determined directly
from measurements.

A schematic diagram of the numerical representation
of such model is shown in Fig. 7. A numerical version
of the proposed hybrid model has been elaborated,
where the trained neural network representing the ki-
netics has been implemented and a fourth order Runge-
Kutta method has been applied to solve the system of
balance equations of 8}13. Then for the demanded
operating and initial conditions the hybrid model pre-
dicts the behaviour of the reactor.

6. Results and discussion

After the learning procedure each trained neural net
has been tested with use of all experimental data. To
this end the proposed hybrid model has been employed
to predict the performance of the semi-batch stirred
tank reactor operated at isothermal conditions in which
the concentration profiles as well as the energy gener-
ated as a result of the reaction have been calculated as
a function of time.

Comparisons of the experimental and calculated con-
versions of the key reactants A, P and X as well as the
integrated heat effect DHT are shown in Figs. 8 and 9,
as a function of the reaction time for two runs of Series
I. Data from run E–204 have been used to create the
set of learning data LS1; it is visible in Fig. 8 that in

Fig. 8. Accuracy of predictions obtained with the hybrid model —
comparison of the experimental and calculated molar content of the
key reactants A, P and X in the reactor as well as the integrated heat
effect DHT; run E–204 used to create the learning data set.

learning patterns contains data taken from different
experimental series: compare in Table 2 the values of
rms errors obtained for LS1–LS4 with the LS5 and
LS6 learning data sets, respectively. This observation is
discussed in detail below.

5. Hybrid model of the reactor

The proposed neural network supplies after training
the conversion rates at any operating conditions, so the
mass and heat balances can be formulated and solved
for different types of reactors and their operating
modes (taking into account the restriction related to the
mass transfer resistances mentioned above). For the
semi-batch process performed and following the operat-
ing mode described in the experimental part of this
paper — i.e. for the process where the 2-octanol is
successively fed into the nitric acid being already in the
reactor — the overall mass balances can be written as
follows:

dnA

dt
=8Ad−R1(nAo+nNo) (8)

where 8Ad [moles/s] is the molar feeding rate of com-
pound A into the reactor.
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this case the hybrid model is able to reproduce the data
extracted for learning with an excellent accuracy. This
comparison is performed to test both, an accuracy of
the implemented neural network as well as numerical
procedures installed to integrate differential model
equations. Data from run E–194 have not been used
for learning — it can be seen in Fig. 9 that also in this
case the neural net is able to predict the concentration
and heat-flow results with a very good accuracy. Notice
that, following method M1, the heat-flow results have
not been used to train the net, so a comparison of
calculated and experimental heat-flow results is an ad-
ditional, independent test of the accuracy of the pro-
posed approach.

Many testing calculations have been performed and
their results are shown in Table 3, where the accuracy
of the results obtained with four different hybrid mod-
els are compared. The used hybrid models differ in the
type of the neural network implemented — see also
Table 2. Notice that model HM1, employing net N1,
has been used to model Series I, model HM2 for Series
II, etc.

To display quantitatively the accuracy of predictions
obtained with each type of the hybrid model the follow-
ing measures have been used:
� for each run the relative error of predictions defined

as:

REi=
zi,exp−zi,cal

zi,exp

, (14)

where zi is the conversion of the key organic com-
pound — zA, zP, zX or the integrated heat effect
DHT;

� for each series of measurements the root mean
square (rms) error defined as:

rms=
D1

2
%
L

i=1

(REi)2

L

(15)

where L is the number of experiments (experimental
points available) taken for the comparison.

The root mean square values rms obtained for different
categories of testing data are collected in Table 3. The

Fig. 9. Accuracy of predictions obtained with the hybrid model — comparison of the experimental and calculated molar content of the key
reactants A, P and X in the reactor as well as the integrated heat effect DHT; run E–194 not used to create the learning data set.

Table 3
Accuracy of the elaborated hybrid models

Net code Data not used for learningData used for learningHybrid model

Concentration (rms error) Heat-flow (rms error) Concentration (rms error) Heat-flow (rms error)

HM1 0.047 0.107 0.049 0.101N1
0.1990.058N2 0.177HM2 0.098

HM3 0.054 0.194 0.066N3 0.139
0.7330.7910.1620.129N4 HM4
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accuracy of the predictions of the concentration and
heat-flow results for the runs used for learning and the
runs not used for learning have been tested separately.
The obtained results can be summarised as follows:
� the net trained with data taken from a singular series

of experiments (the same dosing rate of 2-octanol) is
able to represent accurately the reaction kinetics
(together with simultaneous mass transfer phenom-
ena), so the behaviour of the reactor can be accu-
rately predicted in this case;

� an excellent accuracy of fitting has been obtained for
series I, II and III, although some discrepancies for
the integrated heat effect DHT can be observed at
higher reaction temperatures;

� for Series IV (experiments performed at the fastest
dosing rate of 2-octanol) the neural network ap-
proach failed — only at the lowest temperatures of
TR=0 and 10°C a sufficiently accurate approxima-
tion has been obtained;

� concentration data are reproduced much more accu-
rately than integrated heat effect data;

� for Series I–III there is no significant difference
between the prediction accuracies obtained for data
used for learning and data not used for learning;

� the net trained with data extracted from one series of
experiments can not be used to represent data from
another series of experiments.

7. Summary

From the performed tests it is visible that the accu-
racy of the predictions is good as long as the learning of
the net and reproducing of the reaction rates are re-
stricted to a singular series of experiments. Each trial of
knowledge generalisation and representation of runs of
different series with only one neural net failed. This can
be caused by the fact that in the proposed approach the
neural net represents the intrinsic kinetics, but also the
simultaneous mass transfer phenomena are incorpo-
rated. Droplet diameters in the dispersed system, so
also the interfacial liquid-liquid contact area, depend on
the Weber number, We, and on the volume fraction of
the dispersed phase. The proposed neural nets, as a
result of the used global concentrations, should be able
to incorporate and represent also the influence of the
interfacial contact area on the overall reaction rate,
because the stirrer geometry and the stirrer speed have
been kept the same from run to run. The observed
discrepancies and poor abilities of the networks to
generalise the knowledge within all experimental series
can be caused by some phenomena which change the
system properties from series to series, e.g. such as
phase inversion or changes in the reaction mechanism
caused by a temporary excess of some reactants in the

reactor, etc. At certain conditions the inaccuracies in
the estimation of the global concentrations Xi can play
a significant role. These concentrations have been esti-
mated on a basis of the composition of the organic
phase: in view of the limited solubility of the organic
compounds in the aqueous phase this method usually
does not introduce significant errors in the values of Xi.
But if the concentration of some organic compounds in
the aqueous phase becomes significant, particularly for
the formic and acetic acids produced during the reac-
tion this is the case, the method used to estimate the
global concentrations may introduce relevant dis-
crepancies into the description. Based on the obtained
results we can point out the limitations of the elabo-
rated hybrid model with respect to the generalization
are not related to the learning accuracy nor the opti-
mization of the net architecture, so not to a network
itself, but rather to the diversity of the modelled system.
Because anticipated changes in the reaction mechanism
as a result of a temperature rise and/or as a result of an
excess of one reactant the approximation of the reac-
tion kinetics with only one net becomes extremely
difficult. To explain these poor generalisation abilities
of the proposed approach further studies are needed.

At the current stage the reactor behaviour can be
predicted within a singular series of experiments. The
hybrid model employing the appropriate neural net-
work can be used for this purposes as has been shown
in Fig. 7. For each series of experiments using deter-
mined weights the overall reaction rates R1 and R2 can
be estimated at any operating conditions with Eq. (6),
after that the concentration profiles and energy gener-
ated as a result of the reaction can be predicted with
Eqs. (8)–(13).

Because in the proposed approach the neural net-
work incorporates and represents the intrinsic reaction
kinetics coupled with external mass transfer resistances,
special precautions have to be taken to model reactors
much larger in volume than the RC1 reactor used in
our experiments. Experimental scaling-up studies are
needed to determine the limitations of the described
method, but considering the general properties of liq-
uid-liquid reacting dispersions some practical scaling-up
rules can be formulated. These rules are based on the
assumption that equal interfacial areas per unit volume
of dispersion must be aimed at in laboratory and large
reactor vessels, respectively. This implicates a complete
geometric, kinematic, dynamic and thermal similarity
of the equipment. Okufi et al. [18] state that usually
geometric similarity and the rule of equal impeller tip
speed provide the best scale-up criteria for equal inter-
facial areas. For the studied semi-batch process also the
dosing rate is a significant scaling-up parameter in view
of possible accumulation of unreacted 2-octanol in the
reactor vessel. Then an equal ratio of the volumetric
dosing rate of 2-octanol to the initial volume of the
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nitric acid present in the reactor, is an additional scal-
ing-up criterion for the system under consideration. In
our investigations, for each experiment this ratio was
equal to: (0.42/t–dos) [s−1] where the dosing time
t–dos [s] is as listed in Table 1.

8. Notation

molar concentration, mole m−3c
cp molar specific heat capacity, J mol−1

K−1

Da stirrer diameter, m
target function, -E
activity function, -f
reaction enthalpy, J mol−1DH
integrated heat effect, JDHT

K number of neurons in the hidden
layer
number of neurons in the outputM
layer

n number of moles, -
nAo total amount of A added to the re-

actor, mole
number of neurons in the inputN
layer
stirrer speed, s−1N
number of learning patterns, -P

Q power generated as a result of the
reaction progress, W

r conversion rate, mole m−3 s−1

R relative conversion rate (Eq. (4)), s−1

RE relative error (Eq. (14)), -
time, st
temperatureT

UA product of the overall heat transfer
coefficient and the heat exchange
surface area for the reactor jacket,
W K−1

reactor volume, m−3V
weights vector,W

the Weber number, -We=
rcN2Da

3

sX global molar fraction, -
output of the net (Eq. (6)), -y

Greek
u= t/tdos dimensionless time,

conversion (Eqs. (A2) and (A3)), -z

8 feeding rate, mole s–1

rc density of the continuous phase, kg
m−3

interfacial tension, N m−1s

Subscripts
2-octanolA
2-octanoneP

carboxylic acidsX
nitrosonium ionB

N nitric acid
dosingdos
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Appendix A. Extraction of learning data from
experimental results

Experimental results available:

(a) Concentration zA, zP, zX= f(u) from
measurements: chromatographic

measurements, sampling
frequency Du$0.5, usually
5 points for each run.
In view of the limited
number of samples, the
concentration results have
been interpolated with
polynomial expressions.

(b) Heat-flow TR, QR= f(u) from the
RC1 reaction calorimeter,measurements:
sampling frequency
Du$0.01, usually more
than 200 points for each
run.

Method M1

For each run, at any moment of the reaction pro-
gress, the obtained experimental data have been pre-
pared for the learning procedure as follows:

T=
TR−TR,min

TR,max−TR,min

(A1)

nP=zPnAo and nX=zXnAo, (A2)

where zP= f(u) and zX= f(u) are supplied by the inter-
polation polynominals

zA=
zP+zX

u
(if u\1 then u=1) (A3)

Because the polynomial approximations zP= f(u) and
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zX= f(u) are not sufficiently accurate at u$0, so in the
range 0BuB0.5 a linear dependence of zA on u simply
has been assumed

nA=nAou(1−zA) (A4)

nN=nNo−nNo2,o−nP−2nX (A5)

% n=nA+nP+nX+nN (A6)

Xi=
ni

% ni

(A7)

where i=A, P, X and N

dni

dt
=

dzi

dt
nAo (A8)

where i=P and X

R2=
1

nAo+nNo

dnX

dt
(A9)

R1=
1

nAo+nNo

�dnP

dt
+R2

�
(A10)

Method M2

For each run, at any moment during the reaction, the
obtained experimental data have been prepared for the
learning procedure as follows:

T=
TR−TR,min

TR,max−TR,min

(A11)

nX=zXnAo (A12)

where zX= f(u) is supplied by the interpolation
polynomial

R2=
1

nAo+nNo

dnX

dt
(A13)

R1=

QR

nAo+nNo

−R2 DHX

DHP

(A14)

dnA

dt
=8Ad−R1(nAo+nNo) (A15)

after integration and transformation we obtain nA=
f(u)

dnP

dt
= (R1−R2)(nAo+nNo) (A16)

idem nP= f(u)

dnN

dt
= (−R1−R2)(nAo+nNo) (A17)

idem nN= f(u)

% n=nA+nP+nx+nN (A18)

Xi=
ni

% ni

(A19)

where i=A, P, X and N.
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