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ABSTRACT: A transient network model is described for a polymeric system consisting of linear chains,
connected with temporary cross-links. The model is a reformulation and extension of a similar model
which was presented recently [Wientjes, R. H. W.; Jongschaap, R. J. J.; Duits, M. H. G.; Mellema, J. A
new transient network model for associative polymer networks. J. Rheol. 1999, 43, 375-391]. Contrary
to common transient network models the interconnection between segments is explicitly taken into account.
The dynamics of the system is also described by the state of a whole chain, instead of separate segments.
As a result a prediction of the shape of relaxation spectra is possible. The model predicts broad spectra
with long relaxation times, in particular for chains with many stickers. In the present formulation also
systems with multiple types of stickers can be treated. In that case, plateau regions in dynamic moduli
may appear.

1. Introduction
Transient network models are an important class of

models, developed to describe the rheological behavior
of polymer melts and solutions. The transient network
concept was first proposed by Green and Tobolsky,3 put
in a tensorial format by Lodge8 and Yamamoto,16 and
developed further by many others (see the book1 for a
review). Lately, there are a number of new develop-
ments in transient network models. First are improve-
ments in order to describe nonlinear flow behavior,10

then simulations, which have become an important tool
for the investigation of transient networks,4,13 and
finally a combined transient network and reptation
theory in the sticky reptation models of Rubinstein et
al.6,11,12

Although the transient network concept was prima-
rily developed to model entanglement in polymeric
systems, the model may also be used to model the
dynamics of weak gels, consisting of a network of chains
with reversible cross-links. In the present paper we
propose a new transient network model for this type of
systems.

A special feature of this model is that the network
segments are not treated as independent. Instead, the
interconnection of segments in a chain is taken into
account explicitly. As a result the present theory allows
the prediction of relaxation spectra. This is fundamen-
tally different from ordinary transient network models,
where relaxation spectra are introduced by using the
ad hoc concept of complexity of segments. Although a
general constitutive equation is derived (eq 19 below),
we will concentrate here on the linear viscoelastic
behavior. In a recent paper,14 we published a model
based upon the same principles. In our present paper,
the mathematical analysis, however, is reformulated
and extended. We improve an assumption in our earlier
paper about the stress contribution of newly created
segments. As a result we now obtain different predic-
tions. In the new formulation, we are able to treat also
the case of multiple types of stickers. This turns out to
be of significant influence.

2. Model
We consider a system of linear flexible polymer chains

with on each chain (see Figure 1) a finite number of
stickers that can associate to form reversible cross-links.
As a result, the whole system acts as a reversible gel of
multiple connected chains. The stickers can exist in one
of two states: free and fixed. The connection state of
the whole chain will be specified by a variable s which
determines the states of all stickers along a chain. The
parts of a chain between stickers are called segments.
All segments are equal and modeled by linear entropic
springs. Segments which carry stress are called active.
To specify the state of a segment i in a chain in state s
we use a parameter νs

i defined as

This is not a dynamic variable but a constant which
determines unambiguously the state of all segments for
any value of the state variable s.

The environment of a chain is treated for the active
segments as a tube, which prevents motions perpen-
dicular to it. This tube constraint is similar to the one
used in reptation dynamics.2 In the present model,* To whom correspondence should be addressed.

Figure 1. Chain with free and fixed stickers and active and
inactive segments.

νs
i ) 1 S segment i active in state s

νs
i ) 0 S segment i inactive in state s (1)
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contrary to the so-called sticky reptation models,6
however, there is no motion of the chain along the tube.
The main purpose of the tube is to retain the direction
of active segments as long as they remain active, even
when adjacent stickers are free. A transition of a sticker
from fixed to free results only in a loss of tension in an
adjacent segment if in that transition the segment
becomes inactive. If, for example, the sticker in the
middle of the chain in the fifth state displayed in Figure
2 becomes free, no change of stress takes place in the
adjacent segments. If this occurs in the sixth state of
the same figure, the stress in the segment left to that
sticker will be released. This is a cooperative effect
which is specific for our model and results in relatively
long times in the stress relaxation spectrum. The
nonactive segments are assumed to be always in their
equilibrium distribution. This is similar to the common
assumption of transient network theories,7 that seg-
ments are created in the equilibrium distribution. This
assumption which is obviously an oversimplification is
retained to keep the analysis relatively simple. If a
nonactive segment becomes active, its contribution to
the stress is determined by its subsequent motion. The
total contribution of active segments i in a state s is
determined by the distribution function ψs

i. In the next
section the coupled set of evolution equations by which
the segment distribution functions are determined will
be discussed. This is an improvement on our earlier
paper,14 where it was assumed that the distribution
function of active segments was dependent only of the
state s.

3. Evolution Equations
Like in classical transient network theory7,16 the

rheological properties of the system are determined by
the creation, loss, and motion of segments. Of primary
interest are the evolution in time of the density Ψs

i(qi,t)
of chain segments number i of a chain in state s in an
infinitesimal three-dimensional volume element d3qi in
the segment-configuration space, and the number den-
sity ns of chains in state s. We also define a one-chain
probability density ψs

i by

The evolution equation of segments is assumed to be

The first term in the right-hand side is the convective
part. Because of the factor νs

i this term is nonzero only
for active segments, in accordance with the assumption
that the inactive segments are always in equilibrium.
The motion q3 of the active segments is assumed to be
affine, so

where L ) (∇v)T, the velocity gradient tensor.
The last term in eq 3 defines the kinetic contributions.

As′s is the transition rate of a chain for transition from
state s to state s′.

By integration of eq 3 a rate equation for ns, the
density of chains in state s, is obtained:

This kind of gain-loss equation is called a master
equation.5 For the transition probabilities it can be
proved9 that

This allows us to write eq 5 in a more compact form:

Here the summation over s′ extends over the whole
range of states, including s′ ) s.

From eqs 2, 3, and 5 we obtain for the one-chain
distribution function ψs

i

and by multiplication with νs
i, using the identity νs

i νs
i )

νs
i (no summation) and separating in the last term

contributions with segment i active and contributions
with segment i inactive in the state s′ and using our
model assumption that free segments are always in the
equilibrium distribution ψ0, after some rearrangement
the following evolution equation for ψs

i:

The first summation are transitions from inactive to
active; the second summation transitions from active to
active segments.

4. Constitutive Equation
The macroscopic stress tensor T is the sum of contri-

butions of the active segments, so

Figure 2. Change of state of segments due to changes of the
state of stickers along the chain. A transition of a sticker from
fixed to free results only in a loss of tension segment if that
sticker defines the terminus of a succession of active segments.
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where

with κ the segments-spring constant,

the second moment of the segment distribution function
ψs

i, and S0 the equilibrium value

This is essentially the so-called Kramers form1 of the
polymer contribution to the stress tensor.

To obtain this result, the force in an active segment
with a segment vector qi of a chain in state s has been
taken to be

This is an approximation. In fact, for a series of
connected active segments, with free stickers at the
interconnections, due to equilibration of forces, the force
in all segments will be the same. This force will depend
on the total extension of these segments. Moreover, the
free stickers will also move from the positions deter-
mined by the assumption of affine motion and no longer
coincide with the connections between the tube ele-
ments. To include this in an analytical formulation of
our model, if possible, would be very cumbersome. We
expect, however, that eq 14 can be used as an ap-
proximation for the spring forces and that the free
stickers always follow the positions, determined by the
assumed affine motion. At least, in a treatment of linear
viscoelastic behavior, which is the main issue of our
present paper, these approximations are expected to be
sufficient.

From eqs 9, 12, and 13 the following evolution
equation for Ss

i is obtained

where δ/δt is an upper convective derivative (so
δ/δtS0 ) -2kT/κD) and

with

We refer to Appendix A for details of the derivation of
these results.

From eqs 15 and 18 the following differential equation
for Ts

i is obtained:

With eqs 16 and 17 this may also be written as

The equations eqs 7, 10 and 18 or 19 provide a complete
set of constitutive equations of the model. We see that
the constitutive behavior is determined mainly by the
matrix Ass′ of transition rate coefficients which deter-
mines by eq 7 the rate of change of number densities of
the states ns of the chains and the matrices âss′

i or Bss′
i

occurring in the stress tensor expressions. The matrices
âss′

i or Bss′
i also contain information about the chain

connectivity in the matrix νs
i. Because of these features

the present model is able to give more detailed predic-
tions about, in particular the linear viscoelastic behavior
of the system than the common transient network
models. In the next section, we will discuss in some
detail how in our model the relaxation spectra are
predicted explicitly.

5. Linear Viscoelastic Behavior
For the analysis of linear viscoelastic response we use

a linearized version of eq 19 with an ordinary time
derivative and for all ns the equilibrium values: ns

0.
Instead of the whole stress tensor, we only consider the
shear stress component τ ) T12. In a one-dimensional
representation, the differential equation for the contri-
butions τs

i to the stress τ ) ∑s∑iνs
i τs

i then becomes

If all eigenvalues of the matrix [Bi] are distinct, the
following transformations can be used to decouple the
equations in eq 20

Then eq 20 becomes

Fourier transformation gives

with the relaxation times

After transformation to the original variables we finally
obtain

with
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i (10)
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i ) Pst
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i ,b2

i ,...,) (21)

τ̃s
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i-1 τs′
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i τ̃s
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Pss′
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i )
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i
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i
∑
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The corresponding storage and loss moduli are

5.1. The Matrixes A and ν. To apply the results
derived in the previous section, we need explicit expres-
sions for the elements of the matrices Ass′ and νs

i. To
that end a consistent numbering of stickers, segments,
and states is needed, and we will use a scheme based
upon the binary representation of numbers. The state
number s will be chosen such that the digits 1 in its
binary representation correspond to fixed and digits 0
to free stickers. In Figure 3 this is illustrated for eight
states of a chain of three segments. In accordance with
this numbering, we will also number the segments from
right to left so for a state with state number s such that
2k+1 < s < 2k the highest value of the number of a fixed
sticker is k. Noting that for states with an odd value of
the state number s the right-end sticker is fixed and
that multiplication of s by a factor 2j corresponds to shift
of the pattern of free and fixed stickers with j steps to
the left we see that for states with 2k+1 < s and s ) m2j

where m is an odd number, the segments with numbers
between j and k are active. In this way the nonzero
values of the matrix νs

i are readily obtained.
Next, the transition matrix Ass′ has to be constructed.

To that end we define a matrix

where g is the transition rate for transition of a sticker
from free to fixed and h the transition rate for transition
of a sticker from fixed to free.

For the two states of a “chain” consisting of one
sticker, by using eq 6, we obtain for the transition
matrix

By making use of the Kronecker product

the A matrix for the case of two stickers is obtained in
a similar manner:

In general

where KXN denotes an n-fold Kronecker product. Ex-
pressions for higher order ν and A matrices are readily
constructed numerically with algorithms based upon
these rules.

A similar procedure is possible for systems with
different types of stickers if they are arranged in some
regular pattern which is repeated along the chain. In
that case the same procedure is valid, with the only
difference that instead of the 2 × 2 matrix K a bigger
matrix has to be used as building blocks for the A
matrix.

5.2. Examples. We will show now some examples of
predictions of linear viscoelastic behavior according to
the present model. A drawback of the method, outlined
above, is that the number of states increases rapidly
with the number of stickers and a considerable amount
of computer time and memory is required for the
analysis. This may be reduced eventually by making use
of special algorithms, but at present we only performed
calculations for relatively few stickers. This, however
is sufficient to illustrate some characteristic features of
the model.

We use a chain with up to eight stickers. First the
case of equal stickers will be discussed and after that
also the case of a chain with two types of stickers.
Finally, we also use a different method, namely a
straightforward simulation of the creation, loss and
deformation according to the present model for an
ensemble of chains. In this way also results for larger
numbers of stickers can be obtained.

For the creation and loss rates g and h we use an
Arrhenius type of equation

where R-1 is a characteristic time, k is the Boltzmann
constant, T is the absolute temperature, and the index
t ) g is used for creation and t ) h is used for loss
processes. For the calculations we take R ) 1 and
express the activation energies Et in units kT. The
results shown here are renormalized to the number of
segments per chain. In Figure 4 the relaxation spectrum
is given for the cases of 5 and 8 stickers with Eg ) 3
and Eh ) 5 as calculated with eq 21, 25, and 27. We see
that the spectrum is relatively wide and we also note
the rapid growth of the number of relaxation times with

Figure 3. State numbers s of states for the case of a chain
with three segments.

Gs′
i ) kT ∑

s
∑
s′′

νs
i Pss′

i Ps′s′′
i-1 ns′′
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K ) [1 g
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A(1) ) [-h g
h -g ] (31)

K X K ) [1 g g g2

h 1 gh g
h gh 1 g
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] (32)
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increasing N. In particular, for the case of eight stickers,
it can be seen that the relaxation times can be divided
into two groups of relaxation processes. The largest
relaxation times are about 2 × 104, which correspond
to relaxation process where two bonds breakup simul-
taneously. The second group is the group around 1 ×
102, which is the breakup time of one sticker. This group
consist of many different relaxation times, divided into
two subgroups. First, there is the relaxation process
where chain segments relax after a process of breakup
of several stickers in succession. The corresponding
relaxation time grows roughly in a linear way with the
number of bonds that have to break for such a process.
Second, there are often various ways for the same
number of bonds to break (either simultaneously or in
succession). This will cause the relaxation time to be
proportional to the number of possible ways of breaking.
In Figure 5 the moduli G′ and G′′ are given for a chain
of five stickers, a creation energy of Eg ) 5, and three
different values of the loss energy, Eh ) 3, 5, and 7. We
note (in particular for high values of Eh) the relatively
flat slope in the low-frequency region of the moduli
curves, which is an indication of a broad spectrum. We
see that the value of the plateau modulus increases for
higher values of Eh. This is also what should be
expected, since a high value of Eh implies a longer
average lifetime of the chains, which means higher
stresses. For higher values of Eh we also see a shift of
the curves to the left, which corresponds to longer
relaxation times. This is also in accordance with the
longer lifetimes of the chains. In Figure 6 the viscoelas-
tic moduli are presented for the case that Eg ) Eh ) 5

and three different values of N: N ) 3, 5, and 7. We see
a strong increase of the moduli values with the number
of stickers. This is characteristic of the present model
where the connectivity of the chains is taken into
account. If a sticker becomes free, this will not always
mean a loss of stress. Only for stickers that terminate
a succession of active segments is such the case. The
probability of such an occurrence does not depend on
N, but for larger N the fraction of such stickers is simply
smaller. This increase in the number of multiconnected
states for higher N also contributes to shift the relax-
ation spectrum to larger times; this causes the shift of
curves to the left. Roughly the mean relaxation time
scales with the number of stickers. In Figure 7 the effect
of different types of stickers is illustrated. Here we
consider the viscoelastic moduli for the case of two type
of stickers: strong Eg ) 10, Eh ) 2 and weak Eg ) 5,
Eh ) 1 for the cases Eh ) 3, 5, and 7. We see that in
this manner it is possible to obtain G′ curves with
different plateaus and G′′ curves with multiple maxima.

Although the example here is given to show some
features of our model, it should be noted that application
for the case of two types of stickers is part of our current
research on the rheological behavior of guar gum
solutions.15

Again, we see for higher values of Eh larger moduli
and a shift of the curves to longer time ranges.

In Figure 8 the results of direct simulations are
compared with the results obtained with the analytical
method discussed above. In this simulation, the relax-

Figure 4. Relaxation spectra Eg ) 3, Eh ) 5: (b) N ) 5;
(+) N ) 8.

Figure 5. Viscoelastic moduli for 5 stickers per chain and
Eg ) 5, open symbols designate G′′, closed symbols G′, Eh ) 3
(O), Eh ) 5 (4), and Eh ) 7 (]).

Figure 6. Viscoelastic moduli for Eg ) 5 and Eh ) 5. Open
symbols designate G′′ and closed symbols G′: (O) N ) 3;
(4) N ) 5; (]) N ) 7.

Figure 7. Two types of stickers, N ) 6, Eg weak ) 5, Eg strong )
10: (b) Eh weak ) 3, Eh strong ) 6; (2) Eh weak ) 5, Eh strong ) 10;
([) Eh weak ) 7, Eh strong ) 14.
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ation spectrum is obtained from single chain simula-
tions. During these simulations, the lengths and orien-
tations of chain segments are kept constant. This is
allowed, since the linear relaxation behavior is deter-
mined only by the breakup and formation of bonds. A
step strain experiment is simulated: a chain, randomly
placed in a given state performs a virtual step strain.
As a consequence all active chain segments obtain a
given extension and orientation and a given stress.

During a simulation time step, the stickers have a
given probability, determined by the activation energies,
to change their state (free, fixed). By this process,
particular chain segments become inactive and lose
their preferred orientation and stress. When chain
segments become inactive the corresponding relaxation
time and number of segments that becomes inactive is
stored. In the stress relaxation experiment. inactive
segments will not contribute to the stress any more,
even if they become active again. The process of chang-
ing states of stickers is repeated until all stress contri-
butions are lost. The simulation is repeated for many
randomly chosen chains and the time values and stress
losses of the various chains are collected. In this way,
the relaxation spectrum is obtained.

We see significant differences with the analytical
results, in particular over a long time range. These
difference are caused by errors, due to the relatively
small number (typically 100) of chains used in the
simulations. On the other hand, the simulation results
still give a reasonable approximation of the magnitude
and shape of G′. This offers the possibility to extend the
range of N values. This is illustrated in Figures 9 and
10 for the storage modulus G′ for the cases of one and
two types of stickers and N ) 2, 4, 8, and 16.

Note that in Figure 10 two plateaus are visible for
the case of two stickers. This is a result of the random
placement of strong and weak stickers. Sometimes a
chain with two strong stickers is simulated, and then
the relaxation time becomes large. In the analytical
solution, the plateau at low frequencies would not be
present here. For a large number of stickers, the
difference between the one and two type sticker behav-
ior becomes less. However the behavior in the case of
one sticker remains smooth compared to the case of two
stickers.

6. Concluding Remarks

In this paper, a network model is presented which is
essentially different from common transient network

models in the sense that the stress release in segments
is treated as a cooperative process. If a sticker becomes
free, the stress in the adjacent segments is not always
released; this will happen only for segments which
become free in the sense indicated in Figure 1. In other
cases, the stress in the segment will remain the same.
Physically this leads to broad spectra with long relax-
ation times, in particular for chains with many seg-
ments. This is qualitatively in accordance with the
observed behavior of polymer gels.

Formally, the dynamics of the system is primarily
described by the state s of the whole chain, and not, as
in ordinary transient network models, by the state of
independent segments. A drawback of this representa-
tion is that the number of states increases rapidly with
the number of stickers, so with modest computing
resources, only chains with relatively few stickers can
be analyzed. For that case, as has been shown in the
previous section, the main features of the model can
already be demonstrated adequately. We have discussed
the linear viscoelastic behavior of the chain with up to
eight stickers for a few values for the creation and loss
rates. It has been shown that the model predicts a wide
relaxation spectrum with a shape determined by the
underlying kinetics. This is essentially different from
ordinary transient network models, where the shape of
the relaxation spectrum is introduced ad hoc by the
concept of complexity7 of segments.

The shape of the spectrum alters if different types of
stickers are introduced. We have seen how in that case

Figure 8. Comparison of simulation and analytical results
N ) 6, Eg ) 5, Eh ) 5: (+) analytical; (b) simulation.

Figure 9. Simulation results for one type of stickers, Eg ) 5,
Eh ) 5: (b) N ) 2; (2) N ) 4; ([) N ) 8; (]) N ) 16.

Figure 10. Simulation results for two type of stickers, random
placement of strong and weak stickers (1:1), Eg weak ) 5,
Eh weak ) 5, Eg strong ) 10, Eh strong ) 10: (b) N ) 2; (2) N ) 4;
([) N ) 8; (]) N ) 16.
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plateau regions in the dynamic viscoelastic moduli may
appear. This feature may be used by the modeling of
particular systems such as gels of biopolymers. In an
earlier paper,14 moduli with plateau values were also
obtained for the case of one type of stickers. This,
however appears to be the result of the crude ap-
proximations in the mathematical analysis, which have
been improved in the present formulation.

In the work of Leibler, Rubinstein, and Colby6 [LRC]
the dynamics of a temporary network with reversible
cross-links is described by a sticky reptation model. In
the LRC model, a reptational diffusion takes place if
parts of the chain become free (in an earlier treatment
of Gonzalez,3 it was required for a reptation step that
the whole chain was free). Stress relaxation is modeled
as in classical reptation theory and takes place at a
characteristic time Td, the disengagement time of the
whole chain. Two important time scales in the LRC
model also are the average lifetime τ of the stickers and
the disengagement time Td. As a result the model
predicts essentially two plateau regions in G′(ω).

Our model is in a sense complementary to the LRC
model. We neglect reptation completely and attribute
the stress relaxation solely to the stress release in free
segments at the chain ends, which is assumed to be
instantaneous. We assume that in a transient gel this
mechanism of stress release is far more important than
the slow stress relaxation due to (sticky) reptation and
that the only fundamental process is the creation and
loss of individual stickers. Interconnection of segments
is taken into account and that the relaxation spectrum
is derived explicitly. As a result, our model (for one type
of stickers) predicts no extra plateau region in G′(ω) but
only a broadening for frequencies below the character-
istic time of the stickers, whereas the LRC model
predicts a plateau between this region and frequencies
corresponding to the reptation (disengagement) time
scale. The first part of the LRC relaxation spectrum
(belonging to their characteristic time τ) is independent
of the molecular weight. We, on the other hand, find a
relaxation spectrum which strongly depends on the
number of stickers and also of the molecular weight.

It should be noted also that currently no explicit
derivation of relaxation behavior based upon the sticky
reptation model is available. The LRC model provides
a detailed analysis of the diffusion of the chain along
the tube but only a crude estimation of the of the
relaxation behavior, based upon classical reptation
theory and the obtained results for the characteristic
time scales. A rigorous treatment should be based upon
the stress contributions in the chain segments.

Finally if should be noted that contrary to LRC, our
model, although based upon rather crude approxima-
tions, predicts a closed constitutive equation.

An obvious extension of our present model is an
analysis of nonlinear rheological behavior. This will not
be undertaken, however, in this paper. The advantage
of our present analysis of linear viscoelastic behavior
is that some specific results are obtained, with only a
few a model assumptions.

As in classical network theory, the extension to the
nonlinear regime may proceed by introducing (rate of)
strain or stress dependent creation and loss rates,
nonaffine motion, etc. This is possible, in principle, but
this requires the introduction of extra model param-
eters. On the other hand, it should be noted that the

fact that we are able to derive an explicit analytical
constitutive equation provides at least a starting point
for nonlinear constitutive modeling. In approaches such
as the LRC model, where no constitutive equation is
derived, such is impossible.

Instead of phenomenological and empirical constitu-
tive modeling, we would prefer however to extend the
numerical treatment used in connection with our Fig-
ures 9 and 10. In that treatment, physically realistic
properties can be attributed to individual stickers and
also more realistic segment force laws than our eq 17
can be introduced. The only price that has to be paid
here is that with such modifications the model will be
no longer have a closed analytical form. Such, however,
is an exception in rheological modeling, anyhow.

Additional refinement of the model is possible. In
particular, the assumption that released segments
transfer instantaneously into their equilibrium state is
rather artificial. It would be more realistic to introduce
here some kind of reptation time for the chain ends.
Although such is probably possible, we did not introduce
this. The assumption is in the spirit of classical tran-
sient network theory, moreover, since the main contri-
bution to the stress is due to the active segments, and
thus, we do not expect a substantial improvement of the
model by this refinement.

Other modifications could be introduced: the intro-
duction of additional mechanisms such as stress release,
nonaffine motion, etc. We still believe, however, that the
basis principles as outlined in this paper are the
essential elements describing the linear viscoelastic
behavior of weak polymer gels.

Appendix A. Derivation of equation eq 15
By eqs 9, 12, and 13
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where δ/δt is an upper convective derivative (so
(δ/δt)S0 ) -2(kT/κ)D) and
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