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Abstract

The electron-density distribution in urea, CO(NH2)2,
was studied by high-precision single-crystal X-ray
diffraction analysis at 148 (1) K. An experimental
correction for TDS was applied to the X-ray intensities.
Rmerge(F2) = 0.015. The displacement parameters agree
quite well with results from neutron diffraction. The
deformation density was obtained by re®nement of 145
unique low-order re¯ections with the Hansen &
Coppens [Acta Cryst. (1978), A34, 909±921] multipole
model, resulting in R = 0.008, wR = 0.011 and S = 1.09.
Orbital calculations were carried out applying different
potentials to account for correlation and exchange:
Hartree±Fock (HF), density-functional theory/local
density approximation (DFT/LDA) and density-func-
tional theory/generalized gradient approximation (DFT/
GGA). Extensive comparisons of the deformation
densities and structure factors were made between the
results of the various calculations and the outcome of
the re®nement. The agreement between the experi-
mental and theoretical results is excellent, judged by the
deformation density and the structure factors [wR(HF)
= 0.023, wR(DFT) = 0.019] and fair with respect to the
results of a topological analysis. Density-functional
calculations seem to yield slightly better results than
Hartree±Fock calculations.

1. Introduction

Urea, CO(NH2)2, has been the subject of extensive
theoretical and experimental studies in the past three
decades, mainly because of its interesting physical and
chemical properties (Worsham et al., 1957; Mullen &
Hellner, 1978; Scheringer et al., 1978; Guth et al., 1980;
Swaminathan, Craven & McMullan, 1984; Swaminathan,
Craven, Spackman & Stewart, 1984; Spackman et al.,
1988; Dovesi et al., 1990; Boek et al., 1991; Velders &
Feil, 1993; Niu Jier, 1994; Gatti et al., 1994; Dixon &
Matzuzawa, 1994). Urea complexes easily with different
molecules, possesses non-linear optical properties and
seems to be the only example of a compound containing
a carbonyl group involved in four hydrogen bonds.
These studies are mainly devoted to the determination

of accurate positional and displacement parameters, and
the electron-density distribution (EDD). Experimental
and quantum-chemical studies of the latter and occa-
sionally a qualitative comparison have been carried out
(Swaminathan, Craven, Spackman & Stewart, 1984).

The present study makes a quantitative comparison of
the experimental and theoretical EDD of urea. Good
agreement between the two is assumed to re¯ect the
accuracy of the data and the quality of the calculations.
As such, this study is a continuation of the work by
Swaminathan, Craven, Spackman & Stewart (1984),
with a number of improvements:

(i) the experimental data were corrected for TDS
using a recently developed method;

(ii) several quantum-chemical methods were
employed, all including the effects of the crystalline
environment;

(iii) the comparison is quantitative with respect to the
structure factors.

We have calculated the EDD and structure factors
from crystal orbitals obtained by solving the Fock
equations with the Hartree±Fock and various density-
functional theory (DFT) potentials. Comparison of
structure factors is important for three reasons. Firstly,
the magnitudes of the structure factors are directly
related to the net intensities and as such are the most
suitable quantities to be compared with theory.
Secondly, since the phases of the structure factors
cannot be observed, the experimental EDD has a
fundamental uncertainty arising from the uncertainty in
the phases used. Thirdly, molecular interaction affects
the diffuse EDD in the intermolecular region. This is
hardly visible in electron-density plots, but shows up
clearly in the low-order region in reciprocal space.

2. Experimental

Single crystals of urea were grown from aqueous solu-
tion by slow evaporation of the solvent. The carefully
chosen sample used in the X-ray diffraction study was
0.30 � 0.30 � 0.35 mm with (110) and (100) planes as
surfaces. Measurements were performed using a Syntex
P1Å four-circle automatic X-ray diffractometer with
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�(Nb)-®ltered Mo K� radiation (0.7069 AÊ ). The
temperature was kept at 148 (1) K using a low-
temperature (N2) Syntex LT-1 attachment. The sample
temperature was controlled using a thermocouple
placed in the N2 stream 30 mm from the crystal. The
thermocouple was calibrated using another thermo-
couple placed in the center of the goniometer.

Urea crystallizes in the space group P4Å21m and the
molecules lie at special positions with symmetry mm2.
The unit-cell parameters were determined using re¯ec-
tions in the range 47 < 2� < 48�. An !±2� scan was used
for measuring the intensities of re¯ections in the four
quadrants of reciprocal space. The intensities of three
control re¯ections were monitored every 100 re¯ections
and varied less than 1.5% during the experiment. All
re¯ections, including weak re¯ections, were measured
up to sin �/� = 0.7 AÊ ÿ1. Subsequently, re¯ections with
intensities I > 6�(I) were measured in the interval 0.7 <
sin �/� < 1.15 AÊ ÿ1. Crystal data and experimental details
are given in Table 1.

The elastic constants for urea have not been
measured to our knowledge. We therefore corrected the

measured X-ray intensities at 148 K for TDS using the
Stash & Zavodnik (1996) experimental method (see
Appendix A). To check the TDS correction method, we
repeated the X-ray diffraction experiment using the
same urea crystal at room temperature (see Table 1) and
found the coef®cients � [see (5) in Appendix A] to be
approximately linearly dependent on the temperature
(Fig. 1), as predicted by theory based on the harmonic
approximation (Tsarkov & Tsirelson, 1991).

The total set of measured low-temperature intensities
was corrected for TDS and (numerically) for absorption,
and averaged over symmetry-equivalent re¯ections. The
internal R factor, Rmerge, was 0.015. The set of 412
symmetry-independent re¯ections was then used in the
re®nement procedure.²

3. Re®nement and results

3.1. Spherical-atom re®nement

The structure of urea was re®ned ®rst by the full-
matrix least-squares method using the spherical-atom
model. The corresponding relativistic scattering factors
and anomalous-scattering corrections were taken from
International Tables for Crystallography (1995, Vol. C).
The atomic displacements were modeled using the
anisotropic harmonic approximation. Isotropic
secondary extinction corrections calculated according to
the Becker & Coppens (1974) and the Zachariasen
(1967) formalisms resulted in the same deformation
EDD maps. Therefore, the simpler Zachariasen model
was applied. The secondary extinction in the crystal
studied did not appear to be severe at either tempera-
ture, except for the 110 re¯ection for which the isotropic
extinction correction factor y was 0.88. The program
system CSD (Akselrud et al., 1990) was used for these
calculations.

Re®nement was based on |F| with least-squares
weights equal to 1/[�2

count(F) + 0.000115F2] (the ®rst term

Table 1. Crystal and experimental data for urea

293 K 148 K

Space group P4Å21m
a (AÊ ) 5.660 (1) 5.5890 (5)
c (AÊ ) 4.7119 (7) 4.6947 (4)
V (AÊ 3) 150.95 (8) 146.64 (4)
� (cmÿ1) 1.27²
(sin �/�)max (AÊ ÿ1) 0.99 1.15
Scan angle ! (�) 0.7 + 0.345tan �
Counter aperture (�) 0.9
No. of measured re¯ections 1473 1971
No. of unique re¯ections 271 412
Rint(F2) 0.02 0.015
R�³ 0.005 0.005
a2, a3 [see (6) in Appendix A] 0.188, 0.073 0.144, 0.000

² This value was used instead of the more correct value of
1.17 cmÿ1. ³ R� � (2/�)1/2{��[F(h)]/�F(h)}.

Fig. 1. The experimental dependence of the TDS constant � of urea at
293 and 148 K as function of sin �/�.

Table 2. Some results of the spherical-atom re®nement of
urea carried out on |F| at 148 K

No. of unique re¯ections (FA)² 412
No. of unique re¯ections (LA) 146
No. of parameters 28
Extinction correction (FA) Secondary (Zachariasen, 1967)
Mosaicity (FA) (0 0) 11.2
R (FA) 0.025
wR (FA) 0.028
S (FA) 1.64
R (HA) 0.019
wR (HA) 0.023
S (HA) 1.18

² FA: full-angle re®nement; HA: high-angle re®nement, sin �/� �
0.6 AÊ ÿ1; LA: low-angle re®nement, sin �/� < 0.6 AÊ ÿ1.

² Supplementary data for this paper are available from the IUCr
electronic archives (Reference: SH0102). Services for accessing these
data are described at the back of the journal.
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accounts for counting statistics and the second term is an
empirical addition). The scale factor and extinction
parameter were determined using both full- and low-
angle (sin �/� < 0.6 AÊ ÿ1) re¯ections, while the positional
parameters and atomic displacement tensor elements of
the non-H atoms were re®ned using the high-angle
re¯ections (sin �/� > 0.6 AÊ ÿ1). The procedure was
repeated a few times iteratively. The `contracted' H-
atom f curve of Stewart et al. (1965) was used. In order
to model the H atoms more realistically, the NÐH bond
distances were elongated to the neutron diffraction
value (Swaminathan, Craven & McMullan, 1984) and
librational analysis based on the rigid-body model
(International Tables for Crystallography, 1995, Vol. C)
was applied to the urea molecule. The SHELXTL
system (Sheldrick, 1981) was used for this. The results
are shown in Tables 2, 3 and 4.

Table 3 shows that the calculated components of the
Uij tensors of the non-H atoms are in very good agree-
ment with the experimental values obtained by Swami-
nathan, Craven & McMullan (1984). The anisotropic
displacement parameters of the H atoms were calculated
from the results of the librational analysis. The structural
parameters of the H atoms were then ®xed and the other
parameters of the structural model were re®ned again.

It is useful to compare the anisotropic displacement
parameters of the H atoms determined by the rigid-body
analysis to those predicted by extrapolation of the 12, 60
and 123 K neutron diffraction data to 148 K. This
comparison (Table 3) shows good agreement and
supports the procedure used to obtain the H-atom
displacement parameters.

3.2. Multipole re®nement

The program MOLDOS96 (Protas, 1995), based on
the Hansen & Coppens (1978) multipole model, was

used for further re®nement. The radial parameters, �,
the populations of the multipole functions (up to octa-
poles for N and O, hexadecapoles for C and up to
dipoles for H) and an extinction parameter according to

Table 3. Experimental (exp.) and modeled (calc.) displacement tensor components, Uij � 104 (AÊ 2), based on the rigid-
body model (148 K), compared with the data (N) extrapolated to the same temperature from the neutron diffraction

results of Swaminathan, Craven & McMullan (1984)

U11 = U22 U33 U12 U13 = U23

C exp. 167 (1) 86 (1) ÿ1 (1) 0
N 172 (6) 80 (4) 1 (4) 0
calc. 167 81 ÿ3 0

O exp. 220 (2) 79 (1) 24 (1) 0
N 223 (7) 80 (4) 20 (5) 0
calc. 220 81 24 0

N exp. 317 (2) 113 (1) ÿ163 (1) 3 (1)
N 330 (6) 115 (3) ÿ172 (3) 3 (3)
calc. 317 113 ÿ162 1

H1 N 486 (13) 224 (9) ÿ243 (9) ÿ29 (8)
calc. 484 183 ÿ325 ÿ15

H2 N 470 (12) 158 (7) ÿ178 (9) 18 (8)
calc. 486 113 ÿ303 21

Table 4. Librational (L), translational (T) and correlation
(S) tensor components for urea at 148 K (Rg = 0.006)

L (rad2)

0.0058 (1) 0.0033 (0) 0.0000 (1)
0.0058 (1) 0.0000 (1)

0.0151 (1)

T (AÊ 2)

0.0163 (1) 0.0012 (1) 0.0000 (1)
0.0163 (1) 0.0000 (1)

0.0081 (1)

S (rad AÊ )

ÿ0.0023 (1) 0.0000 (0) 0.0000 (1)
0.0000 (0) 0.0023 (1) 0.0000 (1)
0.0000 (1) 0.0000 (1) 0.0000 (1)

Table 5. Positional atomic parameters of urea obtained
from the high-angle re®nement of the spherical-atom
model at 148 K (X) compared with those obtained from
neutron diffraction data at 123 K (N) by Swaminathan,

Craven & McMullan (1984)

x y z

C X 0 1/2 0.3283 (1)
N 0 1/2 0.3286 (2)

O X 0 1/2 0.5963 (1)
N 0 1/2 0.5965 (2)

N X 0.1447 (1) x + 1/2 0.1784 (1)
N 0.1443 (1) x + 1/2 0.1791 (1)

H1 X 0.2552 x + 1/2 0.2845
N 0.2552 (4) x + 1/2 0.2845 (4)

H2 X 0.1428 x + 1/2 ÿ0.0339
N 0.1428 (4) x + 1/2 ÿ0.0339 (3)
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Zachariasen (1967) were varied. The atomic displace-
ment parameters and the scale factor were ®xed at the
values obtained from the spherical-atom model re®ne-
ment. In order to determine the range of structure
factors to be used in the re®nement, partial R factors
averaged in small intervals (5±10�) of the diffraction
angle � (Fig. 2) and the corresponding partial `error' R
factors R� (see Table 1) were calculated.

As can be seen from Fig. 2, the spherical-atom model
describes the EDD in urea properly only for the range of
re¯ections with sin �/� > 0.7 AÊ ÿ1. Therefore, the 145
re¯ections with sin �/� � 0.7 AÊ ÿ1 were used in the
multipole model re®nement. The partial R factors now
became closer to the R� factors in the same interval.
Special attention was paid to the correct determination
of the scale factor. In each step of the re®nement the
ratio k0 = �Fobs(H)/k�Fcalc(H) was calculated for small

intervals in �. Fig. 3 shows that the scale factor deter-
mined using the spherical-atom model, as described
above, gave the proper value. The results of the multi-
pole re®nement have been deposited as supplementary
material.² The atomic charges and � values are
presented in Table 6.

We found excellent agreement between the observed
structure factors and those based on the re®ned model:
R = 0.008, wR = 0.011. This shows the level of noise to be
low.

3.3. Deformation density

The most interesting planes are the plane of the
molecule and the plane perpendicular to it, which
contain the � and � hydrogen bonds, respectively (see
Fig. 4). Fortunately, both bonding regions are displayed
in one cross section by two neighboring molecules. The
reference state of the H atoms corresponding to the
`contracted' H-atom f curve of Stewart et al. (1965) was
used. The static deformation density was obtained from
the multipole functions using the program SALLY
(Hansen, 1996). The result is shown in Fig. 5(a) for the
plane that contains all intra- and intermolecular bonds.
To estimate the effect of the TDS correction, we also
performed a multipole analysis on the uncorrected data.
The same re®nement strategy was used. The re®nement
indices were R = 0.008, wR = 0.011 and S = 1.09; in other
words, from a formal point of view the same minimum of
the least-squares functional has been achieved.
However, the resulting parameter values are different.
The consequence for the deformation electron-density
map can be judged from Fig. 5(b). The peak values in the
CÐN and NÐH bonds increased by about 0.1 to
0.2 e AÊ ÿ3 compared to the TDS-corrected values. The
increase in density of the lone pairs of the O atom is
even more signi®cant.

As was stated earlier, urea has been analyzed before
at 123 K by Swaminathan, Craven, Spackman & Stewart
(1984). A straight comparison between the two studies is
dif®cult since the present experiment was carried out at
a different temperature and yielded more re¯ections.
However, we can take the deformation parameters from
their re®nement and calculate the static structure factors
using the nuclear coordinates of the present study. The
difference between these structure factors and the
structure factors derived from the present model is
represented by partial R factors in Fig. 6. The consid-
erable discrepancy observed is due to a number ofFig. 3. The distribution of the ratio of observed to calculated structure

factors, averaged over small intervals in sin �/� (see x3.2). Circles:
spherical-atom re®nement; squares: multipole re®nement.

Fig. 2. Partial R factors (see x3.2) as function of sin �/�. (1) Spherical-
atom re®nement. (2) Multipole re®nement. (3) The `error' R factor
R� (de®ned in Table 1).

Table 6. Kappa values, �, and atomic charges, q (a.u.), of
the pseudo atoms

C O N H

� 0.97 (1) 0.98 (1) 0.98 (1) 1.02 (2)
q 4.03 (13) 6.23 (7) 5.30 (9) 0.79 (4)

² See deposition footnote on p. 46.
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factors. Firstly, the noise has been removed by the
multipole re®nement in both sets of structure factors. A
part of it, however, is absorbed by the deformation
parameters causing a difference in the static EDD.
Secondly, a correction for TDS was not applied by
Swaminathan, Craven, Spackman & Stewart (1984); this
is usually assumed to result in a bias in the displacement
parameters. Since the decoupling of the displacement
and deformation parameters is never perfect, this bias
may contribute to the differences as well. Thirdly, the
uncertainty in the phases of the re¯ections will in¯uence
the values of the structure factors of the model.

The dipole moment of the urea molecule in the
crystal, calculated from our multipole parameters, is
3.8 D (1 D ' 3.33564 � 10ÿ30 C m). It is in good
agreement with the results from gas and solution data of
3.8±4.6 D (Spackman et al., 1988).

4. Comparison with theoretical results

4.1. Quantum-chemical electron-density calculations

A few years ago, urea was studied by Dovesi et al.
(1990) by the three-dimensional periodical Hartree±
Fock method implemented in the program CRYSTAL
(Dovesi et al., 1989). They used a 6-21G** basis set.
Because Bloch functions with different k values were
used, this was a rather large basis set and the addition of
more diffuse functions would lead to numerical
instability. Their study reports the EDD and the inter-
action density due to hydrogen bonding. Since then a
new version of the program, CRYSTAL95 (Dovesi et al.,

1996), has been developed. CRYSTAL95 can be used to
carry out orbital calculations based on Hartree±Fock
theory and also density-functional theory (DFT), with a
choice of various approximations to the exchange-

Fig. 6. Partial R factors as function of sin �/� showing the difference
between the static model structure factors obtained from experi-
ments in this work and in the work of Swaminathan, Craven,
Spackman & Stewart (1984).

Fig. 5. The static multipole density resulting from a Hansen±Coppens
re®nement with contracted H atoms. Contours are at intervals of
0.0675 e AÊ ÿ3. Negative contours are dashed. (a) Map calculated
with TDS-corrected data. (b) As (a) but without a TDS correction.

Fig. 4. The atom numbering and the hydrogen bonds in the urea crystal.
Displacement ellipsoids are shown at the 50% probability level for
non-H atoms.
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correlation potential. The program can calculate EDDs
and structure factors, both referring to the static struc-
ture. This allowed us to carry out a more extensive study
than Swaminathan, Craven, Spackman & Stewart (1984)
by taking molecular interactions into account.

The exchange-correlation potential based on the local
density approximation (LDA) is widely applied. The
results with respect to quantities of importance in
chemistry, such as binding energy and bond distances,
are disappointing. Within the last ten years or so, the
gradient-corrected or generalized gradient approxima-
tion (GGA) potentials, which include the gradient of the
density as well as the density itself, have been proposed
and great improvements have been obtained (see e.g.
Salahub et al., 1995). As we obtained almost identical
results for similar studies with different GGA potentials
we include only one of them. Thus, we are left with two
DFT calculations, using the following potentials:

(i) correlation according to a parameterization of the
Ceperly±Alder free-electron gas correlation results
(Vosko et al., 1980) and LDA exchange potential (Dirac,
1930);

(ii) Perdew±Wang correlation (Perdew & Wang, 1986,
1989, 1992) and Becke exchange potential (Becke,
1988).

In our calculations we used the same basis set as
Dovesi et al. (1990) and the same six k points in reci-
procal space. The R factors expressing the difference
between the sets of structure factors calculated with
these theoretical methods are shown in Fig. 7. The
difference between the two is smaller than the error in
the experimental quantities. This leaves two quantum-
chemical results, Hartree±Fock and DFT/GGA, to be
compared with experiment. Fig. 7 suggests that the
difference between the two may well be signi®cant.

4.2. Comparison of theory and experiment

The experimental results refer to vibrating molecules
in the crystalline state. The re®nement shows that indi-
vidual anisotropic displacement factors are necessary to

model the system. Since we wish to compare theory and
experiment as close as possible to the experimental
situation, thermal motion has to be applied to the
theoretical EDD and the corresponding structure
factors. This was performed using the program FITTER
(Bruning & Feil, 1992), which is based on the following
considerations. The EDD close to a nucleus rigidly
follows the thermal motion of that nucleus. The situation
in the bonding region in between the nuclei is less clear,
but calculations on the simple CO2 molecule show that
the assumption of rigid following can be applied to
atoms obtained by the stockholder partitioning scheme
(Hirshfeld, 1977), even for displacements corresponding
to very high temperatures (unpublished results).
FITTER ®rst partitions the EDD into atoms with diffuse
boundaries and then models these atoms with the help
of a highly extended set of deformation functions very
much greater in size than the set of functions used in
crystallographic re®nement of experimental data. The
functions are Fourier transformed and individual
thermal motion is applied. Numerical errors are small
and no bias is introduced. The quality of FITTER
modeling of the EDD is shown by the very low R factor
of 0.0018 between the set of structure factors calculated
by CRYSTAL and those resulting from the FITTER
procedure in which no thermal motion is applied. This is
to be compared with an R factor of circa 0.005 obtained
by re®ning theoretical data with the standard re®nement
programs.

In the multipole re®nement of experimental structure
factors, the main objectives are the removal of noise and
the deconvolution of thermal motion and deformation
due to bonding. The ®rst objective rules out the use of a
large set of deformation functions. As a consequence
some bias is introduced. Assuming the theoretical and
the experimental sets of structure factors to be closely
similar, we expect the introduction of the same bias
when the theoretical structure factors, obtained using
FITTER, are subjected to the same re®nement proce-
dure. Therefore, from the sets of HF and DFT structure
factors the same 145 low-order re¯ections were selected
as were used in the re®nement of the experimental data
discussed above. In a subsequent MOLLY re®nement
the positions and displacement parameters were kept at
the experimental values and the scale factor was ®xed to
1. The experimental weights were used throughout. The
R factors expressing the difference between the original
theoretical structure factors and the modeled structure
factors are practically the same for both sets: R = 0.005
and wR = 0.008. The static deformation densities
resulting from the re®nements of the HF and DFT data,
treated in the same way as the density shown in Fig. 5,
are shown in Figs. 8(a) and 8(b), respectively. We notice
the remarkable agreement between the two density
distributions, con®rming the results shown in Fig. 7. The
major difference is found in the pz region of the C atom,
where the HF calculation shows more depletion. This

Fig. 7. Partial R factors as function of sin �/� expressing the difference
between structure factors calculated by various quantum-mechan-
ical methods: HF, DFT/LDA and DFT/GGA.
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feature is most clearly expressed in the occupation of the
quadrupole-moment function of the C atom pointing in
the direction perpendicular to the plane of the molecule.
The values found are ÿ0.057 (7) versus ÿ0.036 (7) for
HF and DFT, respectively.

The results can be compared with the outcome of the
re®nement of the experimental data as shown in Fig. 5.
We note the excellent agreement with the results based
on the TDS-corrected data. The effect of the TDS
correction is clearly seen in the region of the O atom; it
is here where the theoretical distributions most clearly
con®rm the TDS correction method. The experimental
distribution seems to agree better with the HF distri-
bution, in particular in the region of the C atom
discussed above.

A quantitative estimate of the difference between the
experiment and each of the two models, HF and DFT, is
given by the wR factors wR(HF) = 0.023 and wR(DFT) =

0.019. Fig. 9 expresses the same in terms of partial R
factors. The DFT result is seen to agree better with
experiment throughout reciprocal space with the
exception of the very low order region, where only six
structure factors are involved. Comparisons in reci-
procal and in direct space are complimentary: the
differences in the diffuse regions are not seen in the
EDD maps, but are clearly observable in the low-order
structure factors. We therefore stress that quantitative
comparison between theory and experiment should
include comparison of the structure factors in the
various regions of reciprocal space.

The agreement between the experimental and theo-
retical results suggests that both the experimental study
and the quantum-chemical calculations are quite accu-
rate. Thus, in principle, it is feasible to undertake an
experimental study of the interaction density, i.e. to
calculate the difference between the experimental EDD
of the crystal and the superposition of the (theoretical)
EDDs of non-interacting molecules. When the results of
such a study turned out to be disappointing, the multi-
pole-re®nement methodology was put under close
scrutiny. It turned out that in the case of a non-centro-
symmetric crystal, the phases of the structure factors
obtained from a multipole re®nement of noise-added
data differ slightly from the real phases. These small
phase differences, however, lead to errors in the struc-
ture factors of the crystal comparable in magnitude to
the Fourier transforms of the interaction density (de
Vries, 1996).

4.3. Topological characteristics of crystalline urea

The topological theory of EDD (Bader, 1990) claims
that the critical points in the electron density, i.e. the
points where r� = 0, contain important chemical
information. Among them are bond critical points,
de®ned as points with a positive curvature (�3) along the
atomic interaction line and two negative curvatures (�1

< �2) in the perpendicular directions. They are asso-
ciated with `share-type' interaction (covalent bonding) if

Fig. 8. Theoretical deformation density according to (a) the Hartree±
Fock method and (b) the DFT/GGA method. In both cases the
calculated EDD was transformed into structure factors, which in
turn were subjected to a Hansen±Coppens re®nement with
contracted H atoms. The resulting multipole densities, obtained in
the same way as in Fig. 5, are displayed. Contours are as in Fig. 5.

Fig. 9. Partial R factors re¯ecting the difference between the
experimental and the modeled theoretical structure factors. The
weight factors are derived from experiment.



52 ELECTRON DENSITY STUDY OF UREA

the Laplacian of the electron density (r2� = �1 + �2 + �3)
is negative at these points and with ionic type interaction
otherwise. Gatti et al. (1994) showed the in¯uence of the
crystalline environment on the curvatures by calculating
the topological characteristics of a single molecule of
urea and crystalline urea by the Hartree±Fock method
(6-21** basis set). Whether an experimental EDD shows
these characteristics depends, of course, on the quality of
the data. Using the multipole model parameters, we
have calculated the same values for crystalline urea
based on the experimental electron density with a
program developed by Howard & Mallinson (1993).

The experimental and theoretical values are
presented in Table 7. We can conclude that there is semi-
quantitative agreement between the experimental and
theoretical topological characteristics of the intramole-
cular and intermolecular interactions.

5. Conclusions

The TDS correction applied in the present study showed
a high degree of internal consistency when the correc-
tions for low-temperature and room-temperature data
were compared. The level of noise in the experimental
data is low as is witnessed by an excellent agreement
between the observed structure factors and those
calculated from the re®ned model. The EDD and the
structure factors resulting from a multipole modeling of
the data were compared with the outcome of CRYSTAL
calculations, modeled in the same way. The EDDs
calculated with the density-functional method, with
various potentials to account for correlation and
exchange, did not show much mutual difference. They
all resemble the EDD calculated by a Hartree±Fock
CRYSTAL calculation. Both agree very well with the
experimental EDDs, the TDS-corrected distribution
yielding the better agreement. Whereas a qualitative
comparison of the theoretical and the experimental
deformation maps suggested the Hartree±Fock distri-
bution to be the better one, a quantitative comparison of
structure factors resulted in a clear preference for the
density-functional method. Topological analysis showed

a fair agreement between theory and experiment.
Uncertainty in the phases of the structure factors
precludes the determination of the interaction density in
the non-centrosymmetric urea crystal.

APPENDIX A
The present experimental method for the correction of
X-ray intensities for TDS avoids complicated calcula-
tions and does not require knowledge of the elastic
characteristics of the crystal. These characteristics are
not known for most compounds, and particularly not at
the temperature of the X-ray experiment. The problem
is described by Stash & Zavodnik (1996) and Tsirelson
& Ozerov (1996). The experimental approach to the
TDS correction follows the methods of Jennings (1970)
and Blessing (1987) and consists of the analysis of the
pro®le of the diffraction peak near the peak±
background boundaries and the modeling of the TDS
contribution using analytical functions. The existing
correction methods have a few drawbacks: (i) they have
low statistical signi®cance as they are applied to indivi-
dual re¯ections; (ii) the physical components of the
diffraction peak are described with low accuracy; (iii)
the methods are usually not applicable to re¯ections
with an unresolved K�1±K�2 doublet.

Stash & Zavodnik (1996) suggested an experimental
approach which is free from the disadvantages
mentioned above. The main feature of the method is
that the standard peak pro®le, assumed for a small
interval in diffraction angle, is the average of a number
of peak pro®les instead of the pro®le of an individual
re¯ection; as a result, the statistical precision of the `net'
intensity determination increases greatly. Any prior
knowledge about the shape of the diffraction peak or its
components is not required; only the experimental
information is used for this purpose. A short outline of
the method is presented below.

The pro®les of diffraction intensity peaks are treated
with a special procedure (Streltsov & Zavodnik, 1989)
which increases the statistical signi®cance of the data. It

Table 7. The (3, ÿ1) critical points in a urea crystal

The modeled experimental and theoretical values are presented in the ®rst and second lines, respectively.

Bond R (AÊ ) �b (e AÊ ÿ3) �1 (e AÊ ÿ5) �2 (e AÊ ÿ5) �3 (e AÊ ÿ5) r2� (e AÊ ÿ5) " Rb (AÊ )

CÐO 1.258 2.536 ÿ23.33 ÿ20.23 24.71 ÿ18.86 0.15 0.427
1.261 2.568 ÿ24.97 ÿ24.97 42.02 ÿ7.923 0.003 0.411

CÐN 1.343 2.538 ÿ27.34 ÿ23.00 12.68 ÿ37.66 0.19 0.440
1.345 2.352 ÿ21.13 ÿ19.21 12.73 ÿ27.61 0.099 0.451

NÐH1 1.005 1.797 ÿ26.77 ÿ25.54 21.88 ÿ30.44 0.05 0.795
1.009 2.319 ÿ34.81 ÿ33.13 21.13 ÿ46.82 0.047 0.787

NÐH2 0.997 1.843 ÿ28.13 ÿ26.93 21.68 ÿ33.37 0.05 0.791
1.005 2.352 ÿ34.81 ÿ33.37 20.89 ÿ47.30 0.048 0.782

O� � �H1 2.014 0.159 ÿ0.62 ÿ0.57 2.77 1.58 0.09 1.269
1.992 0.148 ÿ0.72 ÿ0.72 2.88 1.68 0.072 1.293

O� � �H2 2.071 0.142 ÿ0.53 ÿ0.52 2.58 1.53 0.02 1.275
2.058 0.128 ÿ0.48 ÿ0.48 2.64 1.68 0.036 1.299
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is applied when all the data are collected. At the outset,
the whole 2� range is divided into m intervals of width
�k (�k = 5� for Mo K�) and `strong' re¯ections are
chosen inside each interval. The criteria for inclusion of
a re¯ection are based on the ratio of the scan speed of
the re¯ection to that of the weakest observable re¯ec-
tion in the range and on the I/�(I) ratio. The peak
boundaries are determined by the Lehmann & Larsen
(1974) method for the selected re¯ections. The fact that
the TDS peak is wider than the Bragg peak is re¯ected
by a greater increase of the boundaries of the experi-
mental peak pro®le with scattering angle than would
follow from the 2� spectral broadening. The background
is subtracted and the pro®les are normalized to unity
and averaged within each interval. Simultaneously, the
variances of the intensity at the points of these pro®les
are estimated. After this, the normalized peaks,
Înorm

k �2��, are used for the determination of the inten-
sities and their variances of weak re¯ections in interval
�k. Stationary background measurements are not
needed in this case and the correct estimation of `net'
intensity variances is achieved. As a result, the total set
of TDS-uncorrected `net' intensities and their variances
is available.

The method is based on the following considerations.
The pro®les of the X-ray re¯ections are convolutions of
many functions of different nature. The instrumental,
spectral, crystal-shape and mosaicity functions etc. in a
narrow section of reciprocal space remain the same,
provided spectral broadening of the diffraction peaks is
taken into account. Assuming the use of spherical
crystals, the directional dependence of the re¯ections in
reciprocal space can be ignored. Since the low-angle
re¯ections are practically free from TDS, Înorm

k �2�� of a
low-order interval can be used as a `reference' in the
treatment of a high-angle re¯ection peak in order to
describe its Bragg component. To do so, the pro®les
have to be expressed as function of equidistant points on
the � axis.

The `net' pro®le of any re¯ection is a sum of K�1 and
K�2 components, each containing a Bragg and a TDS
contribution. The ratio of the intensity of the Bragg
parts of the components is known (2.0 for Ag, Mo, and
Cu radiation; International Tables for Crystallography,
1995, Vol. C). The assumption that the ratio of the K�1

to K�2 intensities for the TDS is the same as the ratio for
the corresponding Bragg intensities allows the
construction of a `model peak', a description of the
normalized and averaged experimental peak pro®le in
each of the � intervals. This contains only one adjustable
parameter (the TDS contribution) according to

Îmodel
k �2�� � �1ÿ ck�ÎBragg

k �2�� � ckÎTDS
k �2�� �1�

where k denotes the interval. The normalized Bragg and
TDS pro®les each consist of two contributions, one from

the K�1 part of the incident beam and one from the K�2

part,

Î
Bragg
k �2�� � I

Bragg
K�1
�2�� � I

Bragg
K�2
�2��

ÎTDS
k �2�� � ITDS

K�1
�2�� � ITDS

K�2
�2��: �2�

It is assumed that the Bragg parts of the components
have the same shape and width as the low-order refer-
ence re¯ection and that only the distance between the
components along the � scale differs. Stash & Zavodnik
(1996) found that the pro®les of the TDS parts ITDS

K�i
�2��

can be approximated in a simple and satisfactory way by
the normalized parabolic functions

ITDS
K�i
�2�� � b0 ÿ b1�2� ÿ 2�i�2 for ITDS

K�i
�2�� � 0

� 0 in all other cases �3�
in which b0 and b1 are constants and �i is the Bragg angle
for the K�i radiation. Again, only the distance between
the components along the � scale changes with �. The
boundaries l1 and l2 of the experimental peak are known
from the pro®le analysis. The boundaries of the TDS
peak pro®les are symmetrical relative to the centers of
the K�1 and K�2 peaks. The constant ck, i.e. the TDS
contribution in each interval, and the constants b0 and b1

are determined by the minimization of the functional

�� �
XI2

i�I1

�Îmodel
k �2�i� ÿ Înorm

k �2�i��2: �4�

The TDS coef®cient � is determined as
hImeasi � hIBraggi�1� ��, where the terms in angled
brackets refer to the integrated quantities. This leads to
the relation

�k � ck=�1ÿ ck�: �5�
The set of (m ÿ 1) experimental �k values gives the
scattering-angle dependence of the full-range TDS
correction. It is convenient then to ®t these values to the
function

a2�sin �k=��2 � a3�sin �k=��3 �6�
with a2 and a3 as parameters. The measured intensities
can now be corrected easily for TDS.

The method outlined was tested on a few crystals as
described in detail by Stash & Zavodnik (1996) and the
results were compared with the outcomes of theoretical
calculations of TDS in the anisotropic two-phonon
harmonic approximation, using elastic constants. From
the good agreement between the results obtained by the
two methods it was concluded that the experimental
correction for TDS is correct.

This study was supported by the Netherlands Orga-
nization for Scienti®c Research (NWO).
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