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Summary: We discuss the identification of multiple input, multiple output, discrete-
time bilinear state space systems. We consider two identification problems. In the first
case, the input to the system is a measurable white noise sequence. We show that it is
possible to identify the system by solving a nonlinear optimization problem. The
number of parameters in this optimization problem can be reduced by exploiting the
principle of separable least squares. A subspace-based algorithm can be used to gener-
ate initial estimates for this nonlinear identification procedure. In the second case, the
input to the system is not measurable. This makes it a much more difficult identifica-
tion problem than the case with known inputs. At present, we can only solve this
problem for a certain class of single input, single output bilinear state space systems,
namely bilinear systems in phase variable form.

1 Introduction

Most real-life systems, including physical and biological systems show
nonlinear dynamical behavior. Their behavior in time depends not only on
the inputs to the system, but also on the state of the system. The state
completely describes the time history of the system. It describes the influ-
ence of past inputs and outputs on the current output of the system. The
output of the system at a certain time instant is completely described by
its state and inputs at that time instant. A mathematical model of a non-
linear dynamical system that takes the state of the system into account is
called a nonlinear state space model. It can be described as follows:

xk�1 � f �xk; uk�
yk � h�xk�



where yk 2Rl is the output of the system, uk 2Rm the input of the system,
xk the state of the system, f : X�Rm ! X is a smooth one-to-one function
having a smooth inverse and h : X !R a smooth function. Note that this
model is a discrete-time model with k denoting time. Although in real-life,
systems almost always behave continuously in time, in practice the mea-
surements of the system are sampled leading to discrete time signals. In
this paper we will therefore only consider discrete-time models.
To obtain a state space model of a nonlinear dynamical systems, we have
to estimate the mappings f and h using only measurements of the system's
output and possibly measurements of the input. In other words, we have
to identify the system.
One approach to estimate a model is to use a model structure that can be
considered as general approximator to the mappings f and h. Implementa-
tions of this approach are, among others, neural networks, radial basis
function networks, and local linear models. For a general overview see SjoÈ -
berg et al. [1]. Due the complex structure of these models, they can be dif-
ficult to identify and analyze. In estimating most of these models a non-
convex nonlinear optimization problem has to be solved. However, with
some engineering work, often very good results can be obtained with
these models.
Another approach is to choose a certain simple structure for the model.
Sometimes available knowledge about the system can be used to choose
this structure. In other cases a certain simple structure is chosen because
it provides a reasonable approximation and is easy to identify and ana-
lyze. An example of a simple structure is a linear state space model. In a
number of real-life application these models have proven to yield satis-
factory performance. A linear state space model has the following struc-
ture

xk�1 � Axk � Buk

yk � Cxk �Duk

were xk 2Rn is the state. In this paper we focus on bilinear state space
models. These models are a simple nonlinear extension of the linear mod-
els and have the following structure

xk�1 � Axk � F�uk 
 xk� � Buk �1�

yk � Cxk �Duk �2�
where 
 denotes the Kronecker product. Note that the bilinear term can
also be written as

F�uk 
 xk� �
Xm

i�1

Fi�uk�i xk
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where ���i denotes the ith entry and the matrix F has been partitioned as
F �: �F1 F2 � � �Fm� with Fi 2Rn�n. The bilinear system got its name from
the fact that if you fix the input the system is linear in the state and if you
fix the state it is linear in the input. Bilinear models are capable of model-
ling certain nonlinear dynamics, while having a relatively simple structure
that makes them attractive for identification and analysis. Due to the spe-
cial structure of the bilinear state space system, a lot of similarities exist
with linear state space systems [2], [3]. However, as we will show in this
paper identification of these models is not a trivial matter.
This paper is organized as follows. Section 2 describes a identification
method for bilinear state space systems with measurable inputs. In sec-
tion 3 we discuss the identification of bilinear state space systems when
the input is unmeasurable. Only for a special class of bilinear systems a so-
lution is provided.

2 Identification of Bilinear Systems with Measurable Inputs

In this section we present a method to identify the bilinear system (1)±(2).
It is assumed that the input to the system is a white noise sequence and
that the bilinear system is observable with respect to the definition used in
[4]. The difficulty in identifying a state space model is that in general the
state sequence is unknown, only measurements of the input and output are
available. We can however derive an expression for the output in terms of
the initial state of the system and the inputs. In this way, we in fact elimi-
nate the state sequence. The output at time instant k is given by

yk � C
Ykÿ1

h�1

Ahx1 �
Xkÿ1

��1

uT
s 
C

Ykÿ1

h���1

Ah

 !
vec�B� � uT

k 
 vec�D�

where

Ak :� A�
Xm

i�1

�uk�i Fi

andYk

h�j

Ah :� AkAkÿ1 � � �Ajÿ1Aj j � k
1 j > k

�
We want to write yk as a function of a set of nonlinear parameters, de-
noted by hn, and a set of linear ones, denoted by hl. Therefore, we have to
parameterize the matrices A, B, C, D and F. The matrices A and C are
parameterized in a special way. The pair �A;C� is transformed such that
the observability Gramian equals identity, and the observability matrix is
in lower triangular form with positive entries on the diagonal. From this
special form of �A;C� a balanced parameterization is calculated. This has
been explained for the SISO case in [5]. The parameterization has nl para-
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meters which are stored in hn. The matrix F is parameterized by its entries,
these n2m parameters are also stored in hn. We parameterize the matrices B
and D by their entries, we store these entries in hl.

hl :� vec�B�
vec�D�
� �

The parameterization might look a bit ad hoc. However, to the knowledge
of the authors, a balanced parameterization for discrete-time bilinear state
space systems has not been developed yet. It seems reasonable to use a ba-
lanced parameterization for linear systems to parameterize A and C, and
by lack of a better choice, to fully parameterize F.
Let us introduce the following matrices

Y1;N :� �yT
1 ; y

T
2 ; . . . ; yT

N�T

V1;N :� �vT
1 ;v

T
2 ; . . . ; vT

N�T

CN�hn� :� CT ; �CA1�T ; . . . ; C
YNÿ1

h�1

Ah

 !T
24 35T

UN�hn� :�

0 uT
1 
 Il

uT
1 
C uT

2 
 Il

..

. ..
.XNÿ1

��1

uT
� 
C

YNÿ1

h�s�1

Ah uT
N 
 Il

266666664

377777775
Now eq. (2) can be written as

Y1;N � CN�hn� x1 �UN�hn� hl

for k ranging from 1 to N. To determine hn and hl, we formulate the fol-
lowing optimization problem

min
hl ;hn

jjY1;N ÿUN�hn� hljj22
This optimization problem has a very special structure: it is linear in hl

and nonlinear in hn. To solve this problem, we can exploit the principle of
separable least squares described by Golub and Pereyra [6] to reduce the
number of parameters in the nonlinear optimization. First, we compute ĥn

by solving

min
hn

jjY1;N ÿUN�hn� UyN�hn�Y1;Njj22 �3�

where U
y
N�hn� denotes the pseudo inverse of UN�hn�. Since this optimiza-

tion problem does not have an analytical solution, we have to solve it nu-
merically. For this we use the Levenberg-Marquardt iterative procedure.
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The gradients which are needed for the Levenberg-Marquardt method, are
approximated numerically using finite differences. Although it is possible
to derive an analytical expression for these gradients, their evaluation cre-
ates a huge computational load. The algorithm is much more efficient
when the finite difference approximation is used. Second, we calculate the
linear parameters as hl � U

y
N�hn�Y1;N.

In the optimization problem (3) we have to constrain the parameters hn

such that the bilinear system corresponding to hn and hl is stable at every
iteration. Note that if the input is a white noise sequence, the system
is stable if the eigenvalues of the matrix A and of the matrix
A
 A�Pm

i�1 E��uk�2i � Fi 
 Fi have magnitudes smaller than one (E��� de-
notes statistical expected value) [7]. We deal with this constraint by intro-
ducing a simple barrier function. The object function in (3) is modified as
follows: If hn is such that the system becomes unstable, then the object
function is replaced by jjY1;Njj22.
Because of the nonlinear optimization involved, we have no guarantee of
finding the parameters corresponding to the global minimum of the error.
However, the algorithm has a good chance of converging to the global op-
timum, if we have initial estimates of A, C and F which are already close
to the original system matrices. One way to obtain initial guesses for these
matrices is to first estimate a linear model using for example subspace
identification techniques [8], [9], and then use the A and C matrices of this
model as initial guesses. For the F matrix, one can try a number of ran-
dom initializations. This procedure will only work when the dominant
part of the dynamics behaves linearly. A much better way to obtain initial
estimates of A, C and F has been described in [10]. The method described
there, is a subspace-based algorithm that is computationally efficient and
yields an estimate of the system order.
In [11] we show that the identification algorithm presented in this section
can also be used when there is measurement noise present and when there
is process noise present.
We have to mention that Favoreel et al. [12] (see also [13]) have presented
a identification method for bilinear systems with measurable white noise
inputs, that completely avoids the need for numerically solving a nonlinear
optimization problem. However, we argue in [14] that this method can
only be used for systems of low order with only a few inputs and outputs,
because of the enormous amount of memory required; the memory re-
quirements grow exponentially with the order of the system. We also pre-
sented in [14] a Monte Carlo simulation that shows that the method pre-
sented in this section yields models that are more accurate than the ones
obtained by the method of Favoreel et al.
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3 Identification of Bilinear Systems with Unmeasurable Inputs

In this section we discuss the identification of the bilinear system (1)±(2)
when the input is an unmeasurable white noise sequence. It is assumed
that the bilinear system is observable with respect to the definition used in
[4]. When the input is not measurable, the only information that is avail-
able to identify a bilinear state space model are the measurements of the
output. Compared to the case where the input is available, we have two
unknown quantities: the state sequence and the input sequence. This
makes it a much more difficult identification problem than the case with
known inputs. After reading the previous section it should be clear to the
reader that the method described there cannot be used to identify a bi-
linear system when the input is not available. In fact we are dealing with
the problem of finding a nonlinear time series model.
Let us analyze the identification problem when the input is not available.
For simplicity we assume that we are dealing with a single input and sin-
gle output, and that the matrix D equals 1. Now we can eliminate the in-
put in the state equation by substituting uk � yk ÿCxk. We obtain:

xk�1 � �Aÿ BC� xk � F�yk ÿCxk� xk � Byk �4�
What we observe is that the system becomes quadratic in the state. To find
the system matrices, we have to minimize the cost functionXN
k�1

u2
k �

XN
k�1

�yk ÿCxk�2

with respect to the matrices A, B, C, and F under the constraint that the
system (4) is stable. So we end up with a nonconvex constrained optimiza-
tion problem. There are two major problems with this optimization prob-
lem.
· It is difficult to obtain a closed expression for the output that does not

depend on the input uk. To come up with such an expression, we have
to iterate equation (4) for xk.

· It is not clear what conditions we have to impose on the matrices A, B,
C, and F such that the system (4) is stable. We cannot use the condition
used in section 2, because this requires the input uk to be white. It is
important to realize that it cannot be guaranteed that the input uk is
white during the iterations. At present, only some preliminary results
regarding stability of discrete-time quadratic systems are available. In
[15] conditions on the parameters are derived for a single input, single
output quadratic system without a cross-product between the input and
output. Unfortunately, these results not useful in our framework be-
cause in equation (4) there is a product between yk and xk and of course
xk is multivariable.

At present, we have not been able to overcome these problems.
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For a certain class of single input, single output bilinear state space sys-
tems, it is possible to derive a simple input-output model and identify the
system matrices. These systems are called bilinear systems in phase vari-
able form and have the following structured system matrices

A �
0 1 0 � � � 0
0 0 1 � � � 0
..
. ..

. ..
.

a1 a2 a3 � � � an

2664
3775 F �

0 0 � � � 0
0 0 � � � 0
..
. ..

. ..
.

f1 f2 � � � fn

2664
3775

B � 0 � � � 0 b� �T C � 1 0 � � � 0� �
Due to this special structure it is easy to determine the state sequence
from the output measurements. This simplifies the identification problem
a lot. We have that �xk�i � yk�iÿ1 ÿ uk�iÿ1 where ���i denotes the ith ele-
ment. It is easy to derive the following input-output description

yk�n �
Xn

i�1

ai�yk�iÿ1 ÿ uk�iÿ1� �
Xn

i�1

fi�yk�iÿ1 ÿ uk�iÿ1� uk � buk � uk�n

Bilinear input-output systems that have some similarity with the bilinear
state space system in phase variable form are considered in for example
[7].
To identify the system, we minimize the cost functionXNÿn

k�1

u2
k�n �

XNÿn

k�1

 
yk�n ÿ

Xn

i�1

ai�yk�iÿ1 ÿ uk�iÿ1�

ÿ
Xn

i�1

fi�yk�iÿ1 ÿ uk�iÿ1� uk ÿ buk

!2

with respect to the parameters ai, fi, and b where we take as initial condi-
tion ui � 0, i = 1, 2, . . ., n. We use the Levenberg-Marquardt iterative pro-
cedure to solve this problem. The gradients which are needed are approxi-
mated numerically using finite differences. The method is a bit ad hoc,
because we do not constrain the system to be stable during the itera-
tions.
We have no guarantee of finding the parameters corresponding to the glo-
bal minimum of uk. However, the algorithm has a good chance of conver-
ging to the global optimum, if we have good initial estimates of ai, fi, and
b. We do not have an elegant way of finding these initial estimates. One
way to obtain initial guesses of ai is to first estimate a linear model using
for example subspace identification techniques [8], [9], and then convert
the A matrix to the form described above.
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4 Conclusions

We have discussed the identification of multiple input, multiple output,
discrete-time bilinear state space systems. When the input to the system is
a measurable white noise sequence, it is possible to identify the system by
solving a nonlinear optimization problem. The dimension of the para-
meters in this optimization problem can be reduced by exploiting the prin-
ciple of separable least squares. When the input to the system is not mea-
surable, the identification problem becomes more difficult. At present, no
general solution has been found. However for a certain class of single in-
put, single output bilinear state space systems, namely bilinear systems in
phase variable form, it is possible to derive a simple identification algo-
rithm.
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