Long Dominating Cycles and Paths in Graphs with Large Neighborhood Unions

H. J. Broersma
H. J. Veldman
DEPARTMENT OF APPLIED MATHEMATICS
UNIVERSITY OF TWENTE P. O. BOX 217
7500 AE ENSCHEDE, THE NETHERLANDS

Abstract

Let G be a graph of order n and define $N C(G)=\min \{|N(u) \cup N(v)|$ $\mid u v \notin E(G)\}$. A cycle C of G is called a dominating cycle or D-cycle if $(U G)-V C)$ is an independent set. A D-path is defined analogously. The following result is proved: if G is 2 -connected and contains a D-cycle, then G contains a D-cycle of length at least $\min \{n, 2 N C(G)\}$ unless G is the Petersen graph. By combining this result with a known sufficient condition for the existence of a D-cycle, a common generalization of Ore's Theorem and several recent "neighborhood union results" is obtained. An analogous result on long D-paths is also established.

1. TERMINOLOGY AND NOTATIONS

We use [3] for terminology and notations not defined here, and consider simple graphs only. Throughout, let G be a graph of order n.

If G has a Hamilton cycle (a cycle containing every vertex of G), then G is called hamiltonian. G is traceable if G has a Hamilton path (a path containing every vertex of G). A cycle C of G is called a dominating cycle, or briefly D-cycle, if $V(G)-V(C)$ is an independent set of vertices in G. A dominating path or D-path is analogously defined. Two edges e_{1} and e_{2} of G are called remote if they are nonadjacent, and there is no edge of G joining an end of e_{1} and one of e_{2}. The degree of an edge $u v$ of G is the number of vertices in $V(G)-\{u, v\}$ adjacent to at least one of the vertices u and v.

The length of a longest cycle in G is denoted by $c(G)$, the order of a longest path by $p(G)$, the number of vertices in a maximum independent set by $\alpha(G)$, and the set of vertices adjacent to a vertex v by $N(v)$. We denote by $\sigma_{k}(G)$ the minimum value of the degree-sum of any k pairwise nonadjacent vertices; if $k>\alpha(G)$, we set $\sigma_{k}(G)=k(n-1)$. Instead of $\sigma_{1}(G)$ we use the more common notation $\delta(G)$. We denote by $\sigma_{k}^{\prime}(G)$ the minimum value of the degree-sum of any k pairwise remote edges; if G does not contain k pairwise remote edges, then $\sigma_{k}^{\prime}(G)=k(n-2)$. If G is noncomplete, then $N C(G)$ denotes $\min \{|N(u) \cup N(v)| \mid u v \notin E(G), u \neq v\}$; if G is complete, we set $N C(G)=n-1$. If $|E(G)|>0$, then $N C^{\prime}(G)$ denotes $\min \{|N(u) \cup N(v)|$ $\mid u v \in E(G)\}$; otherwise, $N C^{\prime}(G)=0$. By $N C^{\prime \prime}(G)$ we denote $\min \{\mid N(u) \cup$ $N(v) \| u, v \in V(G), u \neq v\}$. If no ambiguity can arise, we sometimes write α instead of $\alpha(G), \sigma_{k}$ instead of $\sigma_{k}(G)$, etc.

We now define two special classes of graphs. For $n \geq 5$, the graph G_{n} is defined as the join of K_{2} and the graph of order $n-2$ consisting of three disjoint complete graphs, the orders of which pairwise differ by at most one. For $n \geq 4$, the graph H_{n} is obtained from G_{n+1} by deleting a vertex of degree n.

2. MAIN RESULT AND CONSEQUENCES

A slightly stronger version of the following result was recently established.
Theorem 1 [1]. If G is 2 -connected and $\sigma_{3}(G) \geq n+2$, then $c(G) \geq$ $\min \{n, 2 N C(G)\}$.

It was shown in [1] that Theorem 1 is a common generalization of results in [5], [6], and [7].

A key ingredient in the proof of Theorem 1 is the following result of Bondy:

Theorem 2 [2]. If G is 2-connected and $\sigma_{3}(G) \geq n+2$, then every longest cycle of G is a D-cycle.

By the role of Theorem 2 in the proof of Theorem 1 we were led to investigate whether the conclusion of Theorem 1 still holds if G is only required to be 2 -connected and to have a D-cycle. Our main result is as follows.

Theorem 3. If G is 2 -connected and contains a D-cycle, then G contains a D-cycle of length at least $\min \{n, 2 N C(G)\}$ unless G is the Petersen graph.

Note that $c(G)=2 N C(G)-1$ if G is the Petersen graph.
The proof of Theorem 3 is postponed to Section 3.
The conclusion of Theorem 3 cannot be strengthened, as shown by complete bipartite graphs: for $2 \leq r \leq s$ we have $c\left(K_{r, s}\right)=2 r=2 N C\left(K_{r, s}\right)$.

Furthermore, the requirement that G contain a D-cycle, cannot be omitted: for $n \geq 8$ the graph G_{n} contains no D-cycle, while $c\left(G_{n}\right)=N C\left(G_{n}\right)+2$ if $n \equiv 2(\bmod 3)$ and $c\left(G_{n}\right)=N C\left(G_{n}\right)+3$ otherwise.

By combining Theorem 3 with Theorem 2 we obtain Theorem 1.
The following condition for the existence of a D-cycle occurs in [8].
Theorem 4 [8]. If G is 2 -connected and $\sigma_{3}^{\prime}(G) \geq n-1$, then G contains a D-cycle.

It was observed in [8] that the hypothesis of Theorem 4 is weaker than the hypothesis of Theorem 2. (Note that, on the other hand, the conclusion of Theorem 4 is weaker than the conclusion of Theorem 2.) Thus by combining Theorem 3 with Theorem 4 we obtain a result that is more general than Theorem 1.

Theorem 5. If G is 2 -connected and $\sigma_{3}^{\prime}(G) \geq n-1$, then $c(G) \geq$ $\min \{n, 2 N C(G)\}$ unless G is the Petersen graph.

Corollary 6. If G is 2 -connected and $N C^{\prime}(G) \geq \frac{1}{3}(n+5)$, then $c(G) \geq$ $\min \{n, 2 N C(G)\}$ unless G is the Petersen graph.

Proof. If G is 2 -connected and $N C^{\prime}(G) \geq \frac{1}{3}(n+5)$, then

$$
\sigma_{3}^{\prime}(G) \geq 3 \sigma_{1}^{\prime}(G)=3\left(N C^{\prime}(G)-2\right) \geq n-1 .
$$

Corollary 6 complements and partially improves the following result, since clearly $N C^{\prime \prime}(G) \leq \min \left\{N C(G), N C^{\prime}(G)\right\}$:

Theorem 7 [4]. If G is 2 -connected and $N C^{\prime \prime}(G) \leq \frac{1}{2} n$, then $c(G) \geq$ $2 N C^{\prime \prime}(G)-2$. For $N C^{\prime \prime}(G) \leq \frac{1}{3}(n+4)$, the result is sharp in the sense that longer cycles are not implied by the conditions.

An immediate consequence of Corollary 6 is the following:
Corollary 8. If G is 2 -connected, $N C^{\prime}(G) \geq \frac{1}{3}(n+5)$, and $N C(G) \geq \frac{1}{2} n$, then G is hamiltonian unless G is the Petersen graph.

Corollary 8 improves the following result.
Theorem 9 [4]. If G is 2-connected and $N C^{\prime \prime}(G) \geq \frac{1}{2} n$, then, for n sufficiently large, G is hamiltonian.

Theorem 3 has the following analogue:

Theorem 10. If G is connected and contains a D-path, then G contains a D-path of order at least $\min \{n, 2 N C(G)+1\}$.

Proof. Apply Theorem 3 to the join of G and K_{1}.
Again the complete bipartite graphs show that the conclusion of Theorem 10 cannot be strengthened. Furthermore, the requirement that G contain a D-path cannot be omitted, as shown by the graph H_{n} for $n \geq 7$.

Theorem 10 admits corollaries similar to those of Theorem 3.

3. PROOF OF THE MAIN RESULT

Throughout this section we assume that
$-G$ is 2 -connected and nonhamiltonian,
$-C$ is a longest D-cycle of G for which $\max \{d(v) \mid v \in V(G)-V(C)\}$ is as large as possible,
$-|V(C)| \leq 2 N C-1$.
We first introduce some additional notations. By \vec{C} we denote the cycle C with a given orientation. Let $u, v \in V(C)$. By $u \vec{C} v$ we denote the consecutive vertices on C from u to v in the direction specified by \vec{C}_{\rightarrow}. The same vertices, in reverse order, are given by $v \stackrel{C}{u}$. We will consider $u \vec{C} v$ and $v \stackrel{C}{u}$ both as paths and as vertex sets. We use u^{+}to denote the successor of u on \vec{C} and u^{-}to denote its predecessor. We write u^{++}instead of $\left(u^{+}\right)^{+}$and u^{--} instead of $\left(u^{-}\right)^{-}$. If $S \subseteq V(C)$, then $S^{+}=\left\{x^{+} \mid x \in S\right\}$ and $S^{-}=\left\{x^{-} \mid x \in S\right\}$. We write $u v \in P_{C}(G)$ if u and v are connected by a path of length at least 2 that is internally disjoint from C.

Before proving Theorem 3 we establish a number of lemmas, the first four of which have become so standard in hamiltonian graph theory that we omit their proofs.

Lemma 11. If $v \in V(C)$, then $v v^{+} \notin P_{C}(G)$.

Lemma 12. If $x \in V(G)-V(C)$ and $v_{1}, v_{2} \in N(x)$, then $v_{1}^{+} v_{2}^{+}, v_{1}^{-} v_{2}^{-} \notin$ $E(G) \cup P_{C}(G)$.

Lemma 13. Let $x \in V(G)-V(C), v_{1}, v_{2} \in N(x)$ and $v \in v_{2}^{+} \vec{C} v_{1}^{-}$. If $v_{1}^{+} v \in E(G) \cup P_{C}(G)$, then $v_{2}^{+} v^{+} \notin E(G) \cup P_{C}(G)$. If $v_{2}^{-} v \in E(G) \cup$ $P_{C}(G)$, then $v_{1}^{-} v^{-} \notin E(G) \cup P_{C}(G)$.

Lemma 14. Let $x \in V(G)-V(C), v_{1}, v_{2} \in N(x)$ and $v \in v_{2}^{+} \vec{C} v_{1}^{-}$. If $v_{1}^{+} v \in \mathrm{E}(G) \cup P_{C}(G)$, then $v_{2}^{-} v^{-}, v_{2}^{-} v^{+} \notin E(G) \cup P_{C}(G)$.

Lemma 15. Let $x \in V(G)-V(C)$ and $v_{1}, v_{2} \in N(x)$. If $\boldsymbol{v}_{1}^{+} v_{2}^{++} \in P_{C}(G)$, then $N\left(v_{2}^{+}\right) \cap(V(G)-(V(C) \cup\{x\})) \neq \varnothing$. If $v_{1}^{-} v_{2}^{--} \in P_{C}(G)$, then $N\left(v_{2}^{-}\right) \cap$ $(V(G)-(V(C) \cup\{x\})) \neq \varnothing$.

Proof. By symmetry, we need only prove the first part of the lemma. Suppose $v_{1}^{+} v_{2}^{++} \in P_{C}(G)$ and $N\left(v_{2}^{+}\right) \cap(V(G)-(V(C) \cup\{x\}))=\varnothing$. Let $v_{1}^{+} x_{1} \cdots x_{r} v_{2}^{++}$be a $\left(v_{1}^{+}, v_{2}^{++}\right)$-path that is internally disjoint from $C(r \geq 1)$. By Lemma 11, $x \notin\left\{x_{1}, \cdots, x_{r}\right\}$. Now the cycle $v_{1} x v_{2} \stackrel{\rightharpoonup}{C} v_{1}^{+} x_{1} \cdots x_{r} v_{2}^{++} \vec{C} v_{1}$ is a D-cycle longer than C, a contradiction.

Lemma 16. Let $x_{1}, x_{2} \in V(G)-V(C), A_{1}=N\left(x_{1}\right), A_{2}=N\left(x_{2}\right)$ and $A=$ $A_{1} \cup A_{2}$. Then $|A|=N C$ and either $\left|A \cap A^{+}\right|=1$ and $A \cup A^{+}=V(C)$ or $\left|A \cap A^{+}\right|=2$ and $\left|A \cup A^{+}\right| \geq|V(C)|-1$.

Proof. By Lemma 12, $\left|A_{1} \cap A_{2}^{+}\right| \leq 1$ and $\left|A_{2} \cap A_{1}^{+}\right| \leq 1$. Using Lemma 11 we conclude that $\left|A \cap A^{+}\right| \leq 2$. Hence

$$
2 N C-1 \geq|V(C)| \geq\left|A \cup A^{+}\right|=|A|+\left|A^{+}\right|-\left|A \cap A^{+}\right| \geq 2|A|-2
$$

implying that $|A| \leq N C$ and hence $|A|=N C$. The rest of the lemma also follows.

Lemma 17. Let $x \in V(G)-V(C)$ and $y \in V(C)$. Then $x y^{+} \notin E(G)$ or $x y^{-} \notin E(G)$.

Proof. Suppose $x y^{+}, x y^{-} \in E(G)$. If $N(y) \cap(V(G)-(V(C) \cup\{x\}))=\varnothing$, then $N(x) \cup N(y) \subseteq V(C)$ and, by Lemmas 11,12 , and $14, v^{+} \notin N(x) \cup$ $N(y)$ whenever $v \in N(x) \cup N(y)$, implying that $|N(x) \cup N(y)| \leq \frac{1}{2}|V(C)|<$ $N C$, a contradiction. Hence y has a neighbor x_{1} in $V(G)-(V(C) \cup\{x\})$. Set $A=N(x) \cup N\left(x_{1}\right)$. By Lemmas 11 and $12, y^{++}, y^{--} \notin A$. From Lemma 16 we conclude that $y^{+++} \in A$ or $y^{---} \in A$. Assume without loss of generality that $y^{+++} \in A$ and set $w=y^{+++}$. Then w^{-}has a neighbor x_{2} in $V(G)-(V(C) \cup\{x\})$: assuming the contrary, we obtain a contradiction as in the beginning of the proof if $w \in N(x)$, while we contradict Lemma 15 if $w \in N\left(x_{1}\right)$. By Lemma $12, x_{2} \neq x_{1}$.

We claim that $N\left(x_{2}\right) \cap\left(V(C)-\left(A \cup A^{+}\right)\right)=\varnothing$. This is clear if $V(C)=A \cup A^{+}$. Otherwise, by Lemma 16, $V(C)-\left(A \cup A^{+}\right)$contains a unique vertex z and $z^{+} \in A$. If $w, z^{+} \in N(x)$, then $x_{2} z \notin E(G)$ by Lemma 12. If $w \in N(x)$ and $z^{+} \in N\left(x_{1}\right)$, then $x_{2} z \notin E(G)$ by Lemma 14. If $w \in N\left(x_{1}\right)$ and $z^{+} \in N(x)$, then $x_{2} z \notin E(G)$ by Lemma 13. Finally, if $w, z^{+} \in N\left(x_{1}\right)$, then $x_{2} z \notin E(G)$ by Lemma 12. Hence, indeed, $N\left(x_{2}\right) \cap$ $\left(V(C)-\left(A \cup A^{+}\right)\right)=\varnothing$.

By Lemmas 12 and $13, N\left(x_{2}\right) \cap\left(A^{+}-\left\{w^{-}\right\}\right)=\varnothing$. Now if $w \notin N\left(x_{1}\right)$, it follows that $N\left(x_{1}\right) \cup N\left(x_{2}\right) \subseteq\left(A \cup\left\{w^{-}\right\}\right)-\left\{y^{+}, w\right\}$, whence $\mid N\left(x_{1}\right) \cup$
$N\left(x_{2}\right)\left|<|A|=N C\right.$, a contradiction. If $w \in N\left(x_{1}\right)$, then $N\left(x_{1}\right) \cup$ $N\left(x_{2}\right) \subseteq\left(A \cup\left\{w^{-}\right\}\right)-\left\{y^{+}, y^{-}\right\}$, and we again obtain a contradiction.

Lemma 18. If $x_{1}, x_{2} \in V(G)-V(C)$, then $N\left(x_{1}\right) \cap N\left(x_{2}\right)=\varnothing$.
Proof. Suppose $N\left(x_{1}\right) \cap N\left(x_{2}\right)$ contains a vertex y. From Lemma 16 we conclude that y^{++}or y^{--}is in $N\left(x_{1}\right) \cup N\left(x_{2}\right)$. In either case we contradict Lemma 17.

Proof of Theorem 3. We distinguish two main cases and a number of subcases, in each of which we either reach contradictions with the assumptions at the beginning of this section or the conclusion that G is the Petersen graph.

Case 1. $|V(G)-V(C)| \geq 2$.
If $|V(G)-V(C)| \geq 4$, then by Lemma $18 V(G)-V(C)$ contains two vertices z_{1}, z_{2} with $\left|N\left(z_{1}\right) \cup N\left(z_{2}\right)\right| \leq \frac{1}{2}|V(C)|<N C$, a contradiction. Hence $|V(G)-V(C)| \leq 3$.

Let x_{1} and x_{2} be two vertices in $V(G)-V(C)$. Set $A_{i}=N\left(x_{i}\right)(i=1,2)$ and $A=A_{1} \cup A_{2}$. By Lemma 16 there are two possibilities.

Case 1.1. $\left|A \cap A^{+}\right|=1$ and $A \cup A^{+}=V(C)$.
Let y be the unique vertex in $A \cap A^{+}$. Assume without loss of generality that $x_{1} y^{-}, x_{2} y \in E(G)$. Set $w=y^{++}, z=w^{++}$. By Lemma 17, $w \in A_{1}$ and $z \in A_{2}$. By Lemma 15, w^{+}has a neighbor x_{3} in $V(G)-\left(V(C) \cup\left\{x_{1}, x_{2}\right\}\right.$. Since G is 2-connected, x_{3} has a neighbor v on $V(C)$ with $v \neq w^{+}$. By Lemmas 17 and 18, $v \in z^{++} \vec{C} y^{--}$and $v \notin A$. Hence $v \in A^{+}$. If $v^{-} \in A_{1}$, then we contradict Lemma 12 (with $x=x_{1}$). If $v^{-} \in A_{2}$, then we contradict Lemma 13 (with $x=x_{1}$).

Case 1.2. $\left|A \cap A^{+}\right|=2$ and $\left|A \cup A^{+}\right| \geq|V(C)|-1$.
Set $A \cap A^{+}=\left\{y_{1}, y_{2}\right\}$. Assume without loss of generality that $y_{1}^{-} \in$ $N\left(x_{1}\right), y_{1} \in N\left(x_{2}\right)$. Using Lemma 12 we conclude that $y_{2} \in N\left(x_{1}\right), y_{2}^{-} \in$ $N\left(x_{2}\right)$. Since $\left|V(C)-\left(A \cup A^{+}\right)\right| \leq 1$, we may assume without loss of generality that $V(C)-\left(A \cup A^{+}\right) \subseteq y_{1} \vec{C}_{2}^{-}$. Set $w=y_{2}^{++}, z=w^{++}$. Since $y_{2} \vec{C} y_{1}^{-} \subseteq A \cup A^{+}, w, z \in A$. By Lemma $17, w \in A_{2}$ and $z \in A_{1}$. By Lemma 15, y_{2}^{+}has a neighbor x_{3} in $V(G)-\left(V(C) \cup\left\{x_{1}, x_{2}\right\}\right)$ while w^{+}has a neighbor x_{4} in $V(G)-\left(V(C) \cup\left\{x_{1}, x_{2}\right\}\right)$. Since $|V(G)-V(C)| \leq 3$, $x_{3}=x_{4}$. But then we contradict Lemma 17 (with $x=x_{3}$).

Case 2. $|V(G)-V(C)|=1$.
Since we have assumed that $|V(C)| \leq 2 N C-1$, we have $N C \geq \frac{1}{2} n$. Let x be the unique vertex in $V(G)-V(C)$ and v_{1}, \ldots, v_{k} the neighbors of x, oc-
curring on \vec{C} in the order of their indices. For $i=1, \ldots, k$, set $u_{i}=v_{i}^{+}$, $w_{i}=v_{i+1}^{-}$and $T_{i}=u_{i} \vec{C} w_{i}$ (indices mod k). We call the sets T_{1}, \ldots, T_{k} segments of $C ; T_{i}$ is a t-segment if $\left|T_{i}\right|=t(i=1, \ldots, k)$. We set $T=\cup_{i=1}^{k} T_{i}$. For a vertex v of G and an integer $i \in\{1, \ldots, k\}$, we denote $N(v) \cap T_{i}$ by $N_{\mathrm{i}}(v)$; by $N_{T}(v)$ we denote $\cup_{i=1}^{k} N_{i}(v)$.

By Lemma 17, C contains no 1 -segments. Two possibilities remain.
Case 2.1. C contains a 2 -segment.
Assume without loss of generality that T_{1} is a 2 -segment. Define the function $f: V(G) \rightarrow\{0,1,2\}$ by $f(v)=\left|N(v) \cap\left\{u_{1}, w_{1}\right\}\right|$. From Lemmas 12 and 14 we deduce that

$$
\begin{equation*}
f\left(u_{i}\right)+f\left(w_{i}\right) \leq 1 \quad \text { for } i=2, \ldots, k \tag{1}
\end{equation*}
$$

Lemma 14 also implies that

$$
\begin{equation*}
\text { if } \quad v \in u_{2} \vec{C} w_{k} \text { and } f(v)=2, \quad \text { then } f\left(v^{-}\right)=f\left(v^{+}\right)=0 \tag{2}
\end{equation*}
$$

From (1) and (2) we conclude that

$$
\begin{equation*}
\left|N_{i}\left(u_{1}\right)\right|+\left|N_{i}\left(w_{1}\right)\right|=\sum_{v \in T_{i}} f(v) \leq\left|T_{i}\right|-1 \quad \text { for } i=2, \ldots, k, \tag{3}
\end{equation*}
$$

whence

$$
\left|N_{T}\left(u_{1}\right)\right|+\left|N_{T}\left(w_{1}\right)\right| \leq 2+\sum_{i=2}^{k}\left(\left|T_{i}\right|-1\right)=|V(C)|-2 k+1
$$

Assuming without loss of generality that $\left|N_{T}\left(u_{1}\right)\right| \leq\left|N_{T}\left(w_{1}\right)\right|$ we thus have

$$
\left|N_{T}\left(u_{1}\right)\right| \leq \frac{1}{2}(|V(C)|+1)-k=\frac{1}{2} n-k,
$$

implying that

$$
\begin{equation*}
\frac{1}{2} n \leq N C \leq\left|N(x) \cup N\left(u_{1}\right)\right|=k+\left|N_{T}\left(u_{1}\right)\right| \leq \frac{1}{2} n . \tag{4}
\end{equation*}
$$

Since all inequalities in (4) are in fact equalities, (3) also holds with equality:

$$
\begin{equation*}
\sum_{v \in T_{i}} f(v)=\left|T_{i}\right|-1 \quad \text { for } i=2, \ldots, k \tag{5}
\end{equation*}
$$

We now show that

$$
\begin{equation*}
f\left(u_{i}^{+}\right) \neq 2 \text { and } f\left(w_{i}^{-}\right) \neq 2 \quad \text { for } i=2, \ldots, k \tag{6}
\end{equation*}
$$

Suppose, e.g., $f\left(u_{i}^{+}\right)=2$ for some $i \in\{2, \ldots, k\}$. If $v \in u_{i}^{+} \vec{C} w_{k}$ and $u_{i} v, u_{i} v^{+} \in E(G)$, then the cycle $v_{1} x v_{i} C u_{1} u_{i}^{+} \vec{C} v u_{i} v^{+} \vec{C} v_{1}$ contradicts the choice of $C_{\dot{+}}$ If $\underset{\vec{C}}{v} \in u_{1} \vec{C} w_{i-1}$ and $u_{i} v, u_{i} v^{+} \in E(G)$, then the cycle $v_{1} x v_{i} \stackrel{\rightharpoonup}{C} v^{+} u_{i} v \stackrel{\leftarrow}{C} u_{1} u_{i}^{+} \vec{C} v_{1}$ contradicts the choice of C. Together with Lemmas 11-14 these observations show that $v^{+} \notin N(x) \cup N\left(u_{i}\right)$ whenever $v \in N(x) \cup N\left(u_{i}\right)$. But then $\left|N(x) \cup N\left(u_{i}\right)\right| \leq \frac{1}{2}|V(C)|<\frac{1}{2} n \leq N C$. This contradiction establishes (6).

In view of (6), (5) holds only if

$$
\begin{align*}
& \text { for } i=2, \ldots, k, \text { either } f\left(u_{i}\right)=0 \text { and } f(v)=1 \text { for every } \\
& v \in T_{i}-\left\{u_{i}\right\} \text { or } f\left(w_{i}\right)=0 \text { and } f(v)=1 \text { for every } v \in T_{i}-\left\{w_{i}\right\} \tag{7}
\end{align*}
$$

If, for some $i \in\{2, \ldots, k\}, N_{i}\left(u_{1}\right) \neq \varnothing$ and $N_{i}\left(w_{1}\right) \neq \varnothing$, then by (7) T_{i} contains a vertex v such that either $u_{1} v, w_{1} v^{+} \in E(G)$ or $u_{1} v^{+}, w_{1} v \in E(G)$, contradicting Lemma 14 . Hence

$$
\begin{equation*}
\text { for } i=2, \ldots, k, \quad \text { either } N_{i}\left(u_{1}\right)=\varnothing \text { or } N_{i}\left(w_{1}\right)=\varnothing \tag{8}
\end{equation*}
$$

Combining (7) and (8) and using Lemma 12 we conclude that

$$
\begin{align*}
& \text { for } i=2, \ldots, k, \text { either } f\left(u_{i}\right)=0 \text { and } u_{1} v \in E(G) \text { for every } v \in \\
& T_{i}-\left\{u_{i}\right\} \text { or } f\left(w_{i}\right)=0 \text { and } w_{1} v \in E(G) \text { for every } v \in T_{i}-\left\{w_{i}\right\} . \tag{9}
\end{align*}
$$

We now show that all segments of C are 2 -segments. Suppose there exist integers r and t with $2 \leq r \leq k$ and $t \geq 3$ such that T_{r} is a t-segment. In view of (9) we may assume, without loss of generality, that $f\left(u_{r}\right)=0$ and $u_{1} v \in E(G)$ for every $v \in T_{r}-\left\{u_{r}\right\}$. By (9) and Lemma 14, $N_{i}\left(w_{1}\right)=\varnothing$ for $i=2, \ldots, r$. If $r<k$, then $N_{i}\left(w_{1}\right)=\varnothing$ for $i=r+1, \ldots, k$ also, otherwise $w_{1} u_{s} \in \mathrm{E}(G)$ for some $s \in\{r+1, \ldots, k\}$ and the cycle $v_{1} x v_{s} \stackrel{C}{C} w_{r} u_{1} w_{r}^{-} \stackrel{\subset}{C}$ $w_{1} u_{s} \vec{C} v_{1}$ contradicts the choice of C. It follows that

$$
\left|N(x) \cup N\left(w_{1}\right)\right|=k+\left|N_{T}\left(w_{1}\right)\right|=k+1 \leq \frac{1}{3}(n-2)+1<\frac{1}{2} n .
$$

This contradiction shows that C indeed contains 2 -segments only, implying that $n=3 k+1$.

Set $m=\max \left\{i \mid u_{1} w_{i} \in E(G)\right\}$. Then, by (9) and Lemma 14, $u_{1} w_{i} \in E(G)$ for $1 \leq i \leq m$, while $w_{1} u_{j} \in E(G)$ for $j=1$ and $m+1 \leq j \leq k$. If $m<\frac{1}{2}(k+1)$, then

$$
\left|N(x) \cup N\left(u_{1}\right)\right|=k+\left|N_{T}\left(u_{1}\right)\right|=k+m<\frac{1}{2}(3 k+1)=\frac{1}{2} n
$$

a contradiction. If $m>\frac{1}{2}(k+1)$, then

$$
\left|N(x) \cup N\left(w_{1}\right)\right|=k+\left|N_{T}\left(w_{1}\right)\right|=k+k-m+1<\frac{1}{2}(3 k+1)=\frac{1}{2} n
$$

again a contradiction. Hence $m=\frac{1}{2}(k+1)$ and k is odd.

We have shown that $u_{1} w_{i} \in E(G)$ for $1 \leq i \leq m$. By the same token, $u_{k} w_{i} \in E(G)$ for $1 \leq i \leq m-1$. Now by Lemma $13, u_{1} v_{i} \notin E(G)$ for $i=2, \ldots, m$. By Lemma $14, u_{1} v_{i} \notin E(G)$ for $i=m+1, \ldots, k$. Hence $N\left(u_{1}\right) \subseteq\left\{w_{1}, \ldots, w_{m}, v_{1}\right\}$ and, similarly, $N\left(u_{2}\right) \subseteq\left\{w_{2}, \ldots, w_{m+1}, v_{2}\right\}$. Thus

$$
\frac{1}{2} n \leq\left|N\left(u_{1}\right) \cup N\left(u_{2}\right)\right| \leq m+3=\frac{1}{2}(k+1)+3=\frac{1}{2} n-k+3 .
$$

It follows that $k=3$ and $N\left(u_{1}\right)=\left\{w_{1}, w_{2}, v_{1}\right\}$. An argument of symmetry gives us $N\left(u_{i}\right)$ and $N\left(w_{i}\right)$ for each $i \in\{1,2,3\}$. We conclude that the Petersen graph is a spanning subgraph of G. Since the Petersen graph is a maximal nonhamiltonian graph, G itself must be the Petersen graph.

Case 2.2. \quad contains no 2 -segments.
Then $d(x) \leq \frac{1}{4}|V(C)|<\frac{1}{4} n$. If $v \in T$, then $|N(x) \cup N(v)| \geq \frac{1}{2} n$, implying that $d(v)>\frac{1}{4} n$. From the maximality of $\max \{d(v) \mid v \in V(G)-V(C)\}$, we conclude that
if $v \in T$, then G contains no cycle with vertex set $V(G)-\{v\}$.
For $i=1,2$, let y_{i} be the first vertex of T_{i} such that $y_{i} v_{i}^{-} \notin E(G)$. Set $Y_{11}=N_{1}\left(y_{1}\right), Y_{12}=\left(N_{1}\left(y_{2}\right)\right)^{+}, Y_{21}=\left(N_{2}\left(y_{1}\right)\right)^{+}, Y_{22}=N_{2}\left(y_{2}\right)$, and for $i=$ $3, \ldots, k, Y_{i 1}=N_{i}\left(y_{1}\right), Y_{i 2}=\left(N_{i}\left(y_{2}\right)\right)^{-}$. By a variation of Lemma 12 we have

$$
\begin{align*}
& y_{1} v \notin E(G) \text { for } v \in u_{2} \vec{C} y_{2}, y_{2} v \notin E(G) \text { for } v \in u_{1} \vec{C} y_{1} \text {, and } \\
& y_{i} u_{j} \notin E(G) \text { for } i=1,2 \text { and } j=3, \ldots, k . \tag{11}
\end{align*}
$$

(If, e.g., $y_{1} y_{2} \in E(G)$, then the cycle $v_{1} x v_{2} \vec{C} y_{2}^{-} w_{1} \stackrel{\rightharpoonup}{C} y_{1} y_{2} \vec{C} w_{k} y_{1} \stackrel{\rightharpoonup}{C} v_{1}$ contradicts the choice of C). From (11) and a similar variation of Lemma 13 we deduce that $Y_{i 1} \cap Y_{i 2}=\varnothing(i=1, \ldots, k)$. By (11) and the way y_{2} was chosen, $Y_{11} \cup Y_{12} \subseteq T_{1}-\left\{y_{1}\right\}$. By (11) and (10) (with $v=u_{i}$), $Y_{i 1} \cup Y_{i 2} \subseteq T_{i}-\left\{u_{i}\right\}$ ($i=3, \ldots, k-1$). If $k \geq 3$, then $Y_{21} \cup Y_{22} \subseteq\left(T_{2}-\left\{y_{2}\right\}\right) \cup\left\{v_{3}\right\}$ (by (11)) and $Y_{k 1} \cup Y_{k 2} \subseteq T_{k}-\left\{u_{k}, w_{k}\right\}$ (by (11), (10), and the way y_{1} was chosen). If $k=2$, then the choice of y_{1} implies $Y_{21} \cup Y_{22} \subseteq T_{2}-\left\{y_{2}\right\}$. In both cases we conclude that

$$
\begin{align*}
\left|N_{T}\left(y_{1}\right)\right|+\left|N_{T}\left(y_{2}\right)\right| & =\sum_{i=1}^{k}\left(\left|N_{i}\left(y_{1}\right)\right|+\left|N_{i}\left(y_{2}\right)\right|\right)=\sum_{i=1}^{k}\left(\left|Y_{i 1}\right|+\left|Y_{i 2}\right|\right) \\
& =\sum_{i=1}^{k}\left|Y_{i 1} \cup Y_{i 2}\right| \leq|T|-k=n-2 k-1 . \tag{12}
\end{align*}
$$

On the other hand, we have

$$
\frac{1}{2} n \leq\left|N(x) \cup N\left(y_{i}\right)\right|=|N(x)|+\left|N_{T}\left(y_{i}\right)\right|=k+\left|N_{T}\left(y_{i}\right)\right| \quad(i=1,2),
$$

whence $\left|N_{T}\left(y_{1}\right)\right|+\left|N_{T}\left(y_{2}\right)\right| \geq n-2 k$, contradicting (12).

References

[1] D. Bauer, G. Fan, and H. J. Veldman, Hamiltonian properties of graphs with large neighborhood unions. Preprint (1989).
[2] J. A. Bondy, Longest paths and cycles in graphs of high degree. Research report CORR80-16, Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada (1980).
[3] J. A. Bondy and U.S.R. Murty, Graph Theory with Applications. Macmillan, London, and Elsevier, New York (1976).
[4] R. J. Faudree, R. J. Gould, M. S. Jacobson, and L. M. Lesniak, Neighborhood unions and a generalization of Dirac's Theorem. Preprint (1988).
[5] R. J. Faudree, R. J. Gould, M. S. Jacobson, and L. M. Lesniak, Neighborhood unions and highly hamiltonian graphs. Preprint (1988).
[6] R. J. Faudree, R. J. Gould, M. S. Jacobson, and R. H. Schelp, Neighborhood unions and hamiltonian properties in graphs. J. Combinat. Theory B 46 (1989) 1-20.
[7] O. Ore, Note on Hamilton circuits. Am. Math. Month. 67 (1960) 55.
[8] H. J. Veldman, Existence of dominating cycles and paths. Discrete Math. 43 (1983) 281-296.

