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ABSTRACT 

Let G be a graph of order n and define NC(G) = min{l/V(u) U N(u)l 
Iuu $& E(G)}. A cycle C of G is called a dominating cycle or D-cycle if 
MG) - MC) is an independent set. A D-path is defined analogously. The fol- 
lowing result is proved: if G is 2-connected and contains a D-cycle, then 
G contains a D-cycle of length at least rnin(n, WCIG)} unless G is the 
Petersen graph. By combining this result with a known sufficient condition 
for the existence of a D-cycle, a common generalization of Ore's Theorem 
and several recent "neighborhood union results" is obtained. An analogous 
result on long D-paths is also established. 

1. TERMINOLOGY AND NOTATIONS 

We use [3] for terminology and notations not defined here, and consider 
simple graphs only. Throughout, let G be a graph of order n. 

If G has a Hamilton cycle (a cycle containing every vertex of G), then G 
is called hamiltonian. G is traceable if G has a Hamilton path (a path con- 
taining every vertex of G). A cycle C of G is called a dominating cycle, or 
briefly D-cycle, if V(G) - V(C) is an independent set of vertices in G. A 
dominatingpath or D-path is analogously defined. Two edges e l  and ez of 
G are called remote if they are nonadjacent, and there is no edge of G join- 
ing an end of el  and one of e2. The degree of an edge uu of G is the number 
of vertices in V(G)-{u,u} adjacent to at least one of the vertices u and u. 
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The length of a longest cycle in G is denoted by c(G), the order of a 
longest path byp(G), the number of vertices in a maximum independent set 
by a(G), and the set of vertices adjacent to a vertex u by N(u).  We denote by 
ak(G) the minimum value of the degree-sum of any k pairwise nonadjacent 
vertices; if k > a(G), we set gk(G) = k(n - 1). Instead of uI (G) we use 
the more common notation 6(G). We denote by aL(G) the minimum value 
of the degree-sum of any k pairwise remote edges; if G does not contain k 
pairwise remote edges, then u;(G) = k(n - 2). If G is noncomplete, then 
NC(C) denotes min{lN(u) U N(u)l Iuu $Z E(G), u f u}; if G is complete, we 
set NC(G) = n - 1. If IE(G)I > 0, then NC'(G) denotes min{lN(u) U N(u)l 
(uu E E(G)}; otherwise, NC'(G) = 0. By NC"(G) we denote min{(N(u) U 
N(u)l Iu, u E V(G),  u f u}. If no ambiguity can arise, we sometimes write 
a instead of a(@, U k  instead of ak(G), etc. 

We now define two special classes of graphs. For n 2 5,  the graph G ,  is 
defined as the join of K 2  and the graph of order n - 2 consisting of three 
disjoint complete graphs, the orders of which pairwise differ by at most 
one. For n 2 4, the graph H ,  is obtained from G,,, by deleting a vertex of 
degree n. 

2. MAIN RESULT AND CONSEQUENCES 

A slightly stronger version of the following result was recently established. 

Theorem 1 [l]. If G is 2-connected and a3(G) 2 n + 2, then c(G) 1 
min{n, 2NC(G)}. 

It was shown in [l] that Theorem 1 is a common generalization of results 

A key ingredient in the proof of Theorem 1 is the following result of 
in [5], [6], and [7]. 

Bondy : 

Theorem 2 [2]. 
longest cycle of G is a D-cycle. 

If C is 2-connected and a3(G) L n + 2, then every 

By the role of Theorem 2 in the proof of Theorem 1 we were led to investi- 
gate whether the conclusion of Theorem 1 still holds if G is only required 
to be 2-connected and to have a D-cycle. Our main result is as follows. 

Theorem 3. If G is 2-connected and contains a D-cycle, then G contains 
a D-cycle of length at least min{n, 2NC(G)} unless G is the Petersen graph. 

Note that c(G) = 2NC(G) - 1 if G is the Petersen graph. 
The proof of Theorem 3 is postponed to Section 3. 
The conclusion of Theorem 3 cannot be strengthened, as shown by com- 

plete bipartite graphs: for 2 I r I s we have C ( K ~ , ~ )  = 2r = 2NC(K,,,).  
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Furthermore, the requirement that G contain a D-cycle, cannot be omit- 
ted: for n L 8 the graph G ,  contains no D-cycle, while c(C,) = NC(C,) + 2 
if n = 2 (mod 3) and c(G,) = NC(G,) + 3 otherwise. 

By combining Theorem 3 with Theorem 2 we obtain Theorem 1. 
The following condition for the existence of a D-cycle occurs in [S]. 

Theorem 4 [S]. If G is 2-connected and d ( G )  L n - 1, then G contains 
a D-cycle. 

It was observed in [8] that the hypothesis of Theorem 4 is weaker than 
the hypothesis of Theorem 2. (Note that, on the other hand, the conclusion 
of Theorem 4 is weaker than the conclusion of Theorem 2.) Thus by 
combining Theorem 3 with Theorem 4 we obtain a result that is more gen- 
eral than Theorem 1. 

Theorem 5. If G is 2-connected and a;(G) 2 n - 1, then c(G) 2 
min{n, 2NC(G)} unless G is the Petersen graph. 

Corollary 6. If G is 2-connected and NC’(G) 2 f(n + 5) ,  then c(G) 2 
min{n, 2NC(G)} unless G is the Petersen graph. 

ProoJ: If G is 2-connected and NC‘(G) 2 $(n + 5) ,  then 

Corollary 6 complements and partially improves the following result, since 
clearly NC”(G) I min{NC(G), NC’(G)}: 

Theorem 7 [4]. If G is 2-connected and NC”(G) I $, then c(G) 2 
2NC”(G) - 2. For NC”(G) I f(n + 4), the result is sharp in the sense that 
longer cycles are not implied by the conditions. 

An immediate consequence of Corollary 6 is the following: 

Corollary 8. If G is 2-connected, NC’(G) 1 f(n + 5),  and NC(G) 2 in, 
then G is hamiltonian unless G is the Petersen graph. 

Corollary 8 improves the following result. 

Theorem 9 [4]. If G is 2-connected and NC”(G) 1 in, then, for n suffi- 
ciently large, G is hamiltonian. 

Theorem 3 has the following analogue: 
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Theorem 10. If G is connected and contains a D-path, then G contains a 
D-path of order at least min{n, 2NC(G) + 1). 

Proof: Apply Theorem 3 to the join of G and K,. I 

Again the complete bipartite graphs show that the conclusion of 
Theorem 10 cannot be strengthened. Furthermore, the requirement that G 
contain a D-path cannot be omitted, as shown by the graph H,, for n 2 7. 

Theorem 10 admits corollaries similar to those of Theorem 3. 

3. PROOF OF THE MAIN RESULT 

Throughout this section we assume that 

-G is 2-connected and nonhamiltonian, 
-C is a longest D-cycle of G for which max{d(u)lu E V(G) - V(C)}  is as 

large as possible, 

We first introduce some additional notations. By we denote the cycle C 
with a given orientation. Let u , u  E V(C) .  By uCu we denot+e the con- 
secutive vertices on C from u to u in the Cirection specified by C; The sarge 
vertices, in reverse order, are given by uCu. We will consider uCu and uCu 
eoth as paths and as vertex sets. We use u' to denote the successor of u on 
C and u -  to denote its predecessor. We write u++ instead of (u')' and u--  
instead of (u- ) - .  If S C V(C), then S' = {x' lx E S} and S- = {x- lx  E S}. 
We write uu E Pc(G) if u and u are connected by a path of length at least 2 
that is internally disjoint from C. 

Before proving Theorem 3 we establish a number of lemmas, the first 
four of which have become so standard in hamiltonian graph theory that 
we omit their proofs. 

-IV(C)l I 2NC - 1. 

Lemma 11. If u E V(C) ,  then uu+ 4 Pc(G). 

Lemma 13. Let x E V(G) - V(C) ,  U I ,  uz E N ( x )  and u E uzeu; .  If 
u:u E E(G) U Pc(G), then u;u+ @E(G) U Pc(G). If u;u E E(G) U 
Pc(G), then u;u- @ E(G) U Pc(G). 

Lemma 14. Let x E V(G) - V(C), u I , u 2  E N ( x )  and u E u;Cu;. If 
u:u E E(G) U Pc(G), then u;u- ,  u;u' fj! E(G) U Pc(G). 

+ 
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Lemma 15. Letx E V(G)  - V(C) and u1,u2 E N(x). If u:u;+ E Pc(G), 
thenN(u;) n (V(G) -(V(C) U {x})) f 0. If u;u;- E Pc(G), thenN(u;) n 
(W) - (W) u {XI)) f 0- 

Prooj By symmetry, we need only prove the first part of the lemma. 
Suppose u:u;+ E Pc(G) and N(u;) n (V(G)  - (V(C) U {x})) = 0. Let 
u;xl ***x,u;+ be a (u:, u;+)-path that is internally disjoip from C (r 22). 
By Lemma 11, x 4 {xl,-**,xr}. Now the cycle u l x u 2 C u ~ x l ~ ~ ~ x r u ~ + C u ~  
is a D-cycle longer than C, a contradiction. I 

Lemma 16. Letx1,xz E V(G) - V(C),A1 = N(x1),A2 = N(xZ) andA = 
A1 U Az.  Then IAl = NC and either IA f l  A+[  = 1 andA U A +  = V ( C )  or 
IA n A + [  = 2 and IA U A+I 2 IV(C)l - 1. 

Prooj By Lemma 12, [A1 n A ; (  I 1 and IA2 n A ; /  I 1. Using 
Lemma 11 we conclude that IA n A'[ I 2. Hence 

implying that IAl I NC and hence IAl = NC. The rest of the lemma also 
follows. I 

Lemma 17. Let x E V(G)  - V(C) and y E V(C) .  Then xy + 4 E(G) or 
XY - @ E(G). 

Prooj Supposexy+,xy- E E(G). IfN(y) n (V(G) - (V(C) U {x})) = 0, 
then N(x) U N(y) C V(C)  and, by Lemmas 11, 12, and 14, u+ 4N(x)  U 
N(y) whenever u E N(x) U N(y), implying that IN(x) U N(y)l  I $V(C)l c 
NC, a contradiction. Hencey has a neighborxl in V(G)  - (V(C) U {x}). 
Set A = N(x) U N(xl). By Lemmas 11 and 12, y++, y-- $LA. From 
Lemma 16 we conclude that y +++ E A or y--- E A. Assume without loss 
of generality thaty+++ E A and set w = y+++. Then w -  has a neighborxz 
in V(G) - (V(C) U {x}): assuming the contrary, we obtain a contradiction 
as in the beginning of the proof if w E N(x) ,  while we contradict 
Lemma 15 if w E N(x1). By Lemma 12,xz f xl. 

We claim that N(xZ) n (V(C) - ( A  U A+)) = 0. This is clear if 
V(C) = A U A'. Otherwise, by Lemma 16, V(C) - (A U A') contains a 
unique vertex z and z +  E A. If w , z +  E N(x), then xzz e E ( G )  by 
Lemma 12. If w E N(x) andz' E N(xl), thenxg $E E(G) by Lemma 14. If 
w E N(xl) and z +  E N(x), then x2z $ E ( G )  by Lemma 13. Finally, if 
w , z +  E N(xl), then x2z 4 E(G) by Lemma 12. Hence, indeed, N(x2) n 

By Lemmas 12 and 13, N ( x Z )  n (A+ - {w- } )  = 0. Now if w @ N(xl), it 
follows that N(xl) U N(x2) C (A U {w-}) - {y+, w}, whence IN(xl) U 

(V(C) - (A u A+))  = 0. 
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N(xz ) (  < 1-41 = NC, a contradiction. If w E N ( n , ) ,  then N ( x l )  U 
N(xz )  G ( A  U {w-}) - {y',y-}, and we again obtain a contradiction. I 

Lemma 18. 

Prooj Suppose N ( x J  n N(x2)  contains a vertexy. From Lemma 16 we 
conclude thaty" o ry - -  is in N ( x , )  U N(x2) .  In either case we contradict 
Lemma 17. I 

I fx1 ,x2  E V(G)  - V(C) ,  then N ( x l )  fl N ( x 2 )  = 0. 

Proof of Theorem 3. We distinguish two main cases and a number of 
subcases, in each of which we either reach contradictions with the assump- 
tions at the beginning of this section or the conclusion that G is the 
Petersen graph. 

Case 1. [V(G)  - V(C)( 2 2. 

If (V(G) - V(C)l 2 4, then by Lemma 18 V(G) - V ( C )  contains two ver- 
tices z,, z2 with IN(zI)  U N(z2)I I $(V(C)l < NC, a contradiction. Hence 

Let x ,  andx2 be two vertices in V(G) - V(C). M A i  = N(xi )  (i = 1,2) 
and A = A U A 2 .  By Lemma 16 there are two possibilities. 

Case 1.2. (A fl A+( = 1 andA U A' = V(C). 

(V(G) - V(C)l I 3. 

Let y be the unique vertex in A n A+.  Assume without loss of generality 
thatxly-,x2y E E(G). Set w = y + + , z  = w++. By Lemma 17, w E A 1  and 
z E A 2 .  By Lemma 15, w +  has a neighborx3 in V(G)  - (V(C)  U { x l , x 2 } ) .  
Since G is 2-connected, x 3  bas a neighbor u on V(C)  with u f w+. By 
Lemmas 17 and 18, u E z++Cy-- and u $!A. Hence u E A'. If u-  E A , ,  
then we contradict Lemma 12 (withx = x , ) .  If u-  E A 2 ,  then we contra- 
dict Lemma 13 (withx = xl). 

Case 1.2. 

Set A n A' = {yI,y2}. Assume without loss of generality that y; E 
N ( x l ) ,  y, E N ( x Z ) .  Using Lemma 12 we conclude that y2 E N ( x l ) ,  y; E 
N ( x Z ) .  Since IV(C) - (A U A+)\ I l,+we may assume without loss of gen- 
erslity that V(C)  - (A  U A') G y,Cy;. Set w = y$+, z = wc+.  Since 
y2Cy; C A U A', w,z E A. By Lemma 17, w E A 2  and z E A , .  By 
Lemma 15,y; has a neighborx, in V(G)  - (V(C) U {XI,XZ}) while w +  has 
a neighbor x4 in V ( G )  - (V(C)  U { x , , x 2 } ) .  Since (V(G) - V(C) [  5 3 ,  
x ,  = x4. But then we contradict Lemma 17 (withx = x, ) .  

( A  f l  A'( = 2 and (A U A'( 2 (V(C)l - 1. 

Case 2. 

Since we have assumed that (V(C)( 5 2NC - 1, we have NC 2 in. Let x 
be the unique vertex in V ( G )  - V ( C )  and u , ,  . . . , Vk the neighbors of x ,  oc- 

IV(G) - V(C)\ = 1. 
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-b 

curring on C in the oider of their indices. For i = 1,. . . , k, set ui = u:, 
wi = uiil and T = uiCwi (indices mod k). We call the sets T I , . .  . ,Tk seg- 
ments of C; T, is a t-segment if 1x1 = t (i = 1,. . . ,k) .  We set T = UL1 T,. 
For a vertex u of G and an integer i E (1,. . . , k}, we denote N(u) fl T, by 
Ni(u); by NT(u) we denote Uf=lNi(u).  

By Lemma 17, C contains no 1-segments. Two possibilities remain. 

Cuse 2.1. C contains a 2-segment. 

Assume without loss of generality that Tl is a 2-segment. Define the 
functionf: V(G) + {0,1,2} byf(u) = JN(u) n {u I ,w I }J .  From Lemmas 12 
and 14 we deduce that 

f(ui) + f ( w i )  5 1 for i = 2,. . . , k .  (1) 

Lemma 14 also implies that 

From (1) and (2) we conclude that 

whence 

Assuming without loss of generality that INT(ul)l I JNT(wI)I we thus have 

JNT(u~)J I i(JV(C)J + 1) - k = $I - k ,  

implying that 

Since all inequalities in (4) are in fact equalities, (3) also holds with equality: 

1 f ( u )  = JT,J - 1 for i = 2, ..., k .  (5 )  
&Ti 

We now show that 

f(u:) # 2 and f ( w ; )  # 2 fori  = 2,. . . ,k.  (6) 
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Suppose, e.g., f (u : )  = 2 for some i E, {2,. . ; , k } .  IJ u E u:Cwk and 
uiu, uiu+ E E(G), then th$ cycle uIxuiCulu~Cuuiu+Cul contradicts the 
choice+ of C; If v,E ulCwi-l and uiu,uiuf E E(G),  then the cycle 
ulxuiCu+uiuCulu~CuI contradicts the choice of C. Together with 
Lemmas 11-14 these observations show that uf f$ N ( x )  U N(ui)  whenever 
u E N ( x )  U N(ui) .  But then IN(x) U N(ui)l I ilV(C)l < $n I NC. This 
contradiction establishes (6). 

+ 

In view of (6), (5 )  holds only if 

for i = 2,. . . , k ,  either f(ui) = 0 and f ( u )  = 1 for every 

u E K - {ul} orf(wi) = 0 andf(u) = 1 for every u E T, - {wi} .  (7) 

If, for some i E (2,. . . , k}, N i ( U l )  f 0 and N i ( w l )  f 0, then by (7) T, con- 
tains a vertex u such that either u I u , w l u +  € E(G) or u ~ u + , w ~ u  E E(G), 
contradicting Lemma 14. Hence 

for i = 2,. . . , k, either Ni(u1) = 0 or N i ( W l )  = 0. (8) 

Combining (7) and (8) and using Lemma 12 we conclude that 

for i = 2,. . ., k ,  eitherf(u,) = 0 and ulu E E(G) for every u E 
T, - {ui} orf(wI) = 0 and wlu  E E(G) for every u E T, - {wi}.  (9) 

We now show that all segments of C are 2-segments. Suppose there exist 
integers r and t with 2 I r I k and t 2 3 such that T, is a t-segment. In 
view of (9) we may assume, without loss of generality, that f(u,) = 0 and 
U I U  E E(G) for every u E T, - {u,}. By (9) and Lemma 14, Ni(wl) = 0 for 
i = 2,. . . , r. If r < k ,  then N i ( w l )  = 0 for i = r + 1 , .  . . , k also,+otherwis$ 
w1uSg E(G) for some s E {r + 1,. . . , k} and the cycle ulxusCw,ulw;C 
wlusCul contradicts the choice of C. It follows that 

This contradiction shows that C indeed contains 2-segments only, implying 
that n = 3k + 1. 

Set rn = max{ilulwi E E(G)}. Then, by (9) and Lemma 14, u I w i  E E(G) 
for 1 5 i I m, while wluj  E E(G) for j = 1 and m + 1 I j I k.  If 
m < i ( k  + l), then 

J N ( x )  U N(ul ) (  = k + (Nr(UI)) = k + m < i(3k + 1) = i n ,  

a contradiction. If m > $(k + l), then 

IN(x) U N ( w I ) ~  = k + INr(WI)I = k + k - m + 1 < i(3k + 1) = in, 

again a contradiction. Hence m = f (k  + 1) and k is odd. 
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We have shown that uIw,  E E(G) for 1 I i I m. By the same token, 
Ukwi E E(G) for 1 I i I m - 1. Now by Lemma 13, ului $ E ( G )  for 
i = 2, .  . . , m. By Lemma 14, ului $ E(G) for i = m + 1 , .  . . , k. Hence 
N ( u l )  C {wl, . . . ,w,, u l }  and, similarly, N(uz)  C {wz, .  . . ,w,+~,  uz} .  Thus 

zn I IN(ul) U N ( u z ) ~  I m + 3 = i (k  + 1) + 3 = in - k + 3 .  

It follows that k = 3 and N ( u l )  = { w l , w z ,  ul}. An argument of symmetry 
gives us N(ui) and N(wi)  for each i E {1,2,3}. We conclude that the 
Petersen graph is a spanning subgraph of G. Since the Petersen graph is a 
maximal nonhamiltonian graph, G itself must be the Petersen graph. 

1 

Case 2.2. C contains no 2-segments. 

Then d(x )  I $V(C)l < in. If u E T, then IN(x) U N(u)l 2 fn, implying 
that d(u) > in. From the maximality of max{d(u)lu E V(G)  - V(C)},  we 
conclude that 

if u E T, then G contains no cycle with vertex set V(G) - {u}. (10) 

For i = 1,2,  let yi be the first vertex of T, such that yiu; $ E(G). Set 
XI = Nl(yl), KZ = (Nl(yz))+, &I = (Nz(YI))', YZZ = Nz(Yz), and for i = 
3, .  . . , k ,  XI = Ni(yl), X2 = (Ni(y2))-. By a variation of Lemma 12 we have 

ylu $Z E(G) for u E U ~ ? Y Z , Y Z U  $Z E(G) for u E ul?yl, and 

yiu, $Z E(G) for i = 1,2 and j = 3 ,..., k. (11) 
+ + +  c 

(If, e.g., ylyz E E(G), then the cycle ~ I x ~ Z ~ y ~ ~ I ~ y ~ y 2 ~ ~ k y ~ ~ ~ l  contra- 
dicts the choice of C). From (11) and a similar variation of Lemma 13 we 
deduce that XI n X z  = 0 (i = 1, . . . , k). By (11) and the wayyz was chosen, 
XI U YIZ C TI - {yl}. By (11) and (10) (with u = ui), Y;1 U Xz G Z - {ui} 
(i = 3 , .  .. , k  - 1). If k 2 3, then &I U YZz C (Tz - {y2}) U {uj} (by (11)) 

k = 2, then the choice of yl implies K1 U Yzz C TZ - {y2}. In both cases 
we conclude that 

and y k l  U KZ G Tk - {uk,wk} (by (11), (lo), and the wayyl was chosen). If 

On the other hand, we have 

whence JNT(yl)l + JNT(y~)(  1 n - 2k, contradicting (12). I 
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