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Abstract-A fundamental problem with the development of courseware is that no instruments exist which 
enable the likely performance of courseware to be estimated. For such a purpose, the construction of a 
model of computer-assisted instruction, such as a qualitative block diagram, is essential. The block 
diagram is then formalized using genera1 systems theory as a framework. The genera1 systems model is 
then transformed into a set of cooperating procedures in a computer program, which is documented with 
examples. 

INTRODUCTION 

Even though special instruments have been created to support the development of courseware, such 
as authoring languages and authoring systems[l], a fundamental problem is encountered during 
the development of courseware. It is more or less consciously realized by most courseware 
developers that no special instruments exist by means of which the likely performance of 
courseware is analysable during design[24]. This is a serious problem, for the production of 
courseware is a complex and costly process. Various sources[5,6] report development ratios of 
production time to net connect instruction time between 80 and 200. 

To meet this need to test the effects of alternative design choices at the development stage, the 
construction of a model is essential. The instructional design variables of this model can then be 
manipulated to test their impact on student performance. 

As a first step in building a model of the CA1 process, a block diagram will be constructed. 
Subsequently, this block diagram will be transformed into a connected system of adjustable units 
using General Systems Theory (GST) as a framework. In this framework, the blocks and arrows 
of the diagram will be replaced by elementary systems and system equations. 

This formal model of the courseware system under development provides the developer with a 
basis for testing the effects of implementing various design options. Finally, the GST model can 
easily be transformed into a set of cooperating 
adjustable tutorial software machine. 

procedures which can be conceived of as an 

GENERAL SYSTEMS THEORY AS A FRAMEWORK FOR MODELLING 

The construction of a model is the first step in the development of analytical tools for testing 
the likely performance of courseware under design. Block diagrams provide a graphic description 
of a system by identifying the important elements and their relationships for a given problem. 
Conceptually, the most simple model is a qualitative model or block diagram consisting of blocks 
and arrows as represented in Fig. 1. 

In the figure, the blocks refer to functional parts of the CA1 system and the arrows connecting 
the blocks indicate that there is a relationship of some kind. Tutorial schemes[7-91 can be 
considered to belong to this class of model. 

The teaching material is localized in the subject matter block. The subject matter will be 
represented by a collection of four elementary instructional frames, in a way to be described later. 
The CAI-form is considered to be a tutorial under which drill-and-practice can be subsumed. 
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Question 
Student block 

Fig. 1. Block diagram of a system-controlled tutorial CA1 system 

Furthermore, it is assumed here that the CAI-form is system-controlled; that is, the computer 
guides the learner through the instructional material. 

Typically, for tutorial CA1 a small piece of the subject matter together with one or more 
questions are presented to the student represented by the student block. The actual answer given 
by the student to a question is compared with the correct answer stored in the matching block. 
The result of the matching procedure is sent to the score block. 

The score block and the decision block interact with each other by means of a simple feedback 
mechanism. The past history of the student is collected in the score block, which is used in the 
decision block to decide how to proceed with the instruction. The next frame to be presented to 
the student is based on decision rules depending on the student score. These rules reflect part of 
the teaching strategy and establish the route the student is going to follow through a network of 
frames. The decision block determines whether or not the student score counter has to be adjusted. 

The qualitative model of Fig. 1 is inadequate for the purpose of testing the effects of alternative 
design choices at the development stage. It lacks the necessary degree of formalization, but it can 
support the construction of a formal model, which is best suited to describe the dynamic behaviour 
of complex systems with feedback phenomena and many interactions between components [ 10-l 21. 
Such a formal model can represent a connected system of adjustable units. The units are derived 
from a formal description of the blocks in Fig. 1 and they become adjustable by formalizing the 
relationships. 

Once such an adjustable tutorial system has been created, it can be used to bring together the 
appropriate instructional events. Thus the developer can analyze the likely performance of the 
courseware under design. 

To formalize the block diagram, General Systems Theory is used as a framework for a 
mathematical description of the complex [13-l 61. Here only those concepts will be considered which 
are needed to formalize the block diagram. 

SOME GENERAL SYSTEMS THEORY NOTIONS 

To classify the blocks of Fig. 1, some elementary systems will be introduced. The first is the 
well-known black box (see SC in Fig. 2), where only the relationships between the input and the 
output variables are known. 

Next is the black box with memory. In addition to the input and output variables, it possesses 
state variables (see s SC in Fig. 2), which are those variables necessary and sufficient to determine 
the output, together with the input variables. They contain the relevant past history, e.g. the raw 
score of the student. 

The last elementary system to be considered is the decision system (see DC in Fig. 2), which can 
be met both with and without state variables (see s DC in Fig. 2). Decisions are taken by 
means of if-then rules. Thus, the decision-making process becomes an automated procedure. 
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Fig. 2. Interaction between a black box, SC, with state variable s” and a decision system, DC, with state 
variable sdc. 

Elsewhere [ 17-241 the author has indicated how these decision rules can be made adaptive, by means 
of an iterative updating following each student’s response to a question. 

The following symbols will be used to indicate the system variables at time t: 

x (t ) = input variable; 
y (t ) = output variable; 
s (t ) = state variable; 
u (t ) = decision variable; 
z (t ) = information variable. 

By means of these variables the arrows of Fig. 1 can be classified. To describe the relationships 
between the arrows, it is necessary to formulate the general form of the two fundamental system 
equations: 

y (t ) =f[x (t ),s (t ),u (t )]: output equation; 
s (t + 1) = g [x (t ),s (t ),u (t )]: state equation. 

The information and decision equations, the latter standing for the decision rules, are special cases 
of the output equation; hence, they have the same general form. 

THE SUBJECT MATTER REPRESENTATION BY A COLLECTION OF FOUR 
ELEMENTARY FRAMES 

An essential role in all four elementary frames is played by the pointers, of which types I-III 
possess 2 and type IV possesses 4. A pointer refers to the next frame to be presented to the student 
after his/her response. Types I-III build up a hierarchy, by which is meant that the higher ones 
incorporate minimally all the properties of the lower ones. 

It is assumed that the subject matter is composed of frames and every frame, in turn, of levels. 
The frames are used to partition the instructional material, for instance on the basis of a task 
analysis. Every frame is of one of the four elementary types. Frames at the same level contain 
teaching material of the same difficulty, while frames at higher levels contain more difficult material. 
In this way every frame can unambiguously be indicated by both a frame and level-number. 

The first elementary frame is of type I. It consists of several questions and is specially suited to 
drill-and-practice. In this type, pointers are distinguished. An up-pointer refers to a frame at a 
higher level, while a down-pointer refers to a frame at the same or a lower level. However, not 
every student response activates a pointer and in such a case the next question in the frame is 
presented to the student. Whether or not a pointer will be activated is decided on the basis of the 
student-score in the decision block. 

In addition to all the properties of type I, the type II allows the presentation of a preceding text 
at the start of the first question. Analogous to type II, type III combines pure drill-and-practice 
and a tutorial frame. In addition to the properties of type II, this type of frame allows additional 
information about the chosen alternative to be given, depending again on the decision block. 

The final elementary frame is type IV which is somewhat different from the first three types. It 
is specially suited for pure tutorial purposes. The essential difference from the other three types 
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is that a pointer is used to relate every alternative to the next frame to be presented. In the case 
of a multiple-choice question with four alternatives this means that the ‘l’, ‘2’, ‘3’ and ‘4’ responses 
are related to the ‘A’, ‘B’, ‘C’ and ‘D’-pointers, respectively. 

Which frame is actually presented to the student depends for all four types on the past history 
of the student and the decision rules in the decision block sending steering signals to the subject 
matter block. This means that the designer has to prepare all the frames containing the instructional 
material as well as specifying all possible routes which link the frames together. Also, the designer 
has to specify the decision rules completely. The decision rules can easily be changed by the designer 
without changing the instructional material. 

FORMALIZATION OF THE BLOCK DIAGRAM USING GENERAL SYSTEMS 
THEORY 

Having introduced the elementary frames as the tools to construct the instructional material, the 
block diagram of Fig. 1 can now be formalized in terms of General Systems Theory. Each block 
and arrow will be interpreted in terms of both the elementary systems and system variables. The 
GST model is represented in Fig. 3. 

A few more arrows have been included in the GST model to complete the description. The blocks 
of Fig. 1 can be represented by the following elementary systems: 

subject matter block: black box SC. sub; 
student block: black box SC. stu; 
matching block: decision system DC. mtc; 
score block: black box SC. sco with memory P; 
decision block: decision system DC. dec with memory sdec. 

The following notation is used for each system variable: the type of the preceding block is a 
superscript and the type of the succeeding block is a subscript. Furthermore, a system variable can 
have several components, each indicated by a number. For instance, 

nltc 
u(2,t) 

SC0 

Fig. 3. GST model of a system-controlled tutorial CA1 system. 
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Declaration of 

Declaration of 

BEGIN 
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Output); 

variables described in Appendix A 

procedures described in Appendix B 

initialize (student-decision, student-history) 

WHILE NOT student-decision.terminate DO 

BEGIN 

subject-matter (student-decision, block); 

readln (input, answer); 

matching (frame, answer, matching-result); 

score (matching-result, student-decision, student-history); 

decision (student-history, frame, student-decision); 

END 

END. 

Fig. 4. Program for the GST model. 

stands for the second component of the decision variable at time t preceded by the matching block 
and succeeded by the score block. Listings of the system variables and equations are attached as 
Appendices A and B with brief explanations. 

The cycle through the GST model starts at the subject matter block SC. sub. On the basis of 
the decision variable 

the associated frame, level, and question-number is selected by means of a retrieval mechanism in 
SC. sub. If it is decided in DC. dec to give additional information, this is also picked up in SC. 
sub and presented to the student. 

Once the system equations have been written down, the GST model can easily be converted into 
a computer program. The main program can be written in Pascal by developing procedures in a 
modular way for each elementary system. The input variables that appear are local variables in 
the procedure. The output, decision, and information variables, however, are global variables. The 
system equations are used in the procedure body. Before running the main program, it is necessary 
to initialize the components of some system variables. The main program is shown in Fig. 4. 

This computer program can be conceived of as the adjustable software machine introduced 
earlier. To give a flavour of how this conversion can be done, a simple example is provided in 
Appendix C with a brief explanation of how flexible courseware can be developed from subsets 
of this set of cooperating procedures. Only the system equations belonging to the score block and 
those system equations belonging to the decision block referring to the frames of types I-III are 
converted into flexible courseware. The complete program GST is available upon request from the 
author. 

DISCUSSION 

It is possible to define unambiguously an abstract representation of tutorial CA1 and to develop 
an execution mechanism for courseware that is both manipulable and based upon a modular and 
explicit mathematical model. This model, if integrated into a courseware development environment, 
may be used in connection with analytical tools to trace the likely effects of various design options, 
such as the decision rules for steering the instructional process in system-controlled CAT. 

As far as this work is concerned, only the choices and effects of decision rules in system-con- 
trolled CA1 are manipulable and traceable. The model is rather simple, though it may seem 
complicated. To cover tutorial processes in full would require a considerable extension of the 
present model and a still more general approach to the construction of system cells[25]. 

Further extensions can be expected from studying the context of learner-controlled CAI, where 
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learners select their own routes through the instructional material, and a means to represent the 
individual behaviour of the learner throughout the instructional process[26,27]. These authors have 
shown that the elementary systems used in the construction of the GST model (Fig. 3) can be 
considered to be situated in the nodes of a lattice of models of the instructional process. 

Acknowledgements-The author is indebted to J. Kingma for his assistance in programming the example from Appendix 
C. The computer program GST is available upon request from the author. 
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APPENDlX A 

System Variables of the GST Model 

A description of the output and information variables leaving the subject matter block: 

rub 
y(l,t) = presented question and its accompanying alternatives, possibly preceded by a text in case of type II-IV; 

It” 

y(2,t) = possibly presented additional information in case of type III and IV; 
I,” 
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z(l,t) = number of correct alternative (1, 2, 3 or 4); 
mtc 

~(1 + i,t) = whether or not alternative information belongs to the ith alternative (boolean variable); 1 Q i C 3 
mtc 

z(ip) = whether or not selected frame belongs to type IV (boolean variable). 

For types I-III: 

z(2,t) = number of questions in selected frame; 
*cc 

sub 
z(3.t) = frame-number assigned to the up-pointer; 

ds 

z(4,t) = level-number assigned to the up-pointer; 
dec 

sub 
z(5,t) = frame-number assigned to the down-pointer; 

dec 

sub 
z(6,t) = level-number assigned to the down-pointer. 

*cc 

For type IV: 

sub Sub 
z(7,t) until z(lO,t) = frame-numbers assigned to the ‘A’, 

dec dec 
‘B’, ‘c’ and ‘D’-pointers, respectively; 

S”b sub 
z( lj;t) until z( 1,4kt) = level-numbers assigned to the ‘A’, ‘B’, ‘c’ and ‘D’-pointers, respectively. 

Information variables leaving the student block: 

St” St” 
z( I ,t) = z( ii) = student response (I, 2, 3 or 4). 

mtc 

Decision and information variables leaving the matching block: 

u(l,t) = whether or not the student response is correct (boolean variable); 
X0 

z(i:) = whether or not additional information belongs to the student answer (boolean variable). 

Components of the information variable zr) leaving the score block coincide with components of the state variable s? 
dec 

z(i”t) = s( r,:) = number of correct answers in actual frame; 
d& 

z&i) = s(s?:) = total number of questions which have been asked until time t; 
dec 

z(y,:)[i,j] = s(?,:)[i,j] = number of times the frame with frame-number i and level-number j has been visited. 
dec 

The last block to be discussed is the decision block, where we start with a description of the components of the state 
dec 

variable s(t): 

s(fyt) until s(!;) = frame, level, and question-number of the actual frame, respectively. 

The first component of the decision variable ut: is declared as a defined type in Pascal: 
*ub 

drc 
u(1.t) = switch = (down, (*decrease level or stay at the same level*); up, (*increase level*); next, (*present next 

rub 
question in the frame*); not-used (*frame belongs to type IV*)); 

u(T;) until u($J) = frame, level, and question-number of the possible next frame to present, respectively; 
S”h 

dcc 
u(5,t) = whether or not the instruction has to be terminated because of reaching the maximum level of mastery 

sub 
(boolean variable); 
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u(6::) = whether or not the instruction has to be terminated because of reaching the minimum level of mastery 

(boolean variable); 

u(r;) = whether or not the instruction has to be terminated because of exceeding the allowed time (boolean 

variable); 

u(G) = whether or not the instruction has to be terminated because of reaching the maximum level of mastery, 

reaching the minimum level of mastery, or exceeding the allowed time (boolean variable); 

u(g) = additional information is presented (boolean variable); 

u(l~~t) untii u&t) = the frame, level, question, and alternative-num~r of the possibly additional information. 
S”b 

The components of the decision variable with destination the score block: 

u&), u&), u&) and u&) coincide with 
ro SC0 SO SC0 

u(!$. u(et) u&) and u&z), respectively. 
rub rub 

Component of the decision variable with destination the student block: 

u(i’l) = presented text in case of stopping. 
St” 

Finally, the subject matter block is reached again and one complete cycle through the GST-model has been accomplished. 

If the decision rules have not decided to stop, i.e. a = false, this is the starting point for a new cycle. 

APPENDIX B 

System Equations of the GST Model 

To illustrate the use of the system equations, some of them will be discussed now. Doing so, we start with a description 
of the equations belonging to the matching block: 

m,c SI” I”b 
u(l,t) = true, if z(l,t) = z(J,t); 

SS0 WC lnte 
mtc S”b. 51U 

z(ip)= true, if z(l +t,t)= true and 1 +i =z(l,t). (1 <i ~3) 
rrl#C lnic 

The next block to be discussed is the score block, starting with the state equations: 

(1.1) 

(1.2) 

s( 1 .t? I) = s( c:) + 1, if u( i’:) = next and u(?t) = true; 
*0 

= s( ST:), if u( 1”;) = next and u(yIE) = false; 
-0 SGO 

= 1, if u(i’ft) = up, down, or not-used and u($) = true; 
SO Y0 

= 0, if u(i”:) = up, down, or not-used and u(?l) = false; 
SC0 SO 

s(2.G I) = s(?,$ + I; 

s(3,tY- J)[i,j] = s(!G)[i,j] f 1. if u(s) = i, u(G) = j, 
YO 

u&) = false, and 
YO 

u(?t) = up, down, or not-used; 
W” 

(2.1) 

(2.2) 

= s(%) [ij], if u( i’s) = next, u($) = i, 
W” XI1 

u(?t) = j, and u(G) = false; 
Ss(l sf” 
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= 1, if u(?t) = i, u(?t) = j, u(G) = true, and 
L L So 

u(i’;) = up, down, or not-used, 
hE0 

= 0, if u&) = next, u(G) = i, 
xc0 SC0 

u&) = j, and u(Tt) = true. 
SC0 YO 

(2.3) 

The three info~ation equations for z( 2) , z(E), and x(g) [i,j] coincide with the state equations for s( rt), s&, and &) 

[ij], respectively. (2.4) 

The last block to be discussed is the decision block, starting with the decision equations with respect to the subject matter 
block: 

u(E) = up, if x(E) > round (0.6*z(i”bt)) and z$) = false; 
db ‘& L & 

= down, if s(G) & round (0.8*x($), 

z( i”t) 
dk 

Q round (0.4*x($), and z( $ = false; 

= not-used, if z(g) = true; 

= next, else. (3.1) 

In words, the specified decision rules for the types I-III run as follows: 
The up-pointer is activated if more than 60% of the questions in the frame have been answered correctly. The 

down-pointer is activated either if more than 80% of the number of questions in the frame have been answered as well 
as less than 40% of them have been answered correctly or if all the questions in the frame have been answered. In all other 
cases, the next question in the frame is presented. 

~(2:;) = s( i”;) and ~(3;;) = s(27). if u( $ = next; (3.2) 

u($;) = ~$2) and ~(32) = z$), if u($ = up; (3.3) 

u@ = z(t$) and ~(3:;) = z($$, if ~(5:) = down; 

u($t) = $6 ?i,t) and u&f, = z(lO*f; i,t), if u(rt) = not-used and 
ds sub dec rub 

If” 

(3.4) 

z(ai) = i; (1 Q i Q 4). 

u&2) = s(G) + 1, if u(G) = next; 
rub 

(3.5) 

= 1, if u(G) = up, down, or not-used; 
sub 

(3.6) 

u($ = true, if u($) = maximum level + 1; 
sub 

u(G) = true, if u(32) = minimum level - 1; 
rib rub 

(3.7) 

(3.8) 

u($) = true, if z(L??) = maximum number of allowed questions. 
sub dk 

(3.9) 

The maximum level, minimum level and maximum number of allowed questions in our example were put on 3, 1 and 50, 
respectively. 

u($$ = true, if u(c;), ~(6:;). or u(77) = true; 
sub 

(3.10) 

u($$) = true, if z(3z)[i j] = 2, u(24) = i, 
S”b 

u$t) = j, and z(yz) = true. (3.11) 
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In words, this last decision rule runs as follows: additional informaton is presented only each second time a student arrives 
at a frame which actually contains additional information. 

u( 1st) = s( i’yt) , if u&) = true; 
sub 

u(lI$t) = s(zt), if u&) = true; 
sub 

u( lz;t) = s(5), if u&) = true; 
sub 

u(F;t) = .z(cQ), if u(C$) = true. 
sub 

The decision equations with respect to the score block for u(i’f) 
SC0 

until u(et) coincide with the decision equations for u(!z), u($), ~$2) and ~$2). respectively 
SC0 

Decision equations with respect to the student block: 

u(i’>) = print (“reached maximum level of mastery”), if u($) = true; 
I,” Wb 

= print (“reached minimum level of mastery”), if u(z;) = true; 
sub 

= print (“too long busy”), if u(yt) = true. 
rub 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

Finally, the three state equations of the decision block for s(f>) until s&) coincide with the decision equations for u(zt) 

until u(<;), respectively. (3.18) 

APPENDIX C 

Example of Developing Flexible Courseware Based Upon the GST Model 

program GST (Input, Output); 

('_____-_---_------_________-__-_-_----________________________-____-----__-- 

System variables of the GST-model (see Appendix A) 

______---------______________________-__--------------------------__--__--_--*~ 

(~t*.ttttttttt.t*...~.*~,~~.~.....**********~******.**.**.~*~*~*****~**..**** 

l The PASCAL implementation of the system variables defined in Appendix A 

l are declared as follows: 

l The naming convention used relates closely to that in Appendix A, for instance: 

sub 
The system variable y(l,t) is referred to in the program by the construct 

stu 

'Y[sub_stu_ll*, which, in turn, indicates the variable sub_stu_l in vector Y. 

For each system variable x(t), y(t), s(t), u(t), and z(t) a one-dimensional 

array (i.e., a vector) is declared. These arrays contain all the system 

variables except for the ones that contain score information. The number of 

the latter variables depend on the maximum number of frames and levels, 

MaxFrames (i.e., 40) and MaxLevels (i.e., 3), respectively. 

SC0 
For instance, z(Ahi)[i,j] is coded as Zsco[i,jl in the program. 

For the state variables which contain the "memory" of the Machine two 

l arrays are declared, namely Spre and Spost containing s(t) and s(t+l). 

SC0 SC0 
l s(s,t)[i,jl is coded as Spre..Ssco_3[i,jl and s(s.t+l)[i.jl as Spost.Ssco_3[i,jl. 

SC0 

*.t*...t*.ttttt*t*.t....*.**.....**...*..**....*...........**.*******.*...**) 
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(.____________________________________________________________________________ 

Part of the system Equations of the GST-modal (see Appendix 8) 

__________________________________________________~~______~~~~~_____~~~~~ _____‘) 

(*tt***t*ttt~ttt.****~*****~*****~*~*****~.,*****~********.***.*.*********~**. 

* The PASCAL implementation of the system equations specified in Appendix B is 

l given below by means of procedures each containing the equations for one block. 

l The statements in the implementation follow closely the equations defined 

l in Appendix B and are numbered accordingly. 
.*~tttttttt.t*..**..*~*~*****.****.****.*.****...****.*.*..~...*******.******, 

(*________--_-------____________---____-_---________________--_---_---_-______ 

Score Block 
__________________________________--_____-------------------------------------*) 

procedure SC_sco; 

begin 

if U[dec_sco_ll = cNext then 

begin 

if U[mtc_sco_ll = iTrue then 

Spost.s[sco_ll := Spre.s[sco_ll+l 

else 

spost.slsco_ll := Spre.slsco_ll 

end 

else 

if U[dec_sco_O] = iFalse then 

if U[dec_sco_ll = cNext then 

Spost.Ssco_3[U[dec_sco_21, U[dec_sco_311 := 

Spre.ssco_3[Utdec_sco_21, U[dec_sco-311 

else 

Spost.%co_3[U[dec_sco_21. U[dec_sco_311 := 

Spre.ssco_3tU[dec_sco_21, U[dec_sco_311+1 

else 

if U[dec_sco_ll = cNext then 

Spost.Ssco_3[UIdec_sco_21. U[dec_sco_311 := 0 

else 

Spost.Ssco_3[U[dec_sco_21, Ufdec_sco_311 := 1; (*2.3’) 

Z[sco_dec_ll := Spre.s[sco_ll; 

Z[sco_dec_Zl := Spre.s[sco_Zl; 

ZscolU[dec_sco_21. U[dec_sco_311 := 

Spre,Ssco_3W[dec_sco_21, U[dec_sco_311; 

end (* SC_sco l ): 

(‘2.4’) 

(~-__-_________________________--______-----______________________________---- 

Part of the Decision Block (Frames of types I until III) 
-________________________________----______---------------------_-____________~~ 

procedure DC_dec; 

begin 

U[dec_sub_ll := cNext; 

if Z[sub_dec_ll = iFalse then 

begin 

if Z[sco_dec_ll >= Round (0.6 l Z[sub_dec_ll) then 

Utdec_sub_ll := cup 

else 

if (Spre.S[dec_31 >= Round(0.8 l Z[sub_dec_21)) and 

(Zlsco_dec_ll >= Round (0.4 l Z[sub_dec_21)) then 
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U[dec_sub_ll := cDcn.m 

end 

else 

U[dec_sub_ll := cNotUsed 

case U[dec_sub_ll of 

cNext: begin 

U[dec_sub_ll := Spre.S[dec_ll; 

U[dec_sub_31 := Spre.S[dec_Zl; 

end; 

CUP: begin 

U[dec_sub_21 := Z[sub_dec_31; 

U[dec_sub_31 := Z[sub_dec_ll; 

end; 

cDown: begin 

U[dec_sub_Zl := Z[sub_dec_51: 

U[dec_sub_31 := Z[sub_dec_61; 

end; 

end (' DC_dec '); 

('3.1') 

('3.2') 

('3.3') 

('3.4') 


