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A COMPENSATORY APPROACH TO OPTIMAL SELECTION WITH 
MASTERY SCORES 
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A Bayesian approach for simultaneous optimization of test-based decisions is presented 
using the example of a selection decision for a treatment followed by a mastery decision. A 
distinction is made between weak and strong rules where, as opposed to strong rules, weak 
rules use prior test scores as collateral data. Conditions for monotonicity of optimal weak and 
strong rules are presented. It is shown that under mild conditions on the test score distributions 
and utility functions, weak rules are always compensatory by nature. 
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Introduction 

Over the past two decades, Bayesian decision theory has proven to be very useful 
in solving problems of test-based decision making. Historically, the first decision mak- 
ing problem to draw the interest of psychometricians was the selection problem in 
education and personnel management. Important milestones in the history of the treat- 
ment of selection decisions were the publication of the Taylor-Russell (1939) tables and 
Cronbach and Gleser's (1956) Psychological tests and personnel decisions. However, 
in spite of some of the theoretical notions in the latter, it was not after an extensive 
discussion on "culture-fair" selection (Gross & Su, 1975) that selection decisions were 
fully treated as an instance of Bayesian decision theory (Novick & Petersen, 1976). 

With the advance of such modern instructional systems as individualized study 
systems, mastery learning, and computer-aided instruction (CAI), interest was gener- 
ated in the possibility to put the problem of mastery testing on sound decision-theoretic 
footing. In mastery testing, the intent is to classify examinees as "masters" or "non- 
masters" on the basis of their test scores, using some standard of mastery set on the 
true-score scale underlying the test scores. Hambleton and Novick (1973) were the first 
to point at the possibility of applying Bayesian decision theory to mastery testing. 
Optimal mastery rules for various utility or loss functions are derived in Davis, Hick- 
man and Novick (1973), Huynh (1976, 1977, 1980) and van der Linden and Mellenbergh 
(1977). 

Interest in decision making problems in modern instructional systems has also led 
to the consideration of two other types of decision making: placement and classification 
decisions. In either type of decision making, test scores are used to assign examinees 
to one of the instructional treatments available. However, with placement decisions the 
success of each of the treatments is measured by the same criterion whereas in clas- 
sification decisions each treatment involves a different criterion. The paradigm under- 
lying placement decisions is the Aptitude-Treatment Interaction (ATI) hypothesis, 
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which assumes that students may react differentially to instructional treatments, and, 
therefore, that different treatments may be best for different students. Classification 
decisions are made if an instructional program has different tracks each characterized 
by different instructional objectives. Such tracking can be found in systems of com- 
prehensive secondary education or vocational education. Bayesian decision theory for 
placement and classification decisions is given in Sawyer (1993) and van der Linden 
(1981, 1987). 

Typically, instructional systems as CAI do not involve one single decision but can 
be conceived of as networks of nodes at which one of the types of decisions above has 
to be made (van der Linden, 1990; Vos, 1990, 1991, 1993). An example is an instruc- 
tional network starting with a selection decision, followed by several alternative in- 
structional modules through which students are guided by placement and mastery 
decisions, and which ends with a summative mastery test. Decisions in CAI networks 
are usually based on small tests (which often consist of only a few multiple-choice 
items). 

The question is raised how such networks of decisions should be optimized. An 
obvious approach is to address each decision separately, optimizing its decision rule on 
the basis of test data exclusively gathered for this individual decision. This approach is 
common in current design of instructional systems. As an alternative, for a series of 
linearly related instructional modules Huynh and Perney (1979) proposed a backward 
computational scheme in which mastery scores at later modules are used to set mastery 
scores at earlier modules. The purpose of the present paper is to show that multiple 
decisions in networks can also be optimized simultaneously. The advantages of a si- 
multaneous approach are twofold. First, data gathered earlier in the network can be 
used to optimize later decisions. The use of such prior information can be expected to 
enhance the quality of the decisions--in particular if only small tests or sets of multiple- 
choice items are administered at the individual decision points. Second, the option is 
now available to define utility or loss functions on the ultimate success criterion in the 
complete network instead of on intermediate criteria measuring the success on indi- 
vidual treatments. This may be realistic in cases where the success of earlier treatments 
is measured by achievements on later treatments, for example, when remedial teaching 
is considered a success if students do well in regular courses afterwards. Nevertheless, 
it is still possible to incorporate utility or costs related to earlier treatments into these 
functions. 

In this paper, a simple decision network of a selection decision followed by one 
treatment and a mastery decision will be used to make our point. Study of more 
complicated networks is in progress; results for networks with more than one treat- 
ments are given in Vos (1994). First the selection-mastery problem will be formalized. 
Then important distinctions will be made between weak and strong as well as monotone 
and nonmonotone decision rules. Next, a theorem will be given showing under what 
conditions optimal rules will be monotone. Finally, results from an empirical example 
will be presented to illustrate the differences between a simultaneous and a separate 
approach. 

It should be noted that though the present paper shares some aspects with the 
theory of multiple-objectives or multiple-criteria decision making (e.g., Keeney & 
Raiffa, 1976), important differences exist. In an application of the latter, for example, to 
the mastery testing problem, typically a multivariate criterion of mastery is measured 
and a multivariate mastery rule is defined on a test battery. In this paper, the criterion 
and each of the test scores involved are univariate. As will be clear below, the first 
decision in the network has a univariate decision rule. However, the second decision 
rule uses earlier test scores as prior information, and takes a multivariate form. More 
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FIGURE 1. 
A sys tem of  one select ion and one mastery  decision. 
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importantly, however, the problem of optimizing more than one rules simultaneously is 
different from the one of optimizing a single rule which is a function of more than one 
variable. In principle, it would be possible to generalize the problem addressed in this 
paper to a problem with multivariate selection and mastery tests. A general treatment 
of the multivariate mastery problem is given in Huynh (1982). 

The Selection-Mastery Problem 

A flowchart of the selection-mastery problem is given in Figure 1. An example of 
the problem is an instructional module with a pretest and a posttest. The pretest is 
administered to select students for the module. It is assumed that the possible actions 
are to admit or to reject the student for the module. The posttest is used to decide 
whether or not the students have mastered the objectives of the module. Typically, the 
posttest is not perfectly reliable, and the criterion is supposed to be a threshold on the 
true score underlying the test. The possible actions are to classify a student as a master 
or a nonmaster. The application addressed here is the case of a pretest used to assess 
whether students have acquired certain prerequisite skills and a posttest covering the 
subject matter taught in an instructional module. The two tests are thus not assumed to 
measure the same variable. Nevertheless, they have a statistical relation which allows 
for the use of the pretest as a source of additional information in decisions based on the 
posttest. The empirical example below is presented to show how standard psychomet- 
ric theory can be used to model this statistical relation. If the two tests do measure the 
same variable, another model is possible in which the decision rule on the pretest also 
may lead to a mastery decision. The statistical aspects of this model, which involves 
different monotonicity problems, are addressed in van der Linden (1995). 

The following notation is needed. For a randomly sampled student, the observed 
scores on the selection and mastery tests are continuous random variables denoted by 
X and Y, with realizations x and y, respectively. The criterion considered is the clas- 
sical test theory true score underlying the mastery test. For a randomly sampled stu- 
dent, the true score is denoted by a continuous random variable T with realization t. It 
is assumed that the standard denoting true mastery is a threshold value tc on T. 
Further, it will be assumed that the relation between X, Y, and T can be represented 
by a joint density function f (x ,  y, t). The best experiment to estimate the parameters 
in this density function is the one in which a sample of examinees from the full marginal 
distribution of X is admitted to the treatment and the performances of these students on 
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the mastery test Y are measured. However ,  not much efficiency need be lost if the 
parameters  in the density function have to be estimated from a sample censored on the 
left due to the fact that low performing students are not admitted to the treatment,  
provided the correct  density function is chosen. The statistical theory needed for es- 
timating from censored samples is given in Kendall and Stuart (1979, secs. 32.15- 
32.21). A useful correct ion for Pearson 's  correlation coefficient between X and Y is 
given in Roe (1979), whereas a Bayesian approach to the problem is provided in Brou- 
wer and Vijn (1979). 

Simultaneous Decision Rules 

Let  each of the possible actions be denoted by aij (i, j = 0, 1), where i = 0, 1 
stand for the actions of  rejecting and accepting a student and j = 0, 1 for  the actions 
of  retaining and advancing an accepted student. Since for a rejected student no further 
mastery decisions are made, the index j will be dropped for i = 0. 

Generally,  a decision rule specifies for each possible realization (x,  y) of  (X, Y) 
which action aij is to be taken. 

Weak and Strong Rules  

The decision rule for the mastery decision may or may not depend on the score X 
on the selection test. Intuitively, one would expect  a more lenient mastery rule for a 
student with a high performance on the selection test because this prior information 
implies that a possible low score on the mastery test is more likely due to measurement  
error  than to a true low performance.  Simultaneous rules in which decisions are a 
function both of the current  test score and previous test scores test will be called weak 
rules in this paper. As a general result, it will be proven that under obvious conditions 
weak rules will necessarily have a compensatory nature. The title of  the paper  already 
alludes to this result. 

If decisions are only a function of  current  test scores,  the rules will be called strong 
(simultaneous) rules. 

For  the decision network of  Figure I a weak simultaneous rule 8 can be defined as: 

{(x, y): 8 (x ,  y) = a0} = A x R 

{(x, y): 8 (x ,  y) = al0} = A c x B ( x )  (1) 

{(x, y): 8(x ,  y) = a11} = A c × BC(x ) ,  

where A and A c are the sets of x values for which a student is rejected or admitted for 
the treatment,  and B ( x )  and B C ( x )  are the sets o f y  values for  which a students fails or 
passes the mastery test. R represents the set of  real numbers. 

With strong rules, the sets B ( x )  and B C ( x )  are independent  of x. Strong simulta- 
neous rules can only be optimal if certain conditions are met. These conditions will be 
given below. 

Monotone  and Nonmono tone  Rules  

Decision rules can take a monotone or a nonmonotone form. A decision rule is 
monotone if cutting scores are used to partition the sample space into regions for which 
different actions are taken. For  example, a (separate) rule for the selection decision is 
monotone if there exists a cutting score x c such that all examinees with X >- Xc are 
admitted and those with X < x c are rejected. All other  possible rules are nonmonotone.  

For  our decision problem, a weak monotone rule 8 can be defined as: 
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f 
a0 for X < Xc 

t~(X, Y ) =  a l 0  f o rX>-xc ,  Y< yc (X )  (2) 

I, all f o rX>-xc ,  Y>-yc(x) ,  

with yc(X) being the cutting score on Y. The fact that this cutting score is written as a 
mathematical function of x will be justified below proving that y c (x) is unique for each 
value of x under reasonable assumptions. 

In this paper, the interest will mainly be in monotone rules. The reason for this 
choice is the fact that the use of cutting scores is common practice in educational and 
psychological testing, and that, for example, rules which reject students with low or 
high scores but admit students to a program with scores in the middle of the scale would 
generally not be considered acceptable. However, the restriction to monotone rules is 
correct only if it can be proven that for any nonmonotone rule for the problem at hand 
there is a monotone rule with at least the same value on the criterion of optimality used; 
that is, if the subclass of monotone rules is essentially complete (Ferguson, 1967, p. 55). 
Conditions under which the subclass of monotone (simultaneous) rules is essentially 
complete for the present problem will also be given below. 

Strong Monotone Rules with Maximum Expected Utility (SMMEU) 
To evaluate the use of cutting scores even if conditions for monotonicity are not 

known to hold, the case of Strong Monotone Rules with Maximum Expected Utility 
(SMMEU rules) is also considered. An SMMEU rule is a rule with maximum expected 
utility in the subclass of strong monotone rules. The attention for SMMEU rules is 
motivated by the fact that educators are familiar with cutting scores as decision rules 
and that not each of them has a tradition of bothering about conditions for monotonic- 
ity. 

Thus, if the sets of conditions for both strong and monotone rules to be optimal are 
satisfied, the subclasses of SMMEU and strong monotone Bayes rules are identical. 
Otherwise, they differ. 

Utility Structure 

Generally, a utility function describes the utility of each possible action for the 
possible true states of nature. Here, the utilities involved in the combined decision 
problem are defined as the following additive structure 

Uij(t) = WlU!S)(t) + W2U(m)(t), (3)  

where ui (s) (t) and u~ m) (t) represent the utility functions for the separate selection and 
mastery decisions, respectively, and w 1 and w 2 are nonnegative weights. Since utility 
is supposed to be measured on an interval scale, the weights in (3) can always be 
rescaled as follows: 

u6(t ) = wu~S)(t) + (1 - w)u)m~(t), (4) 

where0-<  w -  1. 
Since no mastery decisions are made for rejected students, it is assumed that such 

students do not contribute to the utility. This assumption is consistent with the insti- 
tutional point of view taken here. Hence, it follows from (4) that uoj(t) is equal to 
WU~o s)(t) for allj .  

It should be noted that the first term of (4) is a function of t and not, for example, 
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of a true score underlying X. This fact illustrates one of the advantages of a simulta- 
neous approach to decision making, namely, that there is no need to resort to inter- 
mediate criteria of success but that for all decisions utility can be defined as a function 
of the ultimate criterion in the network. Also, note that both terms in (4) are a function 
of the same variable. The utility structure assumed is therefore not an instance of a 
utility function in a multiple-criteria decision problem. The usual assumptions needed 
to motivate an additive structure for multiple-criteria functions (Keeney & Raiffa, 1976) 
are thus not needed here. 

The weight factor w in (4) has been introduced to accommodate cases where the 
utilities for the two decisions are measured in different units. If the units are the same, 
w is set equal to .5. 

Methods for establishing empirical utility functions for test-based decisions have 
been studied in van der Gaag (1990) and Vrijhof, Mellenbergh, and van den Brink 
(1983). The dominant conclusion from the series of studies of empirical utilities in 
selection and mastery decisions in these references is that a choice from the family of 
linear utility functions is often realistic for both types of decisions. This choice will be 
made in the empirical example below. Obviously, these functions will be chosen such 
that utility will be an increasing function of t for the admittance and mastery decision 
but decreasing functions for the rejection and nonmastery decision. First, however, 
more general results will be presented. 

Expected Utility in the Simultaneous Approach 
For the decision rules in (I) and the utility structure in (4), the expected utility for 

the two decision rules is equal to, 

E[Usim(AC, BC(x))]=-- fA fR fR WU(oS)(t)f(x, Y, t) dt dY dx 

+fa fB fRU'O(t)f( x,y,  t) d tdydx c (x) 

+fa fB fR ul'(t)f(x'y' t) dtdydx" c C(x ) 
(5) 

In a Bayesian fashion, the expected utility in (5) will be taken as the criterion of 
optimality in this paper. 

Taking expectations, completing integrals, and rearranging terms, (5) can be writ- 
ten as 

E[Vsim(AC' BC(x))] = wE[u(~>(T)] + fA ~ {E[ulo(T) - wu~o')(T)lx] 

f 
+ | E[Ull(T) - Ulo(T)lx, y]h(ylx) dy}q(x) dx, (6) 

JB C(x) 
where q(x) and h(ytx) denote the p.d.f. 's of X and Y given X = x. 

It is interesting to note that the critical quantities in (6) are the posterior expected 
utilities given X = x and (X = x, Y = y). It is through these quantities that information 
from prior tests will play a role in later decisions in the network. 
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Sufficient Conditions for Monotone Rules 

In this section, monotonicity conditions for the simultaneous rules are derived. 
First, sufficient and necessary conditions for monotone solutions for the separate se- 
lection and mastery decisions will be given. Next, sufficient conditions for weak mono- 
tone solutions will be derived. Finally, monotonicity conditions for strong simultaneous 
rules will be derived from the previous case by imposing additional restrictions on the 
test-score distributions. 

Conditions for Separate Selection and Mastery Decisions 
Conditions for selection and mastery rules to be (strictly) monotone are given in 

Chuang, Chen and Novick (1981). Two sets of conditions must be met. First, the 
families of distributions of the true scores T given X = x and T given Y = y must be 
stochastically increasing; that is, their cumulative distribution functions (c.d.f.'s) must 
be decreasing in x and y for all t. Second, the utility functions must be monotone. This 
condition requires the difference between the utility function for the rejection (nonmas- 
tery) and admittance (mastery) decision to change sign at most once. 

Both conditions immediately follow from the standard decision problem addressed 
in statistical decision theory (e.g., Ferguson, 1967; Lindgren, 1976). 

Conditions for Weak Simultaneous Rules 

Let v(tlx,  y) denote the c.d.f, of T given (X = x and Y = y) and H(ylx)  the c.d.f. 
of Y given X = x. The following theorem gives a set of conditions sufficient for a weak 
monotone solution: 

Theorem. 
lem with additive utility is (weak) monotone if: 

u lm) ( t )  -- u(om)(t) i s  strictly increasing in t, 

U lo (t) - WU~oS)(t) is strictly increasing in t, 

V(t[x, y) is strictly decreasing in x and y for all t, 

H(ylx)  is strictly decreasing in x for all y. 

An optimal simultaneous decision rule for the selection-mastery prob- 

(7) 

(8) 

(9) 

(10) 

The first condition guarantees monotone utility for the mastery decision. 
The second condition stipulates that the difference between the utility functions for 

the actions a 10 (acceptance, nonmastery) and a 0 (rejection) be an increasing function 
of t. 

The third condition requires double (strict) stochastic increasingness for the dis- 
tribution of T given X = x and Y = y. Loosely speaking, this condition is met if high 
true scores on the mastery test coincide with high observed scores on both the selection 
and mastery tests. 

The last condition also requires (strict) stochastic increasingness, and thus that 
high scores on the mastery and selection test tend to coincide. 

Not all conditions in this set are straightforward generalizations of the conditions 
for the separate decision problems. In particular, the conditions in (8) and (10) are new; 
they are needed to link the two separate decision problems. 

It should be noted that there is no condition analogous to (7) for the selection 
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problem. This is due to the fact that the utility component for this problem is defined on 
the true score variable for the mastery test. 

In the proof of the theorem, the following lemma's are needed: 

Lemma 1. Letf (x)  be an arbitrary function with f tf(x)l dx < o% then for any set 
S of x values it holds that f s  f(x) dx <- fs '  f(x) dx with S' = {x: f(x) >- 0} (e.g., 
Ferguson, 1967, p. 201). 

Lemma 2. For any increasing function k(t), the expectation E[k(T) I z] is an in- 
creasing function of z if and only if the c.d.f, of T given Z = z decreases in z for all t 
(e.g., Lehmann, 1986, p. 116). 

For future use, it is observed that if k(t) is a constant, E[k(T)Iz] is a constant too. 
Hence, the nondecreasing version of the lemma also holds. 

Lemma 3. If (9) and (10) hold, then the marginal c.d.f. P(tlx) associated with 
V(tlx, y) is decreasing in x for all t. 

Proof of  Lemma 3. Let v(tlx, y) be the p.d.f, of T given X = x and Y = y. By 
definition, 1 - P(tlx) = f t  froo v(zlx, y)h(ylx) dy dz = f~_® [1 - V(tlx, y)]h(ylx) 
dy. From (9)-(10) and Lemma 2, it follows that 1 - P(tlx) increases in x for all t, that 
is, the distribution of T given X = x is stochastically increasing in x. [] 

For completeness' sake, it is observed that the distribution of T given Y = y is also 
stochastically increasing in y if (10) is replaced by the stronger condition of monotone 
likelihood ratio in y w.r . t .x.  However, this result is not needed in the remainder of this 
paper. 

Lemma 4. If a function K(x, y) is (strictly) increasing in x and y, then the relation 
defined by C = {(x, y)lK(x,  y)  -- c,  c ~ R} is a decreasing function in x. 

Proof of Lemma 4. Assume that there are two pairs (x , ,  Yl) E C and (x2, Y2) E 
C with x2 > xl ,  for which Y2 -> Yl. Then, by hypothesis, K(x2, Y2) > K(xl, Yl), 
which contradicts the assumption. [] 

Proof of Theorem. Let the set BoC(x) be defined by 

BCo(X) =-- {y: E[ull(T) - Ulo(T)Ix, y] >- 0}. ( l l )  

Applying Lemma 1 to the second term in the integral in (6), and using h(yl x) -> 0, 
it follows that for all B C(x) and an arbitrary but fixed A c: 

E[ Usim(A C' BC(x))] <- wE[u(°S)(T)] + YAC {E[uIo(T) - wu~o')(T)Ix] 

I "  
+ / E [ u l I ( T )  - ulo(T)lx, y]h(YlX) dy}q(x) dx. (12) 

.I B o~(X) 

Using the following definition of the set A0 c 
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f 
A c = ix:  E[UlO(T) - WU(oS)(T)lx] 

3B [(x) 3 
and applying the lemma to the second term in the right-hand side of (6), it follows that 
for all A c 

F 
E[Usim(A C, B o C ( x ) ) ]  ~ wE[u(oS)(T)] + ~ {E[u,0(T) - Wu(oS)(T)tx] 

3A g 

£ 
+ | E[Ull(T) - Ulo(T)lx, y]h(ylx) dy}q(x) dx. (14) 

JB g(x) 

It is now proven that the left-hand sides of the inequalities in (11) and (13) increase 
in y for all x and in x, respectively. 

i. Since Ull(t) - ul0(t) = (1 - w)[u[m)(t) - u(om)(t)] and 1 - w-> 0, it follows 
from the condition in (7) that the difference between these two utilities is in- 
creasing too. Therefore, (9) and Lemma 2 together imply that 

E[ull(T) - ul0(T)lx, y] isincreasinginyforaUxandinxforaUy, (15) 

and thus that the sets BoC(x) take the form [yc(x), oo) for all values o fx .  This 
result will be used in the following part of the proof. 

ii. From (8) through (10) and Lemma's  2 and 3, it follows immediately that the first 
term in the left-hand side of (13) is increasing in x. For notational convenience, 
the term E[u l l  (T) - ul0(T)]x, y] is denoted as f ix ,  y). Note that -r(x, y) is an 
increasing function o f y  which is nonnegative for y >- yc(x) for all values o f x .  
Now for any x 2 > x 1 , it follows that 

fy r(x2, y)h(y,x2) d y -  ~ r(x,, y)h(y{Xl) c(x,) 

> fy r(x2' y)h(Ylx:) d Y -  fy "r(xl, y)h(y{xl) dy 
~(x,) ~(xl) 

> f r(Xl, y)[h(y[x2) - h(ylxl)] dy 
3y c(X~) 

= f~= ~o(y)[h(y[xz) - h(ylxl)] dy, (16) 

where ~o(y) -= I[yo(x,),~)(y)r(xl, y), and I[yo(x,),o~)(y) is an indicator function 
which takes the value 1 i fy  E [yc(xl ), oo) and the value 0 otherwise. In the first 
step in (16), Lemma 4 is used in combination with (15), whereas the second step 
follows from the fact that "r(x, y) is increasing in x for all y. By definition, q~(y) 
is a nondecreasing function of y, and it follows from (10) and Lemma 2 that the 
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final result in (16) is positive. Hence, it can be concluded that the second 
left-hand term in (13) is increasing in x, and thus that the set A0 c takes the form 
[x c, ~).  Since (6) is maximal for the sets A c = Ix c, ~) and B C ( x )  = [Yc(X), 
~), the expected utility is maximized by use of the monotone rules represented 
by these sets. [] 

The cutting scores Xc and Yc (x) are the values ofx and y for which the inequalities 
in (11) and (13)become equalities. These values may be infinitely small or large imply- 
ing that the same decisions have to be made for all examinees. 

Monotonicity Conditions for Strong Simultaneous Rules 

For strong simultaneous rules, BoC(x) is not allowed to depend on x. Therefore, as 
an additional condition, it must hold for v(tlx, y) and the p.d.f, of T given Y = y that 

v(t lx ,  y) = 9(t[y). (17) 

This condition, which immediately follows from (I 1), implies that all information on T 
relevant for the decision is contained in Y = y, and that, once Y = y is given, the 
observation X = x does not add any information. If the condition holds, then, obvi- 
ously, the use of simultaneous rules will not add any etticiency to the decision making 
procedure. 

Calculation of Simultaneous Rules 

From the theorem it follows that the optimal weak and strong simultaneous rules 
can be calculated from the left-hand sides of the inequalities in (11) and (13). To obtain 
optimal weak rules, first Xc and yc(X¢) are calculated simultaneously by solving for the 
values o fx  and y that render these inequalities to equalities. Then for x >- Xc, yc(X) is 
obtained by putting the left-hand side of (11) equal to zero and solving for y. 

If the additional conditions for optimal strong rules are met, B0 c replaces BoC(x) in 
the expression of the expected utility, and Xc and Yc are obtained by simultaneously 
solving (11) and (13) for the values ofx and y that turn these inequalities into equalities. 

Likewise, to calculate SMMEU rules the set BC(x)  is replaced by B c in (6), and 
the system of equations consisting of the partial derivatives of (6) w.r.t, x c and Yc 
equated to zero is solved. 

In the empirical example below, for the calculation of all cutting scores Newton's 
method for solving nonlinear systems was used. The method was implemented in a 
computer program called NEWTON. Another program, UTILITY, was written to 
analyze differences in expected utility for the various rules. Copies of the programs are 
available from the authors of the paper upon request. 

Discrete Test Scores 

So far the scores on the selection, X, and mastery test, Y, have been taken to be 
continuous. However, in practice they are discrete. From the monotonicity of the 
left-hand sides of (11) and (13) it follows that a solution to the discrete problem consists 
of the largest integer values below or the smallest integer values above x c and y c (Xc). 
Substitution of these values into (6) show for which values the expected utility is 
maximal. 

Optimal Separate Rules 

It is observed that optimal rules for the separate decisions can easily be found by 
imposing certain restrictions on E[ Usi m (A C, B C(x))]. 
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First, substituting w = 1 into (6), the expected utility for the separate selection 
decision E[UfS)(A c)], can be written as 

E[U(S)(AC)] = E[u(S)(T)] + f E[u~S)(T) - u(S)(T)ix]q(x) dx. (18) 
.It C 

Next, substituting w = 0, A c = R (i.e., accepting all students for the instructional 
treatment), and B c (x) = B c into (6) gives the following result for the expected utility 
of the separate mastery decision: 

E[u('nI(BC)] = E[Uo m)(T)] + I E[u}m)(T) - u;m)(T)Iy]s(Y) dy, (19) 
.Is C 

where s(y) denotes the p.d.f, of Y. 
Analogous to the simultaneous approach, it can easily be verified from Lemma 1 

that upper bounds to E[U(S)(A c)] and E[u(m)(BC)] are  obtained for the sets ofx  and 
y values for which E[utS)(T) - U(oS)(T)[x] and E[utm)(T) - -  u0(m)(Z)ly] are nonnega- 
tive, respectively. Assuming that the monotonicity conditions for the separate deci- 
sions are satisfied, the optimal cutting scores for the separate selection and mastery 
decisions, say £c and Yc, can be obtained by solving 

e[ul  (r) - u(o' (r)lx] = o 

and 

E[u~")(T) - U(o")(T)ly] = 0 

for x and y, respectively. For further details, see Mellenbergh and van der Linden 
(1981) and van der Linden and Mellenbergh (1977). 

An Empirical Example 

Optimal rules were calculated for a selection-mastery decision problem consisting 
of a CAI module on elementary medical knowledge preceded and followed by a selec- 
tion and mastery test, respectively. Both tests consisted of 21 items and had possible 
test scores ranging from 0-I00. Data were available for a sample of 76 freshmen in a 
medical program. A sample of this size is only used to illustrate the techniques in this 
paper but is not recommended for use with decision problems in the practice of edu- 
cational measurement. The instructors in the program considered students as having 
mastered the module if their true scores were larger than 55. Therefore, tc was fixed at 
this value. All students in the program were admitted to the instructional module, 
therefore the samples of the score distributions involved did not suffer from any re- 
striction of range. 

Score Distributions 
It was assumed that (X, Y, T) followed a trivariate normal distribution. Under this 

assumption, the bivariate distribution of (X, Y) is also normal. Further, the regression 
function E(YI x) is linear. It should be noted that bivariate normality is sufficient for 
linear regression. 

The two observable consequences were tested against the data using a chi-square 
and a t-test. The probabilities of exceedance were 0.219 and 0.034, showing a satisfac- 
tory fit which confirmed our visual inspection of various plots of the distributions. The 
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result for the chi-square test was obtained partitioning the sample space into 20 regions 
of (x, y) values which were, except for the regions at the tails, taken to be of equal size. 
The number of degrees of freedom was equal to df = 20 - 5 - 1 = 14. 

Standard results from classical test theory (Lord & Novick, 1968, chap. 2) were 
used to express the conditional expectations and variances of T given x and/or y as 
functions of observable quantities. It was assumed that E(Tly)  followed Kelley's re- 
gression line (Lord & Novick, 1968, sect. 3.7). Therefore, only the following two 
regression equations needed special attention: 

E(TIx)  = E(YIx )  = a r x  + [3rxX; (20) 

E(TIx ,  y) = a r x r  + f l rxyX + TTxYY. (21) 

The parameters in these regression equations can be written as: 

TX = P X Y  

a r x  = ~ r  - 13rxlzx; 

], 

p r v '  _ p 2 r  

T T X Y  = 1 - -  p 2 y  , 

t~TX Y = /x y(1 -- TTXY) - f l T X Y ~ I ' X  • (22) 

In addition, assuming homoscedasticity, it holds for the conditional variances 
Var (TIx), Var (Tly), and Var (TIx,  y) that: 

2 2 Var (TIx) = (p yr, - -  P x r ) O r y ;  

Var (T[y) = o '2pr r (1  - P r r ) ;  and 

o'2(1 - P rr')(P rr' - P~r) 
Var (TIx,  y) = 1 - p 2 y  (23) 

The statistics in Table I are estimates of the means, variances, and correlation in the 
above equations whereas the reliability estimates are Cronbach's alpha's. The esti- 
mates were substituted into the equations above to get the required estimates of the 
regression parameters and the conditional variances. 

Utility Structure 

The following choice was made for the functions u(S)(t) and u)m)(t) in (4): 

f b(oS)(tc - t) + d(o s) 

u~S)(t) = [ b l S ) ( t -  tc) + dl  s) 

f b(om)(tc - t) + d (m) 

u(m)(t) = Lblm)(t  - tc) + dl m) 

for i = 0  
(24) 

f o r / =  1 

f o r j  = 0 

for j =  1 
(25) 
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TABLE 1 

167 

Some Statistics of the Selection and Mastery Tests (X and Y) 

St~isfies X Y 

Mean 50.679 62.436 

Standard Deviation 8.781 9.456 

Reliability 

Correlation 

0.773 0.802 

0.751 

where bi (s) , b~ m) > 0 (i, j = 0, 1). The parameters d~ s) and d~ m) can represent, for 
example, the fixed amount of costs involved in following an instructional module and 
testing the examinees. The condition b0 (s) , bt s) > 0 states that utility be a decreasing 
function for the rejection decision, but an increasing function for the acceptance deci- 
sion. Similarly, the condition b(o m) , b t m) > 0 expresses that the utilities associated with 
failing and passing the mastery test be decreasing and increasing functions in t, respec- 
tively. 

The same utility functions were used in an analysis of separate selection and 
mastery decisions in Mellenbergh and van der Linden (1981) and van der Linden and 
Mellenbergh (1977). For other possible utility functions, see Novick and Lindley (1979). 

Monotonic i ty  Conditions 

The condition in (7) is met since b )m) > 0, j = 0, 1. 
It can easily be verified that the condition in (8) is satisfied if the weight w and the 

parameters b (o s) , b (1 s), and b (o m) are chosen such that 

00 (m) 
w > b(S) + blS) + b(om ) . (26) 

All numerical values for the utility parameters in the example were chosen to meet 
these two requirements. 

Under the model of a trivariate normal distribution for (X, Y, T) in this example, 
the conditions in (9) and (10) were met by the positive slopes of the regression lines and 
planes in this distribution. 

Finally, the additional condition for solutions to be strong monotone in (17) was 
tested comparing the two regression lines E(TIx ,  y) and E(T ly )  using an F-test. The 
probability of exceedance was 0.038, indicating that the result was significant at a = 
.05. Therefore, only SMMEU rules and no optimal strong rules were considered. 
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Results for the Simultaneous Rules 

For several values of the utility parameters, weak monotone and SMMEU rules 
were calculated. The results are reported in Table 2, where the cutting scores for the 

* and y*. It is reminded that the results were obtained SMMEU rules are denoted as x c 
from a small number of examinees, and thus are sensitive to sampling error. 

As is clear from the results, the consequence of increasing the values of the pa- 
rameters bi ~s) was a decrease of the optimal weak and SMMEU cutting scores on the 
selection test. This relation holds generally. Larger values for these parameters repre- 
sent the fact that acceptance decisions are evaluated relatively stronger, and therefore 
result in lower cutting scores. 

A decrease of the amount of constant utility, d} s) and dj (m) , resulted in increases 
of the optimal weak and SMMEU cutting scores on the selection test. For the param- 
eter w it was found that the optimal weak and SMMEU cutting scores on the selection 
test increase in w for utility structures (1) through (3) and (4) through (6) in Table 2, 
whereas the opposite holds for utility structures (7) through (9) in the table. These 
effects are the result of the specific values of the parameters in the study and cannot be 
generalized. 

The effect of the reliability of the mastery test on the behavior of the cutting score 
for the mastery decision is discussed below. 

Results for the Separate Approach 
The monotonicity conditions for the separate selection and mastery decision prob- 

lems are implied by those for the simultaneous problem as well as the condition that 
b} s) > 0, i = 0, 1. They were therefore satisfied. The optimal cutting scores Xc and 
Yc for the two separate decision problems are also reported in Table 2. In particular for 
w = 0.3, the weak cutting scores yc(Xc) on the mastery test generally were high 
compared with Yc. 

For the selection test the results did not differ much from those obtained for the 
weak monotone rules. This fact can be explained as follows: Students who were just 
accepted in the case of a weak monotone rule had to compensate their rather low 
cutting scores on the selection test with relatively high scores on the mastery test 
compared with students accepted in the case of separate rules. However, the decreas- 
ing character of yc(x) in x implied that only students accepted with selection scores 
equal to or just above Xc did need these rather high scores on the mastery test to reach 
the mastery status. 

Comparison of the Expected Utilities 
For the simultaneous approach a gain in expected utility relative to the separate 

approach was expected. To check whether this expectation could be confirmed, the 
weighted sum of the expected utilities for the optimal separate rules was compared with 
the expected utilities for the optimal weak monotone rules. The results are also dis- 
played in Table 2. 

It can be seen that the expected utilities for the optimal weak monotone rules 
yielded the largest values for all utility structures. This result was in accordance with 
our expectations. Furthermore, Table 2 indicates that the expected utilities for the 
optimal weak monotone rules were only slightly larger than for the SMMEU rules. This 
result follows immediately from an analysis of (6). The first term of this expression is 
always the same constant for the two rules. The fact that xc and x c were nearly equal 
implies that the first part of the second term in (6) cannot differ much for the two rules, 
whereas, for the current data, the last term of (6) appeared to contribute hardly to its 
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value. In addition, it should be noted that, though the statistical tests suggest a satis- 
factory fit of the data to the assumption of trivariate normality, such assumptions are 
never perfectly met. Finally, the table shows that for all three approaches, the expected 
utility yielded the largest value for w = 0.9. In other words, the utility for the selection 
decision contributed most to the expected utility for the optimal rules in this study. 

Concluding Remarks 

For a monotone utility structure, Lemma 4 shows that under the natural condition 
of the distributions of selection and mastery test scores being stochastically increasing 
in the true score on the mastery test, optimal cutting scores for the mastery test under 
the weak simultaneous rules are a decreasing function of the scores on the selection 
test. As already explained, this feature introduces an element of compensation in the 
decision procedure: It is possible to compensate low scores on the mastery test by high 
scores on the selection test. A quantitative estimate of this effect can be calculated for 
the data set in the empirical example above. Substituting the estimated regression plane 
(21) into the left-hand-side in (1 l) and solving for y yields 

d ( m ) _  di  m) 
+ tc - a TXY - -  ~ T X Y  X b(m) T bl  m) 

y¢(x) = (27) 
TTXY 

The derivative of this equation w.r.t, x is equal to -flTXY/TTXY, which for the data set 
was estimated as -.675. It follows for all utility structures in this example that the 
cutting score Yc (x )  on the mastery test has to be lowered by .675 for each score point 
above x c on the selection test. Obviously, the size of this effect is a function of the 
reliability of the mastery test. If the reliability is low, the compensatory effect of the 
selection test is high, whereas for high reliability less compensation is necessary. For 
a perfectly reliable mastery test with PrY'  = 1, it is easy to show from (22) that YTXr  
= 1, and aT): r = f l r x r  = 0, and hence that (27) becomes identical to Yc = [d(o m) - 
d tm) ) / (b  (om) + b t  m)] + tc ,  which is independent o fx .  

The question whether a compensatory mastery rule is fair is touched only briefly 
here. On the one hand, one may argue that if two examinees have the same observed 
score on the mastery test, the same decision should be made for either of them. On the 
other hand, as argued earlier, in the realistic case of a mastery test not perfectly 
reliable, examinees with the same observed score on the mastery test but different 
observed scores on the selection test have different expected true scores  on the mastery 
test, and it seems unfair to the examinee with the higher expected true score not to take 
this information into account. A comparable issue can be raised with respect to the use 
of group-based statistical information in determining (noncompensatory) cutting scores 
in a separate treatment of the selection and mastery decision problems. For a discus- 
sion of this problem, see de Gruijter and Hambleton (1984a, 1984b) and van der Linden 
(1984). The underlying issue is whether an institutional viewpoint is allowed or a more 
individual viewpoint should be taken. Internationally, legal systems show different 
jurisprudence related to this issue. 

Although the area of individualized instruction is a useful application of simulta- 
neous decision making, it should be emphasized that the optimization models advo- 
cated in this paper have a larger scope of application. For any situation in which 
subjects are accepted for a certain treatment on the basis of their scores on a selection 
test with attainments evaluated by a mastery test, the optimal rules presented in this 
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paper can improve the decisions. An example is psychotherapy where clients accepted 
have to pass a success criterion before being dismissed from the therapy. 

References 

Brouwer, U., & Vijn, P. (1979). Bayesiaanse schatter voor de eorrelatieco~ffici~nt in "restriction of range" 
(geval 1) [Bayesian estimators for the correlation coefficient with restriction of range (Case 1)]. Tijd- 
schrift voor Onderw~jsresearch, 4, 281-290. 

Chuang, D. T., Chen, J. J., & Novick, M. R. (1981). Theory and practice for the use of cut-scores for 
personnel decisions. Journal of Educational Statistics, 6, 129-152. 

Cronbaeh, L. J., & Gleser, G. C. (1965). Psychological tests and personnel decisions (2nd ed.). Urbana, IL: 
University of Illinois Press. 

Davis, C. E., Hickman, J., & Novick, M. R. (1973). A primer on decision analysis for individually prescribed 
instruction (ACT Technical Bulletin No. 17). Iowa City, IA: American Testing College Program. 

de Gruijter, D. N. M., & Hambleton, R. K. (1984a). On problems encountered using decision theory to set 
cutoff scores. Applied Psychological Measurement, 8, 1-8. 

de Gruijter, D. N. M., & Hambleton, R. K. (1984b). Reply to van der Linden's "Thoughts on the use of 
decision theory to set cutoff scores". Applied Psychological Measurement, 8, 19-20. 

Ferguson, T. S. (1967). Mathematical statistics: A decision theoretic approach. New York: Academic Press. 
Gross, A. L., & Su, W. H. (1975). Defining a "fair"  or "unbiased" selection model: A question of utilities. 

Journal of Applied Psychology, 60, 345-351. 
Hambleton, R. K., & Novick, M. R. (1973). Toward an integration of theory and method for criterion- 

referenced tests. Journal of Educational Measurement, 10, 159--170. 
Huynh, H. (1976). Statistical considerations of mastery scores. Psychometrika, 41, 65-79. 
Huynh, H. (1977). Two simple classes of mastery scores based on the beta-binomial model. Psychometrika, 

42, 601--608. 
Huynh, H. (1980). A nonrandomized minimax solution for passing scores in the binomial error model. 

Psychometrika, 45, 167-182. 
Huynh, H. (1982). A Bayesian procedure for mastery decisions based on multivariate normal test data. 

Psychometrika, 47, 309-319. 
Huynh, H., & Perney, J. C. (1979). Determination of mastery scores when instructional units are hierarchi- 

cally related. Educational and Psychological Measurement, 39, 317-323. 
Keeney, R. L., & Raiffa, H. (1976). Decisions with multiple objectives: Preferences and value tradeoffs. New 

York: Wiley. 
Kendall, M., & Stuart, M. A. (1979). The advanced theory of statistics. Volume 2: Inference and relationship. 

London: Charles Griffin & Co. 
Lehmann, E. L. (1986). Testing statistical hypotheses (2nd ed.). New York: John Wiley and Sons. 
Lindgren, B. W. (1976). Statistical theory (3rd ed.). New York: Macmillan. 
Lord, F. M., & Novick, M. R. (1986). Statistical theories of mental test scores. Reading, MA: Addison- 

Wesley. 
MeUenbergh, G. J., & van der Linden, W. J. (1981). The linear utility model for optimal selection. Psy- 

chometrika, 46,283-293. 
Novick, M. R., & Lindley, D. V. (1979). Fixed-state assessment of utility functions. Journal of the American 

Statistical Association, 74, 306-311. 
Novick, M. R., & Petersen, N. S. (1976). Towards equalizing educational and employment opportunity. 

Journal of  Educational Psychology, 13, 77-88. 
Roe, R. A. (1979). The correction for restriction of range and the difference between intended and actual 

selection. Educational and Psychological Measurement, 39, 551-560. 
Sawyer, R. (1993, April). Decision theoretic models for validating course placement systems. Paper pre- 

sented at the annual meeting of the American Educational Research Association, Atlanta, GA. 
Taylor, H. C., & Russell, J. T. (1939). The relationship of validity coefficients to the practical effectiveness 

of tests in selection discussion and tables. Journal of Applied Psychology, 23,565-578. 
van der Gaag, N. (1990). Empirische utiliteiten voor psychometrische beslissingen (Empirical utilities for 

psychometric decisions). Unpublished doctoral dissertation, University of Amsterdam, The Nether- 
lands. 

van der Linden, W. J. (1981). Using aptitude measurements for the optimal assignment of subjects to 
treatments with and without mastery scores. Psychometrika, 46, 257-274. 

van der Linden, W. J. (1984). Some thoughts on the use of decision theory to set cutoff scores: Comment on 
de Gruijter and Hambleton. Applied Psychological Measurement, 8, 9-18. 

van der Linden, W. J. (1987). The use of test scores for classification decisions with threshold utility. Journal 
of Educational Statistics, 12, 62-75. 



172 PSYCHOMETRIKA 

van der Linden, W. J. (1990). Applications of decision theory to test-based decision making. In R. K. 
Hambleton & J. N. Zaal (Eds.), New developments in testing: Theory and applications (pp. 129-155). 
Boston: Kluwer. 

van der Linden, W. J. (1995). Some decision theory for course placement. Manuscript submitted for publi- 
cation. 

van der Linden, W. J., & Mellenbergh, G. J. (1977). Optimal cutting scores using a linear loss function. 
Applied Psychological Measurement, 1,593-599. 

Vos, H. J. (1990). Simultaneous optimization of decisions using a linear utility function. Journal of  Educa- 
tional Statistics, 15, 309-340. 

Vos, H. J. (1991). Simultaneous optimization of the aptitude treatment interaction decision problem with 
mastery scores. In M. Wilson (Ed.), Objective measurement: Theory into practice (Vol. 1, pp. 313-331). 
Norwood, NJ: Ablex. 

Vos, H. J. (1993). Simultaneous optimization of selection-placement decisions followed by a mastery deci- 
sion. In F. J. Maarse et al. (Eds.), Computers in psychology: Tools for experimental and applied 
psychology (Vol. 4, pp. 235-244). Lisse, The Netherlands: Swets & Zeitlinger. 

Vos, H. J. (1994). Simultaneous optimization of  test-based decisions in education. Unpublished doctoral 
dissertation, University of Twente, The Netherlands. 

Vrijhof, B. J., Mellenbergh, G. J., & van den Brink, W. P. (1983). Assessing and studying utility functions 
in psychometric decision theory. Applied Psychological Measurement, 7, 341-357. 

Manuscript received 4/11/94 
Final version received 2/28/95 


