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n important part of a flight simulator is its
control loading system, which is the part

that emulates the behaviour of an aircraft as
experienced by the pilot through the stick.

Such a system consists of a model of the
aircraft that is to be simulated and a stick that is
driven by an electric motor. To make the
simulation as realistic as possible, the
simulator stick should behave in the same way
as the stick in the real aircraft.

However, due to the properties of the motor
and the stick, small irregularities can be felt
when the stick is moved, which do not occur in
a real aircraft. Probable causes of these
irregularities are cogging in the motor and
small imperfections in the transmission.

Both disturbances have a reproducible nature.
Because the disturbances are reproducible,
feedback error learning control is used for
control. The learning controller consists of two
neural networks. One neural network is used to
compensate the unknown friction and is
operated in feed-forward. The other neural
network compensates cogging and
imperfections in the transmission and is
operated in feedback. Experimental results
showed that the learning controller is able to
compensate the disturbances.
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1 Introduction

A flight simulator is a cost-effective and safe way to train a pilot in handling
an aircraft. The simulator enables the pilot to experience a broad range of
flight situations without running the risks involved when using a real
aircraft.
An important part of a flight simulator is the so-called control loading
system. This system comprises the command stick of the simulator and
the hard- and software connected to this stick which emulate the behaviour
of an aircraft as experienced by the pilot through the stick. In this research
we consider a specific realisation of such a control loading system.

The plant part of the set-up consists of the following components (fig. 1):
−  The stick, which has one rotational degree of freedom. Its angular

position ϕ is measured by a potentiometer.
−  A spindle and a ball-screw that together form the transmission between

motor and stick.
−  A PMDC electric motor. A tachometer is mounted on the motor for

measuring its angular velocity. As the transmission between the motor
and the stick is considered stiff, the angular velocity of the stick, ω,
depends on the angular velocity of the motor in a linear way.

−  An electric power amplifier (not shown in fig. 1).
−  A force sensor that measures the force Fext applied on the stick by the

pilot.

Fig. 1. Plant part of the set-up

By controlling the plant appropriately, the ‘mechanical impedance’ the pilot
experiences at the stick can be controlled.
This is done as shown in fig. 2.
The motor is contained in a velocity loop with a PI controller, that is
incorporated in the off-the-shelf amplifier. This loop is called the inner loop.
The commanded stick angular velocity  ωr for the inner loop is calculated
by an aircraft controls model. Inputs to this model are the force   Fext,
exerted on the stick by the pilot and the angular position of the simulator
stick, ϕ.
This forms a secondary MISO loop, called the outer loop.

Fig. 2. Electronic Control Loading set-up

A
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To make the simulation as realistic as possible, the impedance that one
feels when manipulating the stick should be determined completely by the
aircraft model. To achieve this, the inner loop has to compensate for all
dynamic properties of the plant; only some (small) rotational inertia is
acceptable, as any aircraft stick will feature this phenomenon. However, in
the set-up used in this research the inner loop is unable to fully realise
this. When the user moves the stick, small irregularities (ticks) can be
felt.
Cogging in the motor and/or imperfections in the transmission probably
cause these irregularities. In previous research, cogging in a linear motor
was successfully compensated using a feedback error learning control
system (Otten et al., 1997).
The learning control system consisted of a conventional feedback
controller and a neural network that was operated in feed-forward. In this
paper, we evaluate whether a feedback error learning control system can
be applied in order to improve the behaviour of the control loading system.
In section 2, we motivate the application of feedback error learning in the
form of a learning feed-forward controller. The theoretical background of
the technique is presented in section 3, and the design choices are
discussed in section 4.
The results of the experiments are given in section 5; conclusions follow in
section 6.

2 Motivation for feedback error learning control

The most important dynamic properties of the plant that the inner loop has
to deal with are:

−  Inertia of the motor, the transmission and the stick.
−  Cogging force. The cogging force is the magnetic force between the

permanent magnets and the iron in the motor. The magnitude of the
cogging force depends on the position of the motor and therefore also
on the position of the simulator stick. The relation between the cogging
force and angular position of the simulator can be approximated by a
sine function. The pilot will experience cogging as a ripple.

−  Friction in the motor and the ball-screw. It is known that the friction can
be approximated by a Stribeck curve.

−  Imperfections in the transmission.
−  Measurement noise.

Of these effects, only measurement noise is stochastic in nature; all other
effects are reproducible, that is, their momentary value is related to the
momentary state of the plant. Inertia is the only linear effect; cogging,
friction and transmission imperfections are highly non-linear. Hence,
these latter effects and possibly measurement noise are responsible for
the irregularities felt by the pilot. The hypothesis formulated at the start of
the project was that cogging was the dominant cause for the undesirable
effects.
When reproducible non-linear effects in a plant are known accurately,
incorporating an inverse model in a feed-forward path can compensate
them. In principle, this approach is applicable in the control loading
system.
However, as often, it is a difficult and time-consuming undertaking to
obtain an inverse model that is accurate enough to guarantee good control
performance.
Moreover, each particular set-up will have somewhat different properties,
and hence requires a specific inverse model.

To overcome these difficulties, a so-called feedback error learning
controller (Kawato et al, 1988; Ng 1997) can be used (fig. 3). In such a
controller, an adaptable mapping that is to become the inverse model is
placed in parallel with a standard feedback controller.
The mapping is not designed prior to operation, but is trained during on-
line control. The training signal is the output of the feedback controller.

When the adaptable mapping is implemented as a B spline neural network
(Brown and Harris, 1994) the learning control system is known as
Learning Feed-Forward Control (LFFC) (Starrenburg et al, 1996).
In previous research (Otten et al., 1997), it has been shown that LFFC can
effectively and efficiently be applied to deal with cogging and friction in a
linear motor motion system. Therefore, application of LFFC in the inner
loop of the electronic control loading system seems attractive in order to
improve the system’s performance.

Fig. 3. Learning Feed-Forward Control
(P = plant, C = feedback controller)

3 Learning Feed-Forward Control

As shown in figure 3 the learning feed-forward controller consists of a
conventional feedback controller and a neural network that is operated in
feed-forward. The feedback controller has to compensate stochastic
disturbances and has to provide  the learning signal for the feed-forward
controller. Since the stochastic disturbances are assumed to be much
smaller than the reproducible disturbances, the feedback controller does
not have to provide a high performance. The feedback controller can be
designed for robust stability only, using the normal design procedures for
linear controllers.
The feed-forward controller is a B spline Network (BSN) (Brown and
Harris, 1994). A BSN is a neural network that uses B spline basis
functions to store an input-output mapping. A B spline of order n consists
of piecewise polynomial functions of order n-1. In this research only 2nd

order B splines will be considered. The function evaluation of a B spline is
generally called the membership and is denoted as µ  (fig 4). That part of
the input space for which µ is unequal to zero is called its support. The
position at which the B spline evaluation equals 1 is known as the B
spline knots.

Fig. 4. 1-dimensional B spline Network
To create an i/o mapping, B splines are placed on the domain of the input
of the BSN, in such a way that at each input value the sum of all
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memberships equals 1. The output of the BSN is a weighted sum of the B
spline evaluations:

u r r wF i
i

N

i( )= ( )
=
∑ µ

1

(1)

In which wi is the weight associated to the i-th B spline and N is the
number of B splines. Training the network, in other words adapting the i/o
mapping in such way that it comes closer to the desired i/o mapping, is
done by adjusting the weights of the network. In LFFC the weights are
adjusted on the basis of the output of the feedback controller. This signal
is supposed to indicate how the feed-forward signal should be adapted in
order to increase the tracking performance. The learning mechanism
according to which the weights are adapted is now given by:

∆w r u ri i C= ( ) ( )γµ (2)

In which ∆wi  is the adaptation of the i-th B spline and γ is the learning
rate. The learning rate γ determines how fast the weights of the BSN are
adapted, 0 1≤ ≤γ . A large learning rate implies that the weights are
adapted strongly. In case of a small learning rate (γ≈0 ) the weights are
adapted slowly.

4 Design of the Learning Control System

The first part in the design of the LFFC, is the design of the feedback
controller. In this research the feedback controller that was designed by
Fokker is used for control.
Next the inputs and the structure of the LFFC have to be chosen. The
structure of the LFFC depends on the nature of the disturbances the
LFFC has to compensate. In case the disturbances depend on the
position of the plant, the reference position must be used as input of the
LFFC. When the disturbances do not only depend on the position of the
plant, but also on the velocity, both the reference position and the
reference velocity should be used as inputs of the LFFC. When the LFFC
has to compensate several disturbances that each depend on one
specific plant state, additive networks can be used (De Vries et al.,
1998;Brown and Harris, 1994). That is, the feed-forward controller
consists of several BSN’s that each compensate one specific
disturbance. In the simulator set-up the plant is expected to suffer from:
−  Unknown friction: velocity dependent
−  Cogging forces: position dependent
−  Imperfections in the spindle: position dependent
It can be concluded that these disturbances can be compensated using a
BSN that has the reference velocity as input to compensate the unknown
friction, and a BSN that has the reference position as input to compensate
the cogging forces and the effect of the imperfections in the spindle. The
LFFC that results is depicted in figure 5.

Fig. 5. LFFC structure

Simulation studies showed that the LFFC was able to compensate the
unknown friction but not the cogging force and the effects of
imperfections in the transmission. This can be understood as follows.
In the control loading system, the angular velocity of the simulator stick
determines whether the simulated aircraft feels like a real aircraft. During
simulation, the pilot does not interpret small errors in the angular position
of the simulator stick as unrealistic. Therefore, the commanded angular
velocity as calculated by the aircraft model is tracked tightly, at the cost of
relatively large errors in angular position. Angular position errors of
approximately 0.05 degrees occur frequently while in our set-up the period
of the cogging force is 0.045 degrees.
So the error in the angular position of the simulator stick is of the same
order of magnitude as the period of the cogging force. When this is the
case, compensating the cogging force using a feed-forward controller it is
not possible. This is illustrated in figure 6, where the magnitude of the
cogging force is shown as a function of the position of the stick.
At a certain point in time, t, the reference angle is ϕ r t( ). The cogging
force that the feed-forward controller compensates is ))((cogg tF rϕ .
However, due to fact that the reference velocity is tracked in stead of the
reference position, the actual value of the stick angle is

]05.0,05.0[)( +−∈ rrt ϕϕϕ  deg. It can be seen that in this interval the
actual cogging force, ))((cogg tF ϕ , may take any arbitrary value. Because

))((cogg tF ϕ  does not resemble ))((cogg tF rϕ , the cogging cannot be
compensated by a feed-forward controller with input ϕ r t( ).

Fig. 6. Cogging force

To overcome this the measured angular position of the stick can be used
as input of the BSN in stead of the reference angular position (Gomi and
Kawato, 1993).
In other words, as far as position-related effects are concerned, an inver-
se model is contained in a feedback loop instead of a feed-forward path.
This results in the system shown in figure 7.

Fig. 7. Learning controller

Now that the structure of the learning controller has been selected, the
distribution of the B splines has to be chosen. The distribution of the B
splines is chosen by rule of thumb, based on the characteristics of the
disturbances the BSN’s have to compensate. In case of the BSN for ω r ,
we known that BSN has to compensate the unknown friction, which can
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be approximated by the Stribeck curve. For this 60 B splines are used
which are uniformly distributed over the domain of the angular velocity,
which is [-30 deg/s, 30 deg/s]. In case of the BSN that has to
compensate the cogging force, we know the period of the cogging force,
namely 0.045 deg. The B splines are distributed in such way that each
cogging period is covered by 10 B splines. The learning rate of both
BSN’s  is chosen equal to 0.1.

Finally, a training strategy for the learning controller has to be
designed. When both BSN’s are trained simultaneously, it is not
guaranteed that the feed-forward signals end up in the right BSN’s. It
might be such that the BSN with input ϕ  learns to compensate
disturbances that depend on the velocity of the stick. To prevent this, the
BSN’s are trained consecutively. In a stage 1 the BSN with input ω r  is
trained. This is based on the assumption that a specific angular velocity is
realized at a range of angular positions, which should cancel out the
effects of the position dependent disturbances. After the BSN with input
ω r  is fully trained, its weights are (temporarily) fixed. In  stage 2 the BSN
with input ϕ  is trained. After convergence, the weights of this  network
are fixed permanently, as the position dependent effects are not time-
variant. However, during operation the friction in the motor and the ball-
screw may vary. Therefore, the learning of the weights of the BSN with
input ω r  is done continuously (stage 3).

5 Experiments

The learning controller described in the previous section is used to con-trol
the simulator stick. In the experiments the stick has to track a repeti-tive
reference path as accurately as possible. The reference angular vel-ocity
and the reference angular position are presented in figure 8 and 9.

Fig. 8. Reference angular velocity

Fig. 9. Reference angular position

In the first experiment the stick is controlled by the PI- controller only. In
figure 10 the power spectral density of the error e in the angular velocity of
the stick is shown.

Fig. 10. Power spectral density of e, PI-control

The power spectral density of e shows a small peak near 0 Hz, which is
probably caused by friction. Furthermore a peak exists at  approximately
20 Hz. From the number of poles of the electro-motor and the long period
of constant angular velocity it can be derived that this peak is caused by
cogging forces.
The angular velocity of the motor is:

ω ω
motor

r

n
= = =1

0 004
250

.
deg s (3)

Where n=0.004 is the transmission coefficient of the spindle-ballscrew-
stickjoint transmission. It is known that there are 32 poles in the motor
and therefor 32 cogging periods per 360 deg motor rotation.
The frequency of the cogging will thus be:

fcogg motor=
°
≈ −ω 32

360
22 1s (4)

Next, learning control is applied. As stated in the previous section, training
the learning controller consists of three stages. In the first stage the BSN
with input ω r  learns to compensate the unknown friction. The reference
angular velocity that is used in this training experiment should cover all
angular velocities that occur during operation. In this way it is guaranteed
that for each angular velocity that occurs in the simulation of the aircraft,
the BSN knows how to compensate the unknown friction. The reference
angular velocity the stick has to track during this straining stage is given in
figure 11.
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Fig. 11. Reference angular velocity used during training of the velocity network

Training the BSN is continued until the weights do no change anymore.
Now that the BSN with input ω r  is fully trained, its weights are fixed and
the BSN with input ϕ is trained. The reference angular velocity and
reference angular position of figure 8 and 9 are used in the training
experiments. After the BSN with input ϕ is fully trained the power spectral
density of the error e in the angular velocity of the stick is calculated (fig
12).

Fig. 12. Power spectral density of e, learning control

In the power spectral density of e it can be seen that both the peak that
was caused by friction and the peak that was caused by cogging forces
have decreased drastically. It may thus be concluded that the learning
controller is able to reduce the influence of friction and the cogging
disturbance. However, a small part is not compensated. This is probably
due to the quantisation that is present in the measurement of ϕ. This
signal is used as the input of the BSN that has to compensate the
cogging forces. The quantisation resolution of ϕ is 0.008º, while the
period of the cogging force is 0.045º. The consequence is that within one
cogging period only 6 input values are presented to the BSN. The output
of the BSN is thus a signal which consists of 6 piecewise constant parts,
which is a rather bad approximation of the ‘ideal’ uF that would fully
compensate the cogging disturbance, see figure 13.

Fig. 13. Quantisation of the angular position signal

To further enhance the performance of the learning controller, the
quantisation level has to be decreased. However, even when this is done
the noise in the measurement of ϕ could prevent further increase in
performance. Hence, the performance of the learning controller with
feedback input depends on the quality of the measurement.

This is a disadvantage as compared to the pure learning feed-forward
controller, where the input of the BSN is the reference path variable that is
known exactly.

6 Conclusions

The probable causes of the irregularities experienced by the pilot when
moving the stick are cogging, imperfections in the transmission and
unknown friction. These disturbances have a reproducible nature.
A feedback error learning controller can be used to compensate for this.
The proposed learning controller consists of 2 B spline networks (BSN’s):
one that compensates angular velocity dependent disturbances (i.e., the
unknown friction) and one that compensates disturbances related to the
angular position (i.e., cogging and imperfections in the transmission). The
BSN’s are trained consecutively by using the output of the feedback
controller.
The BSN’s may be contained either in the feed-forward or in the feedback
path.
In this case, the BSN compensating effects that depend on the angular
position cannot be contained in the feed-forward path, as this variable is
not tracked accurately in the set-up.
The BSN compensating effects that depend on the angular velocity can
be contained in the feed-forward path.
Experiments showed that cogging is the main cause of tracking error in
the inner loop. The proposed learning controller can, after proper training,
compensate for this and for the other effects. Also with the learning
controller a small part of the tracking error remains; this is mainly due to
the quantisation that is present in the measurement of the angular
position.
When the quantisation level is decreased, measurement noise will
probably limit the achievable performance.
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