
ELSEVIER Performance Evaluation 25 ( 1996) 174 

Performability modelling tools and techniques 

Boudewijn R. Haverkort *, Ignas G. Niemegeers 
Tele-infomuztics and Open Systems, University of Twente, P.0. Box 217, 7500 AE Enschede, The Netherlands 

Received 1 June 1992; revised 8 April 1994 

Abstract 

Over the last decade considerable effort has been put in the development of techniques to assess the performance and 
the dependability of computer and communication systems in an integrated way. This so-called per-formability modelling 
becomes especially useful when the system under study can operate partially, which is for instance the case for fault-tolerant 
computer systems and distributed systems. 

Modelling techniques are a fundamental prerequisite for actually doing performability analysis. A prerequisite of a more 
practical but not less important nature is the availability of software tools to support the modelling techniques and to allow 
system designers to incorporate the new techniques in the design process of systems. 

Since performability modelling requires many aspects of a system to be specified, high requirements should be posed on 
perfotmability modelling tools. Moreover, these tools should be structured such that the models can be specified at a level 
that is easy to understand for a system designer, and that the mathematical aspects are hidden as much as possible. The output 
of the tool should also be such that it can be understood with only limited knowledge of the underlying mathematical model. 

We have developed a new, fairly general modelling tool framework that can be used as a guide to assess the usability and 
structure of performability modelling tools. After briefly reviewing the mathematical aspects of per-formability mcxlelling we 
discuss this framework. We then discuss 12 recently developed tools (Metaphor, Numas, Metasan, Metfac, Save, Sharpe, 
SPNP, Tangram, Penpet, UltraSAN, Surf-2, DyQNtool+) that can all be used for some aspects of performability modelling 
and analysis. We assess among other things their structure, their capabilities in terms of measures that can be obtained, and 
the used modelling formalism. We also discuss directions for future work in the field of performability modelling tools. 

Keywords: Dependability; General modelling tool framework; Markov reward models; Pet-formability; Performance; 
Queueing networks; Stochastic Petri nets 

1. Introduction 

Over the last decade there has been an increased interest in the integrated modelling of performance and 
dependability aspects ’ of computer and communication systems. This so-called performability modelling 
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I Note that we use the term dependability here to denote either reliability or availability. In the original definition by Laprie 
security and safety aspects are also included [47]. We do not address these aspects here. 
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was motivated by the fact that in many modem computer and communication systems, the servicing of 
jobs can continue, even in the presence of failures. Examples of such systems are fault-tolerant computer 
systems, parallel computer systems, and distributed computer systems. For all these systems the failure of a 
specific component does not necessarily affect the overall service provided by the system, but it does affect 

the speed at which the overall service can be provided. 
Since more and more applications depend on the correct and timely operation of systems of the above 

classes (airline reservation systems, banking systems, aircraft control systems, integrated office systems, to 
name just a few), the analysis of the performance of these systems in the presence of failure (and repairs) is 
of major importance. Moreover, important users of these types of systems such as telephone and banking 
companies, often require that suppliers give evidence that their systems can provide a particular quality of 
service over a certain time span, even in the presence of failures. 

With the integration of computer systems and telecommunications (telematics or tele-informatics) the 
quality of service (QoS) concept as often used in recommendations by standardization bodies such as 
CCITT will become more important as a measure to qualify systems. Moreover, this QoS measure as 
defined by CCITT must reflect the combined influence of dependability and performance associated factors 
(Recommendation G. 106) [ 111. It seems that the concept of performability can be used to handle such QoS 
look-alike measures, thus making it even more important for the future [58]. 

For the above reasons performability modelling and analysis have received much attention. The empha- 
sis, however, has mostly been on the mathematical aspects of pet-formability modelling, i.e. the analysis 
of Markov reward models. Although important and a prerequisite for doing performability analysis, the 
mathematical aspects are not the only important ones. The issue of constructing per-formability models in 
a convenient way is also of key importance. Moreover, we think that performability modelling will not 
be accepted as a “normal” analysis technique as performance modelling is nowadays, as long as no good 
software tools are available that help in the construction of the models. A number of tools that are in some 
way suited for performability modelling and analysis have been reported in the literature recently. The aim 
of this paper is to survey and compare these tools. Aspects that we address are, amongst others, the class 
of models that can be handled by the tools, their user-interface and their modelling language. 

Some of the tools discussed in this paper have been addressed in other survey papers as well. In the 
papers by Johnson and Malek [44] and Mulazzani and Trivedi [61] the emphasis lies solely on tools for 
dependability modelling and analysis. Meyer [33,58] describes the historic development of performability, 
thereby briefly addressing a few tools, in far less detail than we do here. In their paper [88], de Souza e 
Silva and Gail emphasize randomization based performability evaluation techniques. They also address a 
few tools but, apart from the tool Tangram, again in far less detail as we do here. Haverkort and Trivedi 
[38] discuss tools and techniques for the construction of Markov reward models in general, not specifically 
emphasizing on performability modelling. In this paper, for the first time, a systematic overview of a large 
number of performability modelling tools is given. 

This paper is organized as follows. In Section 2 we briefly discuss the mathematical background of 
per-formability modelling as far as this is necessary to indicate differences and similarities in the various 
tool capabilities. Then, in Section 3 we discuss a fairly general modelling tool framework that turns out 
to be useful for the classification of the various tools. In Section 4, the main part of this paper, we discuss 
twelve tools for per-formability modelling and analysis. In Section 5 we summarize the paper and give some 
directions for future work in the area of performability modelling tools. 
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2. Mathematical aspects of performability modelling 

Gracefully degradable computer systems are assumed to be able to perform at various levels of per- 
formance. At system start all components are assumed to be operational and the system will operate at 
maximal performance. When a component fails, the system will reconfigure itself and restart its activities, 
albeit with degraded performance. Due to the fact that time intervals between failures are in general rela- 
tively large, it is usually assumed that the system will be in steady state most of the time between successive 
reconfigurations and failures. 

Let X denote the set of all possible configurations in which the system can operate. Now, define a 
continuous-time stochastic process X = (X, , t >_ 0), Xt E K, describing the structure of the system at time 
t, i.e. which components are up and which are down at time t. X is often referred to as the structure-state 

process since it describes the state of the system structure. The (steady-state) performance of the system 
when in structure state i E X is denoted by r(i), where r : X -+ R is a real valued reward rate function 

on the state space X. Note that the function r has to be defined by multiple performance analyses, i.e. for 
every i E X corresponding to some system configuration, the value r(i), e.g. the throughput, has to be 
obtained with a “classical” performance analysis. The values r(i) summarize the performance of the system 
in structure state i, instead of coping with all possible performance states in every possible structure state. 
This decomposition, i.e. the separate analysis of the performance given a particular structure state and the 
subsequent Markov reward analysis, is based on near-complete decomposability arguments as discussed 
by Courtois [19]. 

Fori E X,lettherowvectorr = [ . . . . xi,.. .] denote the initial probability vector on X, the row 
vector p = [. . . , pi, . . .] the steady-state probability of residing in state i, and the row vector p(t) = 

[ . . . . Pi(t)3 . . .] the (transient) probability of residing in i at time t. The following measures can be distin- 
guished: 
(1) steady-state performability (SSP): P = Ci~x pit-(i); 

(2) the transient or point performability (TP): P(t) = Cicx pi (t)r(i); 
(3) the mean reward to absorption (MRTA): MRTA = CiEXA zir(i) (XA C X and Zi are defined below); 

(4) the cumulative performability (CP): Y(t) = $ r-(X,) ds; 
(5) the performability distribution (PDF): F(t, y) = Pr{Y(t) 5 y}. 
The MRTA is only defined for models with an absorbing state (see below). It should be noted that there 
is no consensus about whether all the above measures are performability measures. Some authors require 
performability measures to be at least time dependent, thus excluding the steady-state performability mea- 
sures (category (1) above). Originally, only the CDF of the cumulative reward (category (4) above) was 
addressed and called the per-formability [55,56,58]. 

If one chooses r(i) = 1 if the system is operational in state i E X and r(i) = 0 otherwise, then E[Y (t)] 
is simply the cumulative uptime. The fraction E[Y (t)]/ t is then the availability (sometimes referred to as 
the interval availability as opposed to the point availability, the latter being a particular case of the point 
performability measures: simply E[X(t)] given the above reward assignment). 

The basic model discussed so far is a so-called rate-based reward model which means that when residing 
in a particular structure state i E X at time t, the system performs with rate r(i). The rates, however, 
may also depend on the global time t, thus having a reward rate function r(i; t) for every state i E X. 
It is also possible to address impulse-bused reward models. With these models a reward impulsefunction 
r : X x X + R has to be defined which associates a reward r(i, j) with every transition from state i E X 
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to state j E X. Every time a transition from state i to state j takes place, the cumulatively obtained reward 
increases instantaneously with r(i, j) units. Of course these rewards may also depend on the global time 
thus having transition reward functions r(i, j; t). In general, combinations of these four possibilities may 
coexist. For an overview of various Markov reward models the reader is referred to Howard [42]. 

In the rest of this paper we restrict our discussion to Markov reward models. With a few exceptions only 
rate-based models are addressed. When the structure-state process is a continuous-time Markov chain with 
generator matrix Q then the computation of the steady-state measures requires the solution of the following 
system of linear equations: 

pQ=O and peT=l, (1) 

where 0 is a row vector of O’s and eT a column vector of 1 ‘s. This system of linear equations can be 
solved directly, e.g. by Gaussian elimination, or iteratively by Gauss-Seidel iteration or by successive 
over-relaxation @OR). The former is the most convenient for small systems, the latter for larger systems. 
For comparisons, we refer to [46,90]. 

When the CTMC contains an absorbing state, a steady-state measure does not provide useful information. 
Instead, the expected time or reward until absorption then is of interest. Let QA equal the matrix Q, however, 
restricted to the non-absorbing states x,4 C X. A similar definition can be given for XA. The row vector z, 
which is the solution of 

ZQA = -KA, (2) 

now represents the amount of time spent in every non-absorbing state before absorption. The mean reward 
to absorption then equals: MRTA = Cicx, zir(i). The system of linear equations (2) can be solved with 
similar means as system (1). 

The transient (or point) pet-formability measures require the solution of the following system of linear 
differential equations: 

p’(f) =p(t)Q withp(0) = m. (3) 

Semi-symbolic solutions for this system of differential equations are computationally expensive [53,69] 
and therefore are only applicable for small models. For larger models, numerical techniques are used. One 
can either use Runge-Kutta based methods, possibly adapted for stiff systems [70-721, or randomization 
(also called uniformization) [31,32,59,64,86-881. For the computation of E[Y(t)] similar techniques can 
be employed. 

For the CDFs of the cumulative measures various specialized algorithms exist [22,26,67,68]. For acyclic 
Markov chains recursive algorithms exist. For general Markov chains algorithms are mostly based on ran- 
domization [87,88] or on Laplace [85] or Laguerre transforms [ 11. In the latter cases, the back-transformation 
to the time domain is mostly done in an approximate fashion. 

Recently, a number of survey papers on performability analysis techniques have been published in a 
special issue of Pe~ormance Evaluation [21]. We refer to [58] in which the history of the development 
of performability modelling is sketched; to [88] in which performability modelling and evaluation are 
discussed with an emphasis on randomization and object-oriented model specification; and, to [92] in 
which various forms of combined performance and dependability modelling are discussed. 
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3. A general modelling tool framework 

As is clear from Section 2 there are many evaluation techniques for obtaining specific measures from 
Markov reward models. Most of these techniques make extensive use of numerical analysis and can therefore 
only be used when computer support is available. However, even when computer support is available for 
the numerical analysis there are a number of problems that hinder the use of the state-of-the-art Markov 
reward model evaluation techniques: 
(1) system designers are in general not familiar with Markov reward models, so they are not inclined to 

use this formalism to model their system; 
(2) Markov reward models are very “low-level” from a system designer’s point of view, and thus the 

modelling process will be very error-prone; 
(3) models tend to become too big to handle manually, i.e. the model specification becomes too complex. 
Berson et al. [7] distinguish two representations of a model. On the one hand there is what they call the 
analytical representation of a model. This is the representation that is directly suitable for a numerical 
evaluation. In the per-formability modelling context an analytical representation of a model would be a 
Markov reward model and the numerical evaluation would use one of the techniques discussed in Section 2. 
On the other hand there is the modellers representation of a model. This is a description in a symbolic form 
oriented towards the specific application (i.e. the system to be modelled). Clearly, most system designers 
prefer to use the modellers representation rather than the analytical representation. 

In the performance modelling context a similar distinction applies. Beilner claims that a performance 
model specification used in a performance modelling tool should be independent of any particular per- 
formance evaluation technique [4]. This is in line with the statement above that for system designers the 
analytical representation of a model, which is typically tailored to some specific evaluation technique, is 
hard to use. Model descriptions should therefore be based on a formalism close to the application domain 
and as independent as possible from underlying evaluation techniques. 

Let us now define a general framework for performability modelling tools, called the General Modelling 

Tool Framework (GMTF) originally proposed in [35]. Note that although we introduce the GMTF here in a 
pet-formability modelling context, it is widely applicable in the context of quantitative systems modelling. 
For instance, in [40,84], tools for performance analysis of communication systems based matrix geometric 
methods and Markovian analysis were presented that have a structure conforming to the GMTF. A sim- 
ilar layering structure for model-based evaluations has recently also been proposed by Lepold [51] as a 
generalization of the open layered architecture for dependability analysis as presented in [62]. 

We introduce a hierarchy of modelling formalisms ranging from 30 (the lowest level) to 3n (the highest 
level). 30 yields models that are directly suitable for numerical evaluation whereas 3,, is the formalism 
closest to the application domain. We define 3i -modelling as the process of abstracting, simplifying and/or 
rewriting a system description S in such a way that it fits some formalism 3i. The result of this process is 
called an 3i -model Mi of S. An 3i -model Ml of S can be modelled in another formalism 3i _ 1, provided 
i 2 1, yielding an 3i _ 1 -model Mi_ 1 of S. This is called 3i _ 1 -modelling. The lowest level formalism is 30 
which coincides with the analytical representation as discussed by Berson et al. [7]. When 3i is the highest 
level formalism, most of the user activity in the modelling process will be 3i-modelling. The lower level 
modelling activities will often be partially or completely automated. 

Once we have a model it can be evaluated. The evaluation of an 3u-model MO yields results in the 
formalism KI+ For this evaluation numerical techniques like those indicated in Section 2 can directly be 
applied since the formalism 30 has been chosen to directly suit those numerical evaluation techniques. 
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The evaluation of an &-model Mu is called a Vu-evaluation. The results presented in the formalism or 

domain Ri (i 1 0) can be further processed or enhanced to some higher level Ri+l. This is called an 
E, l +I -enhancement. Often these enhancements can be done automatically. 

When we have an .?j -model Mj of some system S we generally want to evaluate this model and to obtain 
measures in a formalism of the same level. We denote the level of this formalism as Rj. We can also say 
that the results are given in domain Rj. We define a virtual evaluation Vj as the process of subsequently 
modelling Mi (1 5 i 5 j) in formalism Fi;:-1, until an &)-model MO is obtained, followed by the Vu- 
evaluation and the subsequent enhancements Et through &j. Schematically, we have the structure as depicted 
in Fig. 1. This structure represents the GMTF. The small boxes represent system models (right-hand side) 
or evaluation results (left-hand side). The large box represents the actual mathematical evaluation. In the 
context of performability modelling this will often be a Markov reward analyzer. The single pointed arrows 
represent automatic translations of one formalism into another. The double pointed arrows represent the 
virtual evaluations. 

Hierarchical modelling also fits in the GMTF. In hierarchical model description formalisms, high-level 
models are described in terms of lower-level models and interactions between them. This intuitive “de- 

scribing in terms of’ conforms to the above mentioned LFi - 1 -modelling of M i . 
Although the GMTF can guide thinking about and development of tools, practice often tends to deviate 

from frameworks or reference models. As we will see, some tools allow their users to partially model their 

C___________________, 
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I 

I system S : 

results in Ri 

&i-enhancement 

Vi -evaluation 

3-i -modelling 

.7=i -model M i 

results in Ri _ 1 

A 

Ei _ 1 -enhancement 

Vi _ 1 -evaluation 
l P 3i-t-model Mi_1 
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results in 7Q &-model M 0 

Vu-evaluation 

Fig. 1. General modelling tool framework. 
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system in formalism Fl and partially in formalism &. Sometimes the results are presented in domain Ri 

whereas the model is made in formalism Fj with i < j. In these cases one cannot speak of Vj-evaluations. 
Important to note is the fact that the mentioned levels are not absolute. A tool allowing for V1 -evaluations 

can from an application point of view be “a higher level” tool than another tool which allows for V2- 
evaluations. To make this more concrete, consider the object-oriented modelling tool Tangram [7,88]. 
As we will see later, this tool uses communicating objects for the description of Markov models. The 
communicating objects can be considered as models in the formalism Fl. Tangram can be extended to allow 
for a modelling activity similar to the modelling activity that is required when using Save. Consequently, 
a possible l+evaluation of Tangram corresponds to the VI-evaluations of Save, i.e. the l&evaluations of 
Tangram are not of higher level than the V1 -evaluations of Save. 

Regarding the transparency of the Vg-evaluations, the following remarks can be made. In general, we can 
say that the Fo-models are descriptions of Markov reward models. It can be discussed whether the choice 
of an algorithm in the l&evaluation should be made internally, or whether these choices should be part of 
the Fo-models (as a kind of directives). Clearly, it is very difficult to totally separate “low level details” 
from the “real modelling work”. However, at least an intuitively appealing attempt in this direction should 
be made. Thus, we feel that we must be able to do higher-level evaluations without detailed knowledge of 
the underlying techniques, however, if we do know the underlying techniques, we should be able to control 

them. 
As a conclusion of the presentation of the GMTF we would like to put forward a number of criteria 

related to the GMTF which should be fulfilled by a well-designed tool: 
balancedness: the modelling formalism and the output formalism should be of the same abstraction 

level, i.e. the results should be presented in the domain Ri whenever the modelling is done with formalism 

extensibility: the tool should most optimally be extendible towards higher-level evaluations, i.e. given 
that the tool allows Vi-evaluations, it should be possible to adapt the tool in such a way that it provides 
Vi+ 1 -evaluations; 

transparency: the Vg-evaluation should be as transparent as possible. 

4. The performability modelling tool survey 

In this section we survey twelve performability modelling tools. From Section 2 we know that performa- 
bility modelling incorporates both performance analysis (for obtaining the rewards) and Markov reward 
model analysis. A performability modelling tool should therefore include both aspects. As we will see 
this is not yet commonplace. The tools that we survey can, however, all in some way be used for some 
aspects of performability modelling. In our choice, we have restricted ourselves to Markov reward model- 
based tools. We do not include general simulation-based tools. Also, we do not include tools purely aiming 
at dependability (e.g. Figaro [8], Surf [ 181) or tools mainly aiming at performance (e.g. GreatSPN [12], 
DSPNexpress [52]) or tools aiming at system optimization (e.g. Penelope [54]) although we appreciate the 

contributions of these tools as such. 
The following tools have been included in the survey (in order of their first publication): Metaphor, 

Numas, Metasan, Metfac, Save, Sharpe, SPNP, Tangram, Penpet, UltraSAN, Surf-2 and DyQNtool+. For 
each tool we: 
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(1) provide references and implementation details; 
(2) discuss the model class and the evaluation techniques; 
(3) discuss the input and possible output of the tool; 
(4) discuss how the tool fits in the GMTF; 
(5) summarize and evaluate its most important characteristics. 

In Table 1, we present for each tool the models and measures supported, the numerical techniques 
employed, the required input and output format, the format of the rewards, its fitting in the GMTF, the 
language it has been implemented in, the platforms it operates on, as well as references. 

It is difficult to report in general terms on the performance of the tools. The tool performance very much 
depends on the models one studies, i.e. their size, structure and the numerical parameters involved, the 
measures one is interested in, i.e. only steady-state measures or also distributions, and the actual encoding 
of the algorithms. For a comparison of the complexity of the numerical techniques, we refer to the relevant 
literature mentioned in Section 2. How fast the various high-level model descriptions can be translated to 
the lower-level Markov reward models, and how efficient the implemented solution techniques are, remain 
interesting questions. To shed light on them, a number of cases should be tackled by all the tools and the 
resulting performances be compared. This, however, goes beyond the scope of the current paper. 

Table 1 
Overview of performability modelling tools 

first published 

Metaphor 

1984 

model class 

measures 

techniques 

acyclic semi-Markov 
non-increasing rewards 

PDF 

state trajectory 
enumeration, 
explicit integration 

rewards computed off-line 

rewards inserted state level 

input interactive 

output 

GMTF 

language 

system 

tables 

Fu input 
7&J output 
Ve evaluations 

APL and C 

UNIX systems 

literature 123,241 

Numas Metasan Metfac 

1985 1986 1986 

Markov reward Markov reward Markov reward 
impulse and rate rewards 

ss SS, TP, CP, PDF SS, TP, CP, PDF 

Gaussian elimination Gaussian elimination Gaussian elimination 
Gauss-Seidel Gauss-Seidel direct integration 
iterative aggregation uniformization 

simulation 

from QN model C function off-line 

automatically SAN level state level 

interactive Sanscript language production rule system 
graphical Hit interface 

tables tables tables 

Fr input 31 input F;, .FI input 
Rr output R; output 774) output 
Vt evaluations Vi evaluations Va, 1 evaluations 

Simula 67, C C Fortran 77 

Siemens BS2000 SUN 3, VAX VAX (VMS) 
SUN 4, APOLLO 

1601 [57,78-811 [9,101 



B.R. Haverkort, I.G. Niemegeers/Perfonance Evaluation 25 (1996) 1740 25 

Table 1 (continued) 

first published 

model class 

measures 

techniques 

Save 

1986 

Markov reward 

SSP, TP, CP, PDF 
sensitivities 

SOR, Gauss-Seidel 
randomization 
importance sampling 

Sharpe 

1986 

(semi-)Markov reward 

SSP, TP, CP, PDF 

SOR, Gauss-Seidel 
randomization 
symbolic algorithms 

rewards computed off-line 

rewards inserted state level 

input Save input language 

output tables 

GMTF 51, F, input 
R, output 
Va, 1 evaluations 

language Fortran 77 

system IBM/370 

[25-29,413 

off-line, in Sharpe 

state level 

MRM enumeration 

tables 

30 input 
IZQ output 
Va, 1 evaluations 

C 

Sun 4,VAX(VMS) 

[73-771 

SPNP Tangram 

1989 1989 

Markov reward Markov reward 

SSP, TP, CP, MRTA state probabilities 
sensitivities 

SOR, Gauss-Seidel - 
randomization 

C function off-line 

SRN level state level 

CSPL communicating objects 

tables Query language 

F, input Fi input 
R, output R; output 
V, evaluations Voj evaluations (i L 1) 

C 00-Prolog 

SUN 4, VAX(VMS), SUN 3 
Convex 
NeXT, RS/6OOO, OS/2 

[15,161 17,661 

Penpet 

first published 1991 

model class Markov reward 

measures SSP, TP 

techniques Gaussian elim., 
Gauss-Seidel, SOR 
ACE, randomization 

rewards computed from SPN model 

rewards inserted automatically 

input textual 

output tables, graphs 

GMTF 3,~ input 
R, output 
VI evaluations 

language C 

system UNIX systems 

literature [45,49-5 I] 

UltraSAN DyQNtool+ surf-2 

1991 199215 1993 

Markov reward Markov reward Markov reward 
impulse and rate rewards 

SSP, TP, CP, PDF SSP, TP, CP, MRTA SSP, TP, MRTA 

LU-decomposition, Gauss-Seidel, SOR - 
SOR, randomization randomization 
importance sampling 

C function from PFQN model function 

SAN level automatically SPN/state level 

graphical textual, C-based graphical 

tables tables tables, graphs 

3; input 31 input 30~ input 
Ri OUtpUt R, output Rc,, output 
V; evaluations (i > 1) VI evaluations VO,, evaluations 

c, c++ C C, ADA 

SUN 4, Decstation SUN 4 SUN 4 
RS/6000, Convex 

[20,65,82,83] [34-36,391 [61 
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4.1. Metaphor 

The tool Metaphor (Michigan EvaluaTion Aid for PerpHORmability) has been developed by Furchtgott 

and Meyer at the University of Michigan [23,24]. An APL as well as a C/UNIX version of Metaphor exists. 

Model class and evaluation techniques. Metaphor addresses only models of systems that are non- 
repairable and non-recoverable. Having non-repairable models implies that the stochastic process X = 
(X,, t z 0) is acyclic; non-recoverability means that whenever the process structure allows a transition 

from state i to state j then r(j) I: r(i), i.e. the system is not becoming better in time. On the other hand, the 
stochastic process X may be semi-Markovian. Since the stochastic processes are acyclic, one can enumer- 
ate all state trajectories from the unique starting state to all the down states. Knowing the state transition 
behaviour, the probabilities of occurrence of a particular state trajectory as well as the distribution of the 
cumulative performance of the system over that state trajectory can be computed. Combining these two 
yields the performability distribution F(t, y). In Metaphor, techniques have been implemented to reduce 
the number of state trajectories. No explicit mention is made of the maximum size of models Metaphor can 
cope with. However, an example with hundreds of state trajectories is discussed by Furchtgott [24]. 

Model input and output. The models are input interactively. The rewards for all possible structure states 
have to be input separately. This implies that a separate performance modelling activity is necessary. The 
output of the tool gives values for the function F(t, y) in tabular form. 

GMTFJitting. Metaphor is an &-modelling tool. The output is in the Ru-domain. The tool can be used 
for Ve-evaluations. 

Evaluation. Metaphor was the first tool for pet-formability modelling. Its model class is restricted in 
the sense that only acyclic (non-repairable), non-recoverable stochastic processes can be used. There are, 
however, no restrictions on the state residence distributions. As models become large, the enumeration of 
all the state trajectories and the integration over them can be a severe drawback in using the tool. Another 
disadvantage of the tool is the fact that the possibly large number of rewards has to be calculated off-line. 
Both the input and the output of the tool are textual. 

4.2. Numas 

Numas (Numerical Methods for the Analysis of computer Systems) has been developed by Mtiller- 
Clostermann at the University of Dortmund [60]. Numas is basically a performance analysis tool, however, 
it is possible to extend each queueing station with fault-tolerance characteristics, so that performability 
measures can be obtained. Numas has been implemented in Simula 67 for Siemens BS2000 systems. The 
algorithms used in Numas are also accessible from the hierarchical modelling tool Hit as discussed by 
Beilner et al. [5]. For Hit, also versions exist for IBM, APOLLO and SUN systems. A Xl l-based graphical 
interface is also available. 

Model class and evaluation techniques. With Numas queueing network models are solved by numerically 
computing the steady-state distribution of the underlying Markov chain. Within every multi-server queue 
individual servers may fail with load dependent rates and can be repaired with a rate dependent on the 
number of servers that is still available, independently of all other queueing stations. Thus, the state of 
the network consists of a part describing the distribution of customers over the queueing stations and of a 
part describing the so-called degradation mode of each queueing station. Groups of states with the same 
degradation mode are said to belong to one macro state. By the fact that there are normally large time-scale 
differences between transitions inside and between macro states, it is possible to decompose the overall 
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model. For every macro state, a Markovian submodel for the associated performance model is identified 

and analyzed. The submodel results are used in a numerical analysis of the Markov chain describing the 
transitions between degradation modes. 

For obtaining the steady-state probability vectors iterative and direct methods are used such as Gaussian 
elimination, Gauss-Seidel iterations and iterative aggregation. Models with thousands of states can easily 
be handled. 

Model input and output. The methods in Numas can be accessed via two user interfaces. Both user 
interfaces allow the user to input the so-called degradable queueing network models at a high level. The 
associated Markov model is generated automatically. There is an interactive Numas interface available in the 
Siemens/Simula implementation. The Numas methods can also be accessed via the hierarchical modelling 
tool Hit. The output of the tool is given in tabular form and is related to the original modelling constructs. 

GMTFJitting. Numas input takes place via a specialized interactive dialogue and its output is given in 
terms of the input modelling elements. The user is not aware of the underlying Markov reward models. 
Consequently, Numas allows VI -evaluations. 

When using the Hit system and HI-SLANG (Hit System Language) as input language, there are very 

nice features for hierarchical modelling. The outputs can then be tailored to the highest level of the model 
description. With Hit, we thus have Vi-evaluation capabilities (i > 1). 

Evaluation. For steady-state per-formability analysis, Numas provides powerful constructs. All necessary 
information is computed by the tool. A limitation of the tool is that it is not possible to model dependencies 
in the failure and repair processes of the various queueing stations. Also, only steady-state measures are 
computed. 

4.3. Metasan 

The tool Metasan (Michigan Evaluation Tool for the Analysis of Stochastic Activity Networks) has been 
developed by Sanders et al. [57,78-811 at IT1 (Industrial Technology Institute) in cooperation with the 
University of Michigan. It has been written in C with the help of the tools Yacc and Lex. Versions for 
SUN 3 and VAX (both UNIX) exist. 

Model class and evahation techniques. The tool Metasan is based on the Stochastic Activity Network 

(SAN) approach of describing complex systems [57]. SANs consist of places and activities (transitions 
in GSPN terminology). Activities can be either stochastically timed or instantaneous. In the timed case, 
general distributions are allowed, however, if non-exponential distributions are used, simulation should be 
used to solve the model. So-called cases can be associated with each activity. Cases are generalizations of 
probabilistic switches [3]. Upon completion of an activity, one of the cases is chosen probabilistically. Both 
the timing distributions and the case probabilities can be marking dependent. Input and output gates that 
connect places to activities and vice versa determine the flow of tokens through SAN. Input gates have a 
predicate that specifies whether the activity is enabled or not, and a function that specifies how the tokens 
from the input places are redistributed over the output places of the activity. Output gates only have the 
latter function; they do not have predicates. 

With Metasan, it is possible to construct models in a hierarchical fashion using a macro facility, i.e. 
submodels, SANs in itself, can be defined which are subsequently used (one or more times) in higher-level 
models. The overall SAN model describes the structure-state process. In terms of place occupancies, the 
user can associate rewards with all states. From these, an underlying Markov reward model is derived. 
The underlying Markov model is solved for the steady-state performability measures using either direct 
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or iterative methods. Transient pet-formability measures are obtained using uniformization. A number of 
algorithms have been implemented for obtaining F(t, y) under various model restrictions. A specialized 

algorithm is incorporated for obtaining E [ Y (t)]. 
It is also possible to use simulation as an evaluation technique. Steady-state as well as transient measures 

(terminating simulation) may be obtained in this way. Confidence intervals are also obtained and can be 
used to specify stop criteria for the simulation, e.g. stop if 95% confidence interval width is within 10% of 
the estimate. 

Metasan is one of the two pet-formability modelling tools (the other one is UltraSAN (see Section 4.10)) 
that combines rate-based and impulse-based Markov models. 

Model input and output. Model input and output are textual. The input consists of two parts: a part 
describing the actual model and a part describing the experiment, i.e. the measures to be obtained, the 
techniques to be used, etc. The model description part is done with the SAN description language Sanscript 
and is independent of the experiment description. The output is given in tables. 

GMTF jitting. With the Metasan modelling language, the modelling activities take place at a higher 
level than at the Markov reward level, i.e. Ft -modelling. Due to the macro facilities, a form of higher-level 
modelling is also possible. Rewards are computed as a general C function of the SAN marking andfor the 
activity completions. As such, the rewards are not derived from a performance model, albeit that the C 
functions can be an “implementation” of some queueing model. The output is given in a form that can be 
understood at the level of model description, i.e. in the xi-domain (i 1 1). Thus, Vi-evaluations (i 5 1) 
can be done with the tool. 

Evaluation. Metasan provides a very general framework for building performability models. The tool 
supports analytical as well as simulative evaluation techniques. The separation between a model description 
and a model evaluation part is a nice feature since it allows the modeller to evaluate one particular model 
with various evaluation techniques. Input of the tool is textual. The output is in the form of tables. Rewards 
have to be computed separately. 

4.4. Metfac 

The tool Metfac (Modelacion y Evaluation de la Tolerancia a Fallos Asistida por Computador) has been 
developed by Carrasco and Figueras at the Polytechnical University of Catalunya [9, lo]. It has been written 
in Fortran 77 and runs on VAX (VMS) systems. 

Model class andevaZuation techniques. The Metfac system allows the analysis of Markov reward models. 
The models are specified by means of a production rule system. In short, the idea behind this is the following. 
The system structure is described by a number of state variables. For all the possible values (value ranges) 
of the state variables it is specified which events can occur, the rate with which they occur and how they 
affect the state variables. In this way, all possible finite Markov chains can be described. Steady-state as well 
as transient per-formability measures can be obtained. A measure close to the cumulative performability 
measure can also be obtained: the so-called serviceability S(y), i.e. the probability distribution that an 
amount of work y has been done before the first failure occurred. For obtaining steady-state measures 
direct methods are employed. The transient measures are obtained using numerical integration procedures 
especially suited for stiff problems. Large state spaces are dealt with by an approximate technique called 
dissolving. Dissolving basically means that states with very low probabilities are omitted but accounted for 
by altering transition rates in their predecessor states. The evaluation routines in Metfac are especially 
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developed for large, sparse Markov models. It is suggested that the tool is able to deal with models having 

thousands of states. 
Model input and output. The production rule system has to be input textually. The rewards have to be 

input separately for all possible states. The translation from the production rule system to the underlying 
Markov reward model is done automatically. The output is given in tabular form. 

GMTF $tting. Modelling systems with the production rule mechanism of Metfac typically is an .Tl- 
modelling activity. The specification of the rewards to be associated with every global state is a lower-level 
model activity, i.e. Fe-modelling. The output of the tool is in the %&domain. 

Evaluation. Metfac provides a very powerful mechanism for constructing the dependability part of a 
Markov reward model that can subsequently be used for performability analysis. Rewards have to be supplied 
manually. A large variety but not all of the performability measures can be obtained. In the implementation 
of the tool, much emphasis has been put on state dissolving techniques and on the exploitation of the sparsity 

of the Markov generator in the evaluation routines. 

4.5. Save 

Save (System Availability Estimator) has been developed by Goyal et al. [25,28,29] at IBM Yorktown 
Heights in cooperation with Duke University. It has been written in Fortran 77 and runs on an IBM 
Systeml370. Originally designed for modelling ultra-dependable computer systems, it has been extended 
for performability modelling. 

Model class and evaluation techniques. Save allows for Markovian structure state processes. With every 
possible structure state a performance level can be associated. Steady-state measures are obtained using 
the iterative technique of successive over-relaxation (SOR). Transient measures are obtained using the 
randomization approach. Various specialized algorithms have been implemented to compute the F(t, y). 
A special feature is the possibility to obtain the sensitivity of the results with respect to model parameters 
[27,41]. Simulating the Markovian models, which is imperative when the models become very large, is 
also possible. In that case an importance sampling technique is used, which greatly reduces the required 
simulation time [30]. As far as the Markov approach is concerned, models with hundreds of thousands of 
states can be handled. 

Model input and output. The user can choose the Markov input approach or the numerical input approach. 
In the former, the user has to specify all the Markov states, their corresponding rewards and their outgoing 
transitions. In the numerical approach the user can specify the models at a higher level, using powerful basic 
modelling constructs. In both cases, the rewards have to be supplied by the user. Given a model input, Save 
automatically constructs the corresponding Markov reward model after which the user can interactively 
indicate which measures have to be computed. All input is textual. All output is given in tabular form. 

GMTF jitting. The Save input language is especially developed for modelling the dependability of 
systems, and thus supports 3t-modelling activities. The input of the performance aspects, i.e. the rewards, 
is a typical &-modelling activity. The output is given in terms of the modelling constructs that are used 
when specifying the dependability aspects. 

Evaluation. Save is a powerful tool for the analysis of Markov reward models. Its constructs for spec- 
ifying the structure state process are very powerful and so are the implemented evaluation techniques. 
Steady-state, transient and cumulative per-formability measures can be computed by the package. 
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4.6. Sharpe 

Sharpe (Symbolic Hierarchical Automated Reliability/Perfotmance Evaluator) has been developed by 
Sahner et al. [73-771. Sharpe allows for various types of modelling and for various types of evaluation tech- 
niques. In this section we will only discuss the capabilities of Sharpe as far as pet-formability is concerned. 
Sharpe has been implemented in C and runs on SUN (UNIX) and VAX (VMS) systems. 

Model class and evaluation techniques. Sharpe allows for the construction and analysis of Markov 
and semi-Markov chains. The Markov chains must either be acyclic, irreducible (every state is reachable 
from every other state) or phase-type (there is at least one absorbing state and every non-absorbing state 
is transient). The semi-Markov chains must be acyclic or irreducible. With every state a reward can be 

associated. 
Assuming the system to be down in the absorbing states and operational in the transient states, the phase- 

type Markov chains can be used to calculate the system reiiability, the mean time to failure, and the time 
to failure distribution symbolically. By using convenient rewards also measures like mean computation 
to failure (originally defined in [2]) and the distribution of the cumulative reward upon absorption, the 
expected reward rate at time t and the expected cumulative reward at time t can be obtained. 

When the (semi-)Markov chain is irreducible, the steady-state per-formability can be calculated. When 
acyclic semi-Markov chains are used, not only exponential distributions but also polynomial exponential 
distributions (“exponomials”) can be used, i.e. distributions of the form F(t) = Ci ai bebit. 

The steady-state results are obtained with either Gauss-Seidel iterations or by using SOR. Transient 
quantities are derived in semi-symbolic form [73-77,911 or in numeric form by using randomization 

[31,32,87,88]. 
Model input and output. The specification of the Markov models in Sharpe is done by enumerating all 

the state transitions and the rewards associated with them. A nice feature of Sharpe is that it is possible to 
model hierarchically, also between different types of models. Thus, it is possible to calculate the rewards 
using a queueing network analysis (also provided by Sharpe) and combine them with a Markov reward 
model (see the approach used in DyQNtool+). 

GMTFJitting. The standard Sharpe tool environment allows for Fe-modelling. By clever usage of the 
hierarchical modelling capabilities of Sharpe it is possible to enhance this level. 

Evaluation. The real strength of Sharpe lies not in pure performability modelling, but more in its capa- 
bility to use various modelling techniques in a combined fashion. The input of the tool seems to be slightly 
inconvenient for performability models (Markov reward models), especially for larger ones. On the other 
hand, the availability of symbolic evaluation techniques for a subclass of problems is attractive. 

4.7. SPNP 

The Stochastic Petri Net Package has been developed by Ciardo et al. at Duke University [ 15,161. 
SPNP is a very general and flexible package for the construction of stochastic Petri nets (SPNs) and the 
subsequent analysis of the underlying Markov reward models (the class of SPNs supported by SPNP is 
sometimes referred to as stochastic reward nets (SRNs)). SPNP has been implemented in C and runs on 
SUN, CONVEX and NeXT systems (all UNIX), RS/6000 (AIX), PS/2 (OS/2) and VAX (VMS). 

Model class and evaluation techniques. With SPNP all types of Markov reward models can be con- 
structed. There are no limitations on the rewards. The Markov reward models are derived from a SPN 
description. The rewards can be specified as normal C functions over the number of tokens in the places. 
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This allows for a very flexible reward structure construction, since the used C functions can invoke other 
functions, e.g. to do some performance analysis. 

The resulting Markov reward model can be analyzed for steady-state measures, using either Gauss- 
Seidel iterations or SOR. For Markov reward models with absorbing states, the obtained cumulative reward 
until absorption can be calculated. Transient and cumulative measures are obtained using randomization. 
Sensitivities can be obtained for steady-state measures, again using Gauss-Seidel or SOR techniques, as 
well as for transient measures, thereby using randomization. 

Model input and output. The input language for SPNP is CSPL, i.e. the C-based SPN Language. A 
CSPL description is a normal C file; it is compiled with the C compiler and linked with a number of other 
C programs which together constitute the SPNP. The output of the tool takes place via C functions. This 
allows the tool user to tailor the output to his specific needs. 

GMTFfitting. SPNP can be used for VI -evaluations. The possibilities of the tool to allow for the use of 
parametrized subnet specifications indicates that the modelling and evaluation can be enhanced to higher 
levels than the standard FI -modelling and VI -evaluations. Rewards are input at the SPN level as a general 
C function over the markings. As with Metasan, this derivation is not model based. 

Evaluation. SPNP is a powerful tool for the construction of Markov reward models. Since the model 
description is done via standard C, the full power of the C programming language is available. This makes 
the tool very flexible and easy to use. This as well as the fact that rewards can be associated with every 
marking by using normal C functions opens up numerous possibilities to further facilitate the modelling 
process. A wide variety of performability measures can be obtained including steady-state, transient and 
cumulative measures. 

4.8. Tangram 

Tangram is a general object-oriented tool environment developed by Berson et al. at the University of 
California at Los Angeles [7,66,88]. Tangram provides a layered tool environment which can very easily be 
tailored to specific application domains, given that evaluation techniques are available. Tangram has been 
implemented in object-oriented Prolog and C for SUN 3 systems running UNIX. 

Model class and evaluation techniques. Tangram is a very general modelling environment which can 
currently be used for performance analysis, Markov reward analysis and reliability analysis. Which methods 
are implemented for the Markov reward analysis remains unclear from the cited papers. 

The strong points of Tangram are its extremely flexible input and output format. Models are specified as 
collections of objects. Objects are parametrized instances of object types. Every object type has an internal 
state which changes upon the completion of internal events. Internal events can also cause messages to be 
sent to other object types. Reception of messages by an object type also causes events within the receiving 
object type. The overall model state is the collection of the internal states of all the objects. With every state 
a reward can be associated. Since object types can inherit properties from parent object types, complex 
models can be constructed in a stepwise fashion. In this way it is possible to define a set of high-level 
objects specially tailored for a particular application. Berson et al. indicate that they have constructed a set 
of high-level object types that allows Tangram users to use the same modelling constructs as are provided 
by the Save interface. 

Model input and output. The input of Tangram is completely textual, program like. The output of Tangram 
takes place via a query language. Queries can be defined over objects, their internal state and their rewards. 
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GMTFJitting. The Tangram tool environment allows for the easy construction of Markov reward models. 
Models can be built hierarchically, so we typically have to do with 3i-modelling (i 1 1). The output can 
be enhanced to the same level as the input by using the query language. Tangram therefore typically allows 

for Vi-evaluations (i 2 1). Rewards, however, have to be calculated separately. 
Evaluation. Tangram is a very flexible modelling environment which greatly eases the construction 

of Markov reward models. It allows for hierarchical modelling and has a powerful query mechanism for 
obtaining measures that are complex to specify. 

4.9. Penpet 

The tool Penpet (PEtri Net based Per-formability Evaluation Tool) has been developed by Lepold at 
Siemens AG, in cooperation with the University of Mulhouse [49-5 11. The system has been built with the 
C programming language under the UNIX operating system, making use of X-windows and Motif. 

Model class and evaluation techniques. With Penpet the dependability model part is at the highest level 
described by a structure formula. Models (so-called macromolecules) are defined that consist of a replication 
of a number of submodel parts (molecular clusters) and/or components (atoms). This definition is done by 
means of a so-called system structure formula, a textual description that closely resembles the description 
of molecules in chemistry. For each of these submodel parts and components, it is specified how many 
there are, how many need to be operational for the next hierarchically higher model to be operational, etc. 
Failure rates and coverage factors are also specified per component and/or per submodel. 

Components and submodels used in this way are described themselves by one of a number of library- 
provided GSPNs. Extensions to this library of standard submodels can also be made. The class of GSPNs 
is the so-called Per-formability Adapted SPNs (PASPNs), which fall in the class of GSPN models that 
can be analyzed with Tompsin, a package also developed at Siemens [48]. A nice feature of Tompsin is 
that it allows for approximate hierarchical modelling, which decreases the size of the state space of the 
performance models [45]. 

From the system structure formula an overall GSPN describing the dependability aspects is derived. 
From this GSPN, all the possible system structure states are derived as well as the Markov chain underlying 
the GSPN. From all the system structure states, via a set of functions (as in the case of dynamic queueing 
networks, see DyQNtool+ below) the parameters of the performance models are derived. These parameters 
might include initial markings, firing rates, etc. A reverse dependence is also possible, e.g. failure rates 
in the structure state model might be dependent on the rewards that are derived. Once the performance 
models have been constructed they are evaluated by normal GSPN analyses, using the package Tompsin. 
Combining the structure state process with the obtained rewards, a Markov reward model is obtained. 

For deriving steady-state performability measures such algorithms as Gaussian elimination, Gauss- 
Seidel iterations, SOR and the LSQR algorithm (an extension of the conjugate gradient method) have been 
implemented. For deriving point performability measures the ACE algorithm [53] has been implemented 
as well a randomization procedure. 

Model input and output. The input to Penpet is textual. The user can textually input the system structure 
formula as well as the needed GSPN submodels, if they are not readily available from the library. The output 
of the tool is in the form of tables, or in the form of graphs, thereby making use of the Xgraf package. 

GMTFJitting. The tool Penpet allows for the construction of Markov reward models by techniques that 
are specially designed for the performability analysis of fault-tolerant multiprocessor systems. Also the 
rewards are derived automatically from high-level SPN model, therefore Ft-modelling is possible. The 
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output is presented in the Rt -domain, so Penpet is capable of Vt -evaluations. The structure state formulae 
can be seen as F.-models since they are higher-level descriptions of GSPNs. 

Evaluation. Penpet allows for the construction of Markov reward models by techniques that are especially 
designed for the performability analysis of fault-tolerant multiprocessor systems. The way of describing 
higher-level models as clusters of lower-level models that can be specified separately is very flexible. Also 
the mutual dependence between performance models and structure state models is a very nice feature. 

4.10. UltraSAN 

The tool UltraSAN has been designed by Sanders et al. [20] at the University of Arizona, as a successor to 

Metasan. Recently, a second release has been made available [83]. UltraSAN has completely been written 
in C++ (user interface) and C, making use of the X-windows environment, and runs on SUN 4, DEC 
Decstation, RS/6000 and Convex systems. 

Model class and evaluation techniques. UltraSAN is, like Metasan, based on stochastic activity networks. 

Models are input using a graphical interface. It is possible to construct models in a hierarchical fashion. 
Submodels can be defined which are subsequently used (one or more times) in higher-level models by 
use of the so-called replication-operator. Submodels of various kinds can be combined in a higher-level 
model by means of thejoin-operator. The joining and replicating of submodels can be done iteratively, thus 
providing real hierarchical modelling. Apart from exponentially timed activities, also deterministically 
timed transitions are allowed, albeit in a restricted fashion [52]. 

Steady-state measures are solved either direct or iteratively. In the former case a variant of the well-known 
LU-decomposition algorithm is used which reduces fill-in by a heuristic technique for pivot selection and 
which deals in a special way with very small elements. In the latter case a method based on successive 
over-relaxation is used. For transient and cumulative measures a randomization method is used. It yields 
transient state probabilities, expected values of cumulative sums as well as probability distributions. For 
the distribution of the accumulated reward during a fixed time interval, a randomization procedure has been 
developed that utilizes so-called path truncation to keep memory and CPU requirements small [68]. Also, 
for all the above measures, rate and impulse rewards can be combined. 

For all the analytical and numerical techniques counts that they use what is called a reduced base model 

for their analysis. It hereby makes use of the structure of the model, in terms of submodels, joins and 
replications. In this way, state space reductions of several orders of magnitude can be achieved [82], thus 
allowing for real applications to be modelled and solved numerically. The so-called stochastic well-formed 
nets (SWFNs) [ 131 can be regarded as a special case of the hierarchical modelling possibilities provided 
by UltraSAN. SWFNs can be seen as a single SAN which is replicated. Also, for SWFNs, no tool support 
is.currently available. UltraSAN allows for multiple levels of such replications and also is able to combine 
different models (the join operator). 

UltraSAN also provides simulation as a method of evaluation. Both steady-state simulations and transient 
simulations are possible. By making use of the structure of the SAN model to be analyzed, very efficient 
simulation techniques have been implemented, in which a single event-list is exchanged for an event-tree 
[83]. This event-tree follows the tree-form of the model itself in terms of submodels that are iteratively 
joined and replicated. For large models, this structuring of the event-list increases the efficiency of the 
simulation. An importance sampling technique is used to speed up the simulations [65]. 

Model input and output. UltraSAN makes use of a graphical interface. The SAN submodels are input 
with the SAN editor. The timings associated with the activities are input via menus. The activity rates and 
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output gate functions are described in C. Once the submodels are defined they can be composed into an 
overall model with the graphical composed-model editor. Subeditors for the join and replicate functions 
are provided. The performability measures of interest are specified using a measure editor. 

Once a model is totally specified UltraSAN generates a solution program which upon execution yields 

the desired measures in tabular form. The generated program can be a simulation program or a program 
for any of the included numerical techniques. 

Instead of generating a single executable which, upon execution, solves the model, also a multiple run 
option is provided. This allows the modeller to define series of experiments by defining global variables 
and indicating their value-ranges. In the SAN definitions, references to these variables can be made. For 
every possible combination of parameter values, UltraSAN generates the corresponding solution program. 
These solution programs are then executed on a cluster of workstations in parallel. This allows for the easy 
and fast execution of parametric studies. 

GMTFjtting. With UltraSAN the modelling activities totally take place at the SAN level, i.e. we have 
Ft -modelling. The output is given in a form that can be understood at the level of model description, i.e. in 
the Rl -domain. Thus, Vt -evaluations can certainly be done with the tool. Since UltraSAN allows for the 
easy construction of hierarchical models, higher-level evaluations are also possible. The rewards are input 
at the SAN level and need to be expressed as a general C function over the markings and/or the activity 
completions. Consequently, the rewards are not derived from a performance model (see the comments made 
with Metasan). Thus, Vi-evaluations (i 2 1) are possible with UltraSAN. 

Evaluation. UltraSAN provides a very general framework for building pet-formability models. The tool 
supports a wide variety of numerical and simulative evaluation techniques. Since performance aspects as 
well as dependability aspects are dealt with, the potential of the tool is very large. The multiple run option 
allows for an easy execution of parametric studies. 

4.11. surf2 

Surf-2 has been developed at LAAS-CNRS as a high-level tool for dependability and performability 
evaluation [6] as a successor to Surf [18]. It has been implemented for SUN 4 systems running UNIX, 
using the languages C and ADA. 

Model class and evaluation techniques. Models can either be Markov reward models or GSPNs. The lat- 
ter models are automatically transformed to the former before the analysis is started. Steady-state measures, 
transient measures and MRTA-measures can be derived by the tool. Which techniques are implemented is 
unclear from [6]. 

Model input and output. Both the Markov reward models and the GSPNs are input graphically. Output 
can be represented using a so-called result formatter which allows for the graphical representation of 
the results. As with UltraSAN (version 2), in the model definitions one can refer to global variables. By 
specifying the range of these variables, one can easily do series of analyses which, in combination with the 
result formatter, allow for the easy derivation of graphs. 

GMTF$tting. Surf-2 allows for Vu-evaluations when the Markov reward model input is chosen and for 
Vt-evaluations when the GSPN input option is chosen. Rewards are specified as a general function over 
the markings, i.e. not model based. In total, Vl evaluations are possible. 

Evaluation. Surf-2 is a powerful tool for the execution of series of dependability and performability 
analyses. Based on the powerful GSPN concept every required model can be made. Graphical input and 
output eases the modelling task. A limited set of measures can be derived. 
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4.12. DyQNtool+ 

The tool DyQNtool+ has been designed by Haverkort [39] at the University of Twente, as a successor to 
DyQNtool[36]. DyQNtool+ has been implemented on SUN 4 systems (UNIX), using the C programming 

language. For its operation, it makes use of the packages SPNP and Sharpe. 
Model class and evaluation techniques. DyQNtool+ is based on Markov reward models. As with DyQN- 

tool, the models are specified along the lines of the dynamic queueing network concept [34,35]. Basically, 
these are queueing networks that have been specified up to some parameters which are varying in time. 
The performance aspects of the model are described by this parametrized queueing network. The actual 
parameter values are a function @ of the marking of the SPN that describes the dependability aspects. The 
function @ can be fairly general, allowing for case recognition, etc. The generation of the Markov chain 
from the SPN description, the application of the function @ and the subsequent substitution in and solution 
of the queueing network models proceed completely automatically. 

The class of Markov chains that can be used is the same as the class that can be used by SPNP since the 
SPN-part of the dynamic queueing network models is handled by that package. For the rewards, all kinds 
of performance measures can be used, as long as they can be derived from “Sharpe queueing networks” (or 
are a function of such values). The function @, which maps the markings of the stochastic Petri net to the 
parameters of the queueing network model, can be any C function. 

The Markov chain derived by SPNP and the rewards derived via multiple performance analyses performed 
by Sharpe are combined to derive steady-state, transient and cumulative performability measures. For this 
purpose, the steady-state and transient probabilities and the cumulative state residence times are derived 
by SPNP. 

Model input und output. The input to DyQNtool+ are a number of C files. First, there is the CSPL 
description of the dependability model, directly usable by SPNP. Secondly, there is the description of the 
parametrized queueing network as a set of special C function calls. When this description is executed, it 
generates code for Sharpe. Thirdly, there is the C file describing the mapping from the SPN markings to the 
queueing network parameters. Finally, also by some special C function calls, the performance measures to 
be used as rewards are specified. 

Given the above files, DyQNtool+ generates the underlying Markov chain and the necessary Sharpe 
performance models. It then solves these performance models using Sharpe and combines them with the 
state probabilities (or residence times) derived by SPNP. It finally presents the output in terms of tables. 

GMTF jtting. With DyQNtool+ the performability models are completely specified at a level higher 
than the Markov reward model level, i.e. as with Penpet and Numas, also the rewards are derived from a 
model. The tool therefore allows for Fl-modelling. The final results are presented in a way that can be 
understood without knowledge of the underlying Markov reward model. Therefore, DyQNtool+ is a tool 
that allows for Vl -evaluations. 

Evaluation. DyQNtool+ is based on the concept of dynamic queueing networks. As such, it is based on 
a framework in which both the dependability and the performance aspects as well as their interdependence 
are formally specified. The limitation to “Sharpe queueing networks ” is of a practical nature and not 
fundamental; moreover, it might even be considered to allow for the inclusion of other modelling options 
of Sharpe for the derivation of rewards. The derivation of large models becomes relatively easy with 
DyQNtool+; the “hand work” needed to upgrade a Markovian dependability model to a Markov reward 
model suited for performability analysis is done totally automatically. 
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5. Summary and outlook 

Due to the advent of fault-tolerant and distributed computer and communication systems, the interest in 
the combined performance and dependability modelling has steadily increased over the last decade. Many 

mathematical techniques have been developed to derive various measures from Markov reward models 
which form the basis of almost all per-formability models. We have briefly discussed these measures and 
models in Section 2 and provided many references to more detailed literature. 

For evaluation techniques to be used, software tools are needed. We have introduced a general modelling 
tool framework in Section 3 that can guide the design of and the thinking about tools. From this framework, 
some general rules for the structuring of performability software tools can be derived: 
(1) a modelling tool should optimally be adaptable to higher levels of abstraction, i.e. it should be possible 

to tailor the input formalism (and the output formalism) to specific application areas; 

(2) lower level representations of models should be as transparent as possible; 
(3) a modelling tool should have an input and an output formalism that are balanced, i.e. the output should 

be understandable when no more than the highest level model input is known. 

We then, in Section 4, evaluated 12 software tools that can be used for pet-formability modelling and 
analysis. From this survey, which was presented in historical order, we can conclude that: 
(1) over the years there has been a shift from lower-level model formalisms, i.e. normally the Markov 

reward models, to higher-level formalisms; 
(2) this shift is still more apparent in the dependability model part than in the performance model part and 

the output part; 
(3) only the tools Numas, Penpet and DyQNtool+ automatically derive and insert the rewards from a 

model; with Sharpe a similar functionality can be obtained, albeit in a more cumbersome way; 
(4) in some tools, the rewards can be specified “at the net level”, i.e. SPNP, UltraSAN and Surf-2, however, 

only as a general C function and not via a model; 
(5) tools based on net models (Metasan, Penpet, UltraSAN, Surf-2) have proven to be the very flexible and 

generally applicable for performability modelling; 
(6) the object-oriented approach towards systems modelling seems to be very general and easy extendible, 

since it is open ended towards various modelling approaches. 
There is still a lot of work to do in the field of performability modelling and analysis. Recently, Meyer [58] 
indicated quite a large number of future work areas in the field of performability. Without repeating them all 
here, we just emphasize some important research areas that are especially related to tools for pet-formability. 
Without trying to be exhaustive, we think that research is needed in the following directions: 
(1) more tool support for hierarchical per-formability modelling formalisms that allows users to tailor their 

tool towards their specific application domains; 
(2) tool support for the high-level specification of the rewards to be used in and the measures to be derived 

from these models; 
(3) techniques to exploit the similarity in the series of performance models to be solved for obtaining the 

rewards; 
(4) tool support for automatically handling large models, e.g. by using (approximate) truncation heuristics 

[37,89], exact lumping techniques [20], state space aggregation techniques [63], folding techniques 
[43] or fixed-point iteration techniques [14,17]. 
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