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DYNAMIC DISTURBANCE DECOUPLING FOR NONLINEAR SYSTEMS*

H. J. C. HUIJBERTS’, H. NIJMEIJER’, AND L. L. M. VAN DER WEGEN

Abstract. In analogy with the dynamic input-output decoupling problem the dynamic disturbance
decoupling problem for nonlinear systems is introduced. A local solution of this problem is obtained in the
case that the system under consideration is invertible. The solution is given in algebraic as well as in geometric
terms. The theory is illustrated by means of two examples: a mathematical one and an example of a voltage
frequency controlled induction motor.
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1. Introduction. Consider a nonlinear multi-input-multi-output control system
of the form

(1)
=f(x) + g(x)u +p(x)q

y=h(x),

where x :T, an open subset ofln, the inputs u c II", the outputs y Rp, the disturbances
q Rr, f and h are vector-valued analytic functions, and g and p are matrix-valued
analytic functions, all of appropriate dimensions. In the disturbance decoupling prob-
lem (DDP) for (1), we search for a regular static state feedback

(2) u a(x) + fl(x)v,

with v a new m-dimensional control and fl(x) a nonsingular m x m matrix for all x,
so that in the feedback modified dynamics

(3) =f(x)+ g(x)a(x)+ g(x)fl(x)v+p(x)q,

the disturbances q do not affect the outputs y. A local solution of the DDP using
differential geometric tools was initiated in [13] and [9] and has led to a more or less
complete understanding of this problem; see, e.g., 12], 18]. The nonlinear DDP forms
a direct generalization of the linear DDP, and the theory about the nonlinear DDP
typically extends the well-known linear geometric theory (cf. [23]) to a nonlinear
context.

The purpose of this paper is to study a dynamic version of the DDP for the
nonlinear system (1). That is, instead of a static feedback law (2) we allow for a regular
dynamic state feedback

(4)
e=(x,z)+(x,z)v,

u ,(x, z) + 6(x, z)v,

with z the /x-dimensional compensator state ,and v an m-dimensional new control,
and the regularity of (4) means that the system (4) with inputs v and outputs u is
invertible for all z and constant x. Note that a somewhat different definition of regular
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dynamic state feedback was given in [15]. In the dynamic disturbance decoupling
problem (DDDP), we require that in the modified dynamics

=f(x) + g(x)y(x, z) + g(x)6(x, z)v +p(x)q,

e= ,(x, z) + #(x, z)v

the disturbances q do not influence the outputs y. Clearly, the static DDP forms a
special case of the DDDP by assuming that /z =0. As noted before, the theory for
solving the nonlinear DDP is very much based on a proper extension of the solution
of the linear DDP. We are therefore led to think that similarly a solution of the
nonlinear DDDP naturally extends the DDDP for linear systems. However, a very
simple argument shows that for linear systems the DDDP is solvable if and only if
the static DDP is solvable (see, e.g., [1], [2]). Although an analogous result is also
true for single-output nonlinear systems, i.e., when p 1, this conclusion no longer
holds true for multi-output nonlinear systems. In other words, when p > 1 it may
happen that the nonlinear DDDP is (locally) solvable, whereas the nonlinear DDP
is not.

Our goal is to establish necessary and sufficient conditions for the solvability of
the DDDP, thereby discussing various different algebraic and geometric aspects of
this problem for the case that the system (1) with q 0 is square and invertible.

The organization of the paper is as follows. In 2 we introduce the dynamic
disturbance decoupling problem with disturbance measurements (DDDPdm) and the
dynamic disturbance decoupling problem (DDDP), and we show that both problems
are locally solvable if and only if they are solvable by means of a compensator that
is obtained from Singh’s algorithm. In 3 and 4 we translate the conditions for
solvability of the DDDPdm obtained in 2 into intrinsic and algorithm-independent
conditions, using differential algebraic and geometric tools, respectively. In 5 the
theory of the foregoing sections will be applied to an example of a voltage frequency
controlled induction motor as was described in [3]. Section 6 contains the conclusions
of the paper.

2. The dynamic disturbance decoupling problem (DDDP). In this section we formu-
late and solve two kinds of DDDPs. These problems are dynamic extensions of the
well-known static state feedback DDP, respectively, the static state feedback DDP
with disturbance measurements.

DEFINITION 2.1. Consider the analytic system E and let a point x0 be given.
1. The DDDP is said to be locally solvable around x0 if there exist an analytic

dynamic state feedback for E of the form (4), to be denoted as R, with zR", a
neighborhood U c of Xo, and an open subset c R" such that R, with inputs v and
outputs u, is invertible for all constants x U and z and the outputs ofthe composite
system E R restricted to U x are independent of the disturbances.

2. The dynamic disturbance decoupling problem with disturbance measurements
(DDDPdm) is said to be locally solvable around Xo if there exist a dynamic state
feedback for E of the form

(6) Q( , ,(x, q, z) + #(x, q, z)v
u=y(x,q,z)+(x,q,z)v,

with z ", a neighborhood U c of x0, and an open subset c E", such that (6)
with inputs v and outputs u is invertible for all constant x U and all q Rr and z ,
and the outputs of the composite system Eo Q restricted to U x Lr are independent of
the disturbances.
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If we furthermore require the compensators Q and R to be static state feedback
compensators (i.e., /x =0), the problem will be referred to by DDPdm and DDP,
respectively.

Recall that the DDP is locally solvable if and only if c A* and that the DDPdm
is locally solvable if and only if cA*+, where d=span{gl,...,g,}, =
span {Pl,"" ,Pr}, and A* is the maximal locally controlled invariant distribution
contained in ker dh (cf. [13]). It is well known (see, e.g., [1], [2]) that for linear systems
the DDDP is solvable if and only if the DDP is solvable. That this is not the case for
nonlinear systems can be seen from the following example.

Example 2.2. Consider the nonlinear system

2 X5 Y2 X3

(7) 3 X2 -I" X4 t_ X4Ul

4 U2,

5 xau + q.

For this system we have A* {0}. Hence the DDP is not locally solvable. However, if
we apply the compensator

(8) Ul=Z,

/’/2 /.)2,

where Vl, v2 are the new inputs, we find for the compensated system (7), (8) that

Ae,=span{ 0 0 0

’Ox5 xz(1 + z) +Ox (x2 ZX4) OX4 z(1 + z)

where A e* is the maximal locally controlled invariant distribution contained in ker dh
for (7), (8). Hence it is clear that the DDP for (7), (8) is solvable and thus the DDDP
is solvable for (7).

In the following, we make the standing assumption, below.
(A1). The system 5: is square, i.e., p m.
Instrumental in the solution of the DDDPdm is what we like to call a Singh

compensator, which can be obtained via the so-called Singh algorithm. Singh’s
algorithm has been introduced in [19] for calculation of a left inverse of a nonlinear
system. It is a generalization of the algorithm from [8], which was only applicable
under some restrictive assumptions. Let Eo denote the system with q 0. We briefly
repeat Singh’s algorithm for the system Eo, following [5].

ALGORITHM 2.3. Consider the analytic nonlinear system o, satisfying (A1). Let a
point Xo be given.

Step 1.
Calculate

(9)
Oh

.9 =7-- [f(x) + g(x)u]=: al(x) + b(x)u
OX
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and assume that bl(X) hasfull rank pl on a neighborhood ofxo. Define Sl := p. Permute,
if necessary, the components of the output, so that the first pl rows of bl(x) are linearly
independent. Decompose y according to

(10) Y= )1
where }1 consists ofthefirst p rows ofp. Since the last rows ofbl(x) are linearly dependent
on the first p rows, we can write

(11)

where the last equation is ane in 1. Finally, set l(X):= l(X).
Step k + 1.
Suppose that in Steps through k, 1," ", fik, fik have been defined so that

yx=a(x)+b(x)u,

(12) fik)= k(X, {fi[1 i k- 1, ij k})

+b(x, {;?11 i k- 1, ij k- 1})u,

fik)= fik)(x {fi) 1 k, j k}).

Suppose also that there exist o
() (1 < <= k-1, j < k-1) such that the matrix "-.-,

", []r has full rank Pk on a neighborhood of (Xo, {yio:( l k-1, j k-
1}). en calculate

(13) ;k+l) ;k)[f(x)+ g(X)U] + E
OX i=l j=i

and write it as

(14)
;(kk+l) ak+l(X {)11 <- k, i<=j<= k+ 1})

+bk+,(X, {371) 1 k, <=j <= kI)u.

Define Bk+, := [/2, b[+l] T, and suppose that there exist YiO:’(J) (l<=iNk, <-j=k)< such
that Bk+ has constant rank Pk+l on a neighborhood of (Xo, {io:’( II<--i<=k, <_-j=< k}).
Permute, if necessary, the components of(kk+l) SO that on this neighborhood the first pk+l
rOWS of nk+ are linearly independent. Decompose fi(kk+ as

;(kk+l) (k+l) (k+l)T
\Yk+l Yk+l IT

where yk+l(k+l) consists of the first Sk+l := (Pk+l Pk) rows. Since the last rows of Bk+l are
linearly dependent on the first pk/ rows, we can write

;1 tl(X) --/I(X) U,

(15)
37(k+l (x, {371J)1 < < k, i<=j < k+ 1})k+l k+l

+b’k+l(X, {fil)[ 1 <= iN k, <-j <= k})u,
<k+l)

k+l Yk+l (x, [l<=i<=k+l,i<=j<=k+l}).

Finally, set

It should be noted that the integers/91, Pk, defined above, do not depend
on the particular permutation of the rows of 33kk/ we employ, cf. [5]. So, using the
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algorithm we obtain a uniquely defined sequence of integers 0 _-</91 <-. =< Pk <--" m.
The integer p*:= p, is called the rank of the system (1), cf. [18], [5]. We associate a
notion of regularity with Singh’s algorithm in the following way. (See [4] for a slightly
different notion of regularity.)

DEFINITION 2.4. Let a point Xo X be given. We call Xo a strongly regular point
for 5; if, for each application of Singh’s algorithm to Eo, the constant rank assumptions
of the algorithm are satisfied.

Besides (A1), we also introduce the following assumption.
(A2). The system o is invertible, i.e., p*= m.
Consider a system satisfying (A1), (A2). Then we define a Singh compensator

for as follows (see also [20].). Let Xo be a strongly regular point for and apply
Singh’s algorithm for Eo. This yields at the nth step

fi,, A,,(x, {37) 1 =< i=< n 1, i<-_j <- n})
(16) +/, (x, {371 1 _-< i_-< n 1, i<-_j <- n 1})u,

where ,=()7,... ,37"-)) and where /, is invertible on a neighborhood of
(Xo, {971 1 --< i--< n 1, i<-_j <= n 1}) for some 371)(1 <= <- n, i<-j <- n). Then (16) yields
on this neighborhood

(17) u =/SI[ I, ].
For i= 1,..., rn, let y be the lowest time-derivative and 6 be the highest

time-derivative of y appearing in (17). Then we rewrite (17) as

u b,(x, {y12) _-< i-< m, ’)/i <=j <- 6i- 1})
(18)

+ Y’. qb2i(x, {y12)] 1 <- <- m, Yi <--j <- 6i- 1})yl
i=1

for certain locally analytic vector-valued functions tl 2i(i-- 1,..., m).
Let zi(i- 1,. ., m) be a vector of dimension 3i- yi and consider the system

(19)
’i Aizi + Bil)i 1, m ),

U lbl(X z1,’’’ Zm)[- E 2i(x, Zl,’’’, Zm)l)i,
i=1

with inputs vl,’", v,,, outputs u, (Ai, Bi) in Brunovsky canonical form, and ZiO--
(yr.io’ ," ,Yio’ (i-- 1,"" ", m).Then(19)iscalledaSinghcompensatorforEaround
Xo. Note that the Singh compensator (19) is an inverse of the system Eo
around Xo.

Remark 2.5. The Singh compensator, constructed above, has dimension

Ei=I i ")/i )" It can be shown (see [11]) that every Singh compensator has dimension
or. Moreover, the numbers ti(i 1,..., rn) are equal to the essential orders (cf. [7])
of E (see also 11]).

We obtain a Singh compensator with disturbance feedthrough for E around x0
by extending (19) in the following way. Define in the above notation

(20) (3(x, {yl) 1 < < m, y <j < 6i- 1}):= _/1 __.xP(X)0Y,,

and consider the following extension of (19)"

(21)
’i Aizi at- Bil)i 1, m ),

U (/)l(X, Z ," ", Zm) -[- E D2i(x, Z1 ," ", Zm)l)i -’[" (3(x, Zl ,’’’, Zm)q.
i=1



DYNAMIC DISTURBANCE DECOUPLING 341

Then (21) is called a Singh compensator with disturbance feedthrough for E around Xo.
It can be shown that the Singh compensator as well as the Singh compensator with
disturbance feedthrough constitute a regular dynamic state feedback (cf. [10]).

We will now state our main result. In this statement we employ the following
notation. If we apply Singh’s algorithm to Eo, the )3(k)(k 0, n; )3o:= y) can be
viewed as functions on e := g R"’. Bythe same token, ker dk)(k =0, , n) defines
a distribution on Te. Define the distributions (ge, e on )e by q3e := q3 X {0}, e := X {0}.

THEOREM 2.6. Consider the analytic system E. Assume that it satisfies (A1), (A2)
and that Xo is a strongly regular point for E.

1. (a) The DDDP is locally solvable around Xo if and only if it is solvable via a
Singh compensator for E around Xo.

(b) The above condition is equivalent to the condition that for each application
of Singh’s algorithm to Eo we have for k O, , n 1:

(22) /}e C kerdk).

2. (a) The DDDPdm is locally solvable around Xo if and only if it is solvable via
a Singh compensator with disturbance feedthrough for E around Xo.

(b) the above condition is equivalent to the condition that for each application
of Singh’s algorithm to Eo we have, for k O, , n 1,

(23) e c kerdk+ q3e.

Proof We will prove only part 2. The proof of part 1 is analogous.
Sufficiency. Consider and assume that it satisfies (A1), (A2), and let Xo be a

strongly regular point for . Assume that for each application of Singh’s algorithm to
Eo (23) holds for k 0,. -, n- 1. Apply Singh’s algorithm to Zo around Xo, yielding
a reordering )71, , )Tn of the outputs. Note that, without loss of generality, we may
assume that for k 1,. ., n" 33k (37’+1 ," ", 37). The first step of Singh’s algorithm
applied to Zo around Xo yields

(24)
)1 al(x)+ l(x)u,

where gl(x) has full row rank Pl on a n.eighborhood U of Xo in . Let g-(x) be a
right inverse of gl(x) on U. Then on U, 331 takes the form

(25) y, al(x) -k- b,(x)b-(x)(l- t,(x)).

Note that, since on U each of the rows of/l(X) is linearly dependent on the rows of
/l(x), the form of 31 is independent of the choice of/-(x). For we have

(26)
1 0-- [f(x) + g(x)u +p(x)q] =: al(x) + 01(x)u + l(x)q,

331 --x [/(x) + g(x)u +p(x)q] =: al(x) + bl(X)U + ’l(X) q,

with al(x), /l(x), al(x), /l(x) as in (24). It can easily be checked that the fact that
(23) holds for k =0 is equivalent to the existence of a erl(x) such that

(27) l(X)erl(X)--- ’l(X), l(X)erl(X)’-- l(X).

Then (26) and (27) yield

(28) 1 al(X) - l(X)-(X)(l-
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Hence for E, 33 is given by the same expression as for Eo. Applying the above arguments
repeatedly, we c,an show that for E )3k) (k-1,..., n) has the same form as for Eo,
and that for E, Yn takes the form (see also (16))

(29) r.=.+.u+p(x)q.
Ox

This implies that if we apply the Singh compensator with disturbance feedthrough to
Z, the outputs of the resulting system satisfy

-0 (1NiNm, ONjN6-I),
Oq

(30) = v.
Hence the Singh compensator with disturbance feedthrough locally solves the
DDDPdm for Z around Xo.

Necessity. Assume that the DDDPdm is locally solvable around Xo by means of
a compensator Q of the form (6). Apply Singh’s algorithm to Z0 around Xo, yielding
a reordering fi,..., ft, of the outputs. Then with the notation of the necessity pa
of this proof, we have in paicular for

a,(x) + g(x)u + (x)q,
(3)

fil I(X) + l(X)/(X)(fil- al(X)) + (I(X) l(X);(X)l(X))q
Assume that (23) does not hold for k=0. This implies that d(x):=
(x)- (x)[(X)Yl(X) O. Since Q solves the DDDPdm for Z, the q-dependence in
(31) should disappear if we plug the output of Q in (31). From the form of (31), it is
clear that this is only possible if Q imposes the constraint d(x)=0 on the system
Z Q. However, this would imply that the DDDPdm is at most solvable on a neighbor-
hood of Xo in {xld,(x)=O} and not on a neighborhood of Xo in . Hence we must
necessarily have that (23) holds for k=0. Next assume that (23) does not hold for
k 1. Then by the same arguments as above we will have for Z that fi)) explicitly
depends on q via a function d(x, ) and that this q-dependence can only disappear
if Q imposes the constraint d(x, fi) 0 on the system. However, by Lemma 1 of [14],
this would imply that the rank of Z Q is smaller that the rank of Z, which would
contradict the inveibility of Q. Therefore (23) must hold for k 1. Applying this
argument repeatedly, we show that (23) holds for k 0,. ., n- 1, which establishes
our claim. By the sufficiency pa of this proof, this also immediately implies that we
can solve the DDDPdm around Xo via a Singh compensator with disturbance feed-
through.

xample 2.2 (continued). The Singh compensator

Z
(32) ua

X2

X5(X4Z X2) 24 22
1,12 I) "JC" I.)2

x2 + z x2 + z x2 + z

solves the DDDP for system (7) of the earlier part of Example 2.2.
Remark 2.7. It is easily seen that if the input-output decoupling problem for Z

is locally solvable by means of a static state feedback, then the DDDPdm is locally
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solvable if and only if the DDDPdm is. This implies in particular that if the output
of E is one-dimensional, then the DDDPdm is locally solvable if and only if the
DDPdm is.

3. Algebraic conditions. In this section we translate the conditions for solvability
of the DDDPdm and the DDDP obtained in 2 into intrinsic and algorithm-indepen-
dent conditions. It will turn out that the conditions can be stated in terms of a certain
structure at infinity.

For nonlinear systems there are several different definitions of the structure at
infinity; see, e.g., [17], [14]. We call the structure at infinity that was defined in [17]
the geometric structure at infinity. This structure at infinity has proved its importance
in, e.g., the solution of the static state feedback input-output decoupling problem (cf.
[17]) and in obtaining (sufficient) conditions for solvability of the nonlinear model
matching problem (cf. [6]). Here we will use the algebraic definition of [14], which
in general yields a different structure at infinity than the geometric one. This structure
at infinity has already proved its importance in the dynamic state feedback input-output
decoupling problem and in obtaining sufficient conditions for solvability of the non-
linear model matching problem (cf. 16]) that are weaker than the conditions obtained
in [6]. To repeat this algebraic definition, we consider Singh’s algorithm as described
in 2 and define the following integers:

(33) 7/’k :-- fl *--Pk-1, k >-2,

ui := the number of 7Tk’S that are greater than or equal to i, => 1.

DEFINITION 3.1 (see [14]). The algebraic structure at infinity of the system Eo
consists of the set {ui} of orders of the zeros at infinity, together with the set {Trk} of
numbers of zeros at infinity whose order is greater than or equal to k.

Essentially, the sets {ui}, {Trk}, and {Pk} contain the same information about the
algebraic structure at infinity. In the following, we restrict ourselves to considering the
set {Pk}.

Let Eq denote the system E where the disturbances are considered to be an extra
set of inputs. For Eo and Eq, the sets defining their algebraic structure at infinity are
denoted by {POk}, {Pqk}, respectively.

TIJEOREM 3.2. Consider the analytic system E and assume that it satisfies (A1),
(A2). Let Xo be a strongly regular point for ,. Then the DDDPdm is locally solvable
around Xo if and only if Eq and Eo have the same algebraic structure at infinity.

Proof. Consider the first step of Singh’s algorithm applied to Eo and Eq around
Xo and employ the notation of the sufficiency part of the proof of Theorem 2.6. As
was shown in this proof, condition (23) is satisfied for k 0 if and only if there exists
a trl(x) such that (27) holds. Hence the fact that (23) holds for k =0 is equivalent to

c rank
/ tr rank(34) Pql =rank \ bl c/ bo’ bl P

Applying the above arguments repeatedly, we show that (23) holds for k 0, , n 1
if and only if Pqk --POk for k 1,. ., n, which establishes our claim.

Remark 3.3. Recall that for linear systems the geometric and algebraic structure
at infinity are the same (cf. [14]). Moreover, recall from, e.g., [22] that for linear
systems the DDPdm is solvable if and only if Eo and Eq have the same structure at
infinity.
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We will now use the result ofTheorem 3.2 to give conditions for the local solvability
of the DDDP for E, using an idea from [22]. To do this we introduce an auxiliary
system Ea, which is defined as

f =f(x) + g(xlw+p(x)q
(35) a 1 /)ly=h(x),
where v denotes the inputs of ,. Let ,o denote the system with q-= 0 and let Eaq
denote the system where the disturbances are considered to be an extra set of inputs.

THEOREM 3.4. Consider the analytic system E and assume that it satisfies (A1),
(A2). Let Xo be a strongly regular pointfor Z. Then the DDDP is locally solvable around
Xo if and only if Eaq and Yo have the same algebraic structure at infinity.

Proof Necessity. Assume that the DDDP is locally solvable around Xo by means
of a compensator

(x, z) + t(x, z)a
(36) R

u=(x,z)+(x,z)a.

Consider the following compensator for E"
i (x, z) + (x, z)z

(37) R i_ a
v tr(x, w, Zl, z2, q),

with

r(x, W, Zl, Z2, q)= -x (X, Zl)+-x (X, Zl)Z [f(x)+ g(x)w+p(x)q]

+
F
io_y_r (x, z)+ -2 (x, zl)zz|

q
IOn(X, Z1)’-(X, Z1)Z2]" (X,

kOZ OZ

and t denoting the new inputs. Then we find that

w I v dt y(x, zl) + 6(x, Zl)Z2,

and thus R locally solves the DDDPdm for Ea, since R solves the DDDP for E.
Furthermore, we have as an (almost) immediate consequence of the fact that R is
invertible, that R is also invertible. Thus, the DDDPdm is locally solvable for E and
hence by Theorem 3.2, Eq and Eo have the same algebraic structure at infinity.

Sufficiency. Assume that Eaq and Eao have the same algebraic structure at infinity;
i.e., the DDDPdm is locally solvable for Za, say, by means of a compensator

(38)
, a(x, w, z, q) + fl(x, w, z, q)s

Qo
v y(x, w, z, q)+ 3(x, w, z, q)s,

with s denoting the new inputs. Then it is obvious that the compensator

(39)
,1 ,(x, z, z2, q)+ (x, z, z2, q)s

Q ,2 a(x, zl, z2, q) + (x, zl, Zz, q)s
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locally solves the DDDPdm for E. Now apply Singh’s algorithm to Eo, yielding a
reordering )71,... ,)Tn of the outputs. Employ the notation of the proof of Theorem
2.6. Then for E we have in particular that

(40)
f, ,(x) + ),(x)u + ,(x)q,

1 II(X) " I(X) u -t- l(X)q.

Since Q locally solves the DDDPdm for Z, the q-dependence in (40) must have
vanished if we put u in (40) equal to the output of Q. This implies that actually 0,
g’l 0, since the output of Q does not depend on q. It can be checked that this implies
that (22) holds for k 0. Applying the above arguments repeatedly, we can show that
(22) holds for k -0,. , n- 1. By Theorem 2.6 this implies that the DDDP is solvable
around Xo. [3

Remark 3.5. At this point it is useful to compare our (algebraic) results on the
DDDP with the results of [16] on the so-called nonlinear model matching problem
(MMP). In fact, as was already shown in [6], the nonlinear MMP can be related to
some kind of DDPdm. However, in contrast with the situation we consider in this
paper, it turns out that the corresponding state feedback solving this DDPdm need
not be regular. Clearly, the existence of a regular solution is, of course, a sufficient
condition for solvability of the nonlinear MMP. Hence by Theorem 3.2 the coincidence
of certain algebraic structures at infinity is a sufficient condition for solvability of the
nonlinear MMP. This is exactly the result of [16]. As the equality of the algebraic
structures at infinity is only a sufficient condition for the solvability of the MMP, and
not a necessary condition (see [16] for a counterexample), it is clear that our solution
of the DDDPdm by means of regular dynamic state feedback cannot be cast in the
results described in the aforementioned paper.

4. Geometric conditions. In this section we give intrinsic geometric conditions for
local solvability of the DDDP and the DDDPdm by translating the results of 3. We
mainly restrict our attention to the DDDP. The reasoning for the DDDPdm follows
the same lines.

Consider again system E and assume that it satisfies (A1), (A2). Let x0 be a strongly
regular point for . Furthermore, assume that the DDDP for E is locally solvable
around Xo. Then according to Theorem 2.6 the DDDP is locally solvable by applying
a Singh compensator. This compensator applied to E yields yl,)= vi, i= 1,..., m.
Obviously, the decoupling matrix (see 12], [ 18]) is equal to the rn x m identity matrix.
Hence the decoupling matrix of the composite system is of full rank. Then it is well
known that the maximal locally controlled invariant distribution in ker dh for the
composite system, denoted by Ae*, is given by

a --1

(41) A* ker dylk).
i=1 k=0

Obviously, A e* depends on the choice of the )7kk)’s in Singh’s algorithm, so A e* is by
no means uniquely defined. However, the solvability of the DDDP does not depend
on the way in which Singh’s algorithm is performed (see Theorem 2.6). Hence, for any
distribution A of the form (41) generated by applying Singh’s algorithm to Eo, wehave

x {0}c A. Consequently, the distribution {0} spanned by the extended distur-
bance vector fields is always contained in Ae*. Note that by construction Ae* is contained
in Tx {0} c Tx TLr (with abuse of notation). However, the vector fields that span
A e* may very well depend on z. Since the disturbance vector fields p only depend on
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x, they are contained in the (not necessarily controlled invariant) maximal subdistribu-
tion e* of A e* that contains the vector fields in A e* that only depend on x. This
distribution e* can be found by means of the following algorithm.

ALGORITHM 4.1.
Step 1.

Step k.

A k := { "r E Ak-1

Here r, O/Oz] is shorthand notation for the Lie-brackets ’, O/Ozi] for 1, , or.

LEMMA 4.2. Assume that the distributions Ak obtained in Algorithm 4.1 have constant
dimension. Then for all k, dim Ak --< dim Ak_l and if Ak. Ak._, then Ak Ak. for all
k>=k*.

Proof. See 12].
Assume now that Algorithm 4.1 converges to Ak.. Then Ak. fulfills the condition

(42) [ Ak* 0-] {0-}c Ak. + span

As can be seen in [21], it follows from (42) that the first n components of any vector
field in Ak. do not depend on z, and since Ak. c A* (so the last tr components of vector
fields in Ak* equal zero) the vector fields in Ak. do not depend on z at all. Moreover,
by construction, Ak. is the largest subdistribution of A* having this property. Hence
*=e*.

LEMMA 4.3. e* obtained in the way described above is independent of the way we

apply Singh’s algorithm.
Proof Assume we have applied Singh’s algorithm in two different ways, yielding

A e* and A e*2. Assume furthermore that by applying Algorithm 4.1 to these two distribu-
tions we obtain the distributions e*l and Ze*2 with Ze*l e*2" This implies that there
are disturbance vector fields for which the DDDP is solvable by applying Singh’s
algorithm in one way, but not solvable by applying Singh’s algorithm in the other way.
This contradicts Theorem 2.6. Hence e* equals e*.

Let z* be defined as the projection of the distribution Ze* on the T-s.pace. Note
that, since (42) holds, * is a well-defined distribution on (cf. [21]). Then A* contains
all possible vector fields that can be decoupled from the outputs by dynamic state
feedback.

For the DDDPdm the reasoning is slightly different, although it follows the same
lines. Here, we apply Algorithm 4.1 starting from the (not necessarily involutive)
distribution Ao Ae*:= Ae* + rgx {0}, resulting in the distribution ’e*:’- Ak*.
Analogously to Lemma 4.3, it is then possible to prove Lemma 4.4.

LEMMA 4.4. Ze* obtained in the way described above is independent of the way we

apply Singh’s algorithm.
Now let z* be defined as the projection of the distribution e* on the T-space.

Again, this is a well-defined distribution on (cf. [21]). It is easy to see that A*
contains all possible vector fields that can be decoupled from the outputs by dynamic
state feedback with disturbance measurements. Note that in particular cg c z*. Sum-
marizing, we have the following theorem.
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THEOREM 4.5. Consider the system Y and assume that it satisfies (A1), (A2). Let
Xo be a strongly regular point for ,. Then

(43)

1. The DDDPdm is locally solvable around Xo if and only if

(44)

2. The DDDP is locally solvable around Xo if and only if

in the theorem above, we have given geometric conditions under which the
DDDPdm is locally solvable. Now, of course, the question arises as to when the
problem is solvable by means of a static state feedback. For this we will have to
calculate A*, the maximal locally controlled invariant distribution for E contained in
ker dh. Obviously, A* is contained in z*, because A* consists of the set of disturbance
vector fields that can be decoupled by static state feedback. Observing that also z* is
contained in ker dh, it is easily seen that A* is the maximally locally controlled invariant
distribution contained in *. Hence A* can be calculated by applying the Controlled
Invariant Distribution Algorithm (cf. [12]) starting from z*.

Remark 4.6. Note that if the dimension of A* equals the dimension of the zero
dynamics manifold, then the DDDP is solvable if and only if the DDP is solvable.

Theorem 4.5 applied to the example of 2 yields the following result.
Example 4.7. Consider again the system of Example 2.2. Choose 371 Yl. Then

(45) Ae* span {x5 0 x4}X2(X2-11- Z) (X22-- X4Z
OX2

and

(46) z* span {x}
5. Example. Consider the voltage frequency controlled induction motor that was

described in [3]. As state variables we take the projections of the stator current and
flux vectors on a reference flame (a, fl), which is fixed to the stator windings, and the
angular position of the voltage input vector. As inputs we take the amplitude of the
voltage input vector and the voltage supply frequency. The parameters R and Rr are
the stator and rotor resistances, Ls and Lr are the stator and rotor self-inductances,
and M is the mutual inductance. The speed to can be considered as a slowly varying
parameter, due to the large separation of timescales between the mechanical and the
electromagnetic dynamics. In the following, we will assume it to be constant.

We define ff (x1, x4) and x (:, xs), and we assume that a one-dimensional
disturbance q influences the dynamics through the disturbance vector field p(x)=
(x3 x4 0 0 0) r. Then the state equations are written as

(47) ) (A0)-11-(gl (x5)0
where

-(a+) -to/o-Ls /L |(48) A= o o
-ao’L 0

and a R/oL, fl Rr/trL,., o’= 1-(M2/LL).

gl(x,)

xs/ o’Ls
sin xs/ o’L I,

COS X

sin xs
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Suitable outputs for the system are defined in terms of the stator flux and the
torque. Hence, the following nonlinear output functions will be used:

(49)
h(x) dp2 x+x
h2(x) =Tm x2x3 XlX4.

Applying the Controlled Invariant Distribution Algorithm (cf. 12]), using REDUCE,
we find that A*={0}. Hence neither DDPdm nor DDP is solvable for (47), (49).
However, by applying Singh’s algorithm to (47), (49), we find that we can solve the
DDDPdm by applying the following Singh compensator with disturbance feedthrough:

(50) Ul tl(X Z),

where

u2 b2(x, z, q, v,,

(51) ,(x, z)
2atrL, (___x x3_ _+_ _X2X4___) -- g2(x3 cos xs + x4 sin xs)’

and where 2(x, z, q, Vl, v2) can be calculated from

1 [b2(x, z, q, Vl, v2)
g2fy2 .4r- )l,g2glY2

I)2 --Z-z g,y2.1)1

(52) --(..of+4,1g,,fy2 + g,y2y++,g,b + blf+og,glY2)

6. Conclusions. In this paper we have introduced the dynamic disturbance decoup-
ling problem (DDDP) for nonlinear systems, and a local solution is obtained in the
case where the system under consideration is inveible. The solution is given in both
an algebraic and a (differential) geometric way. This clearly exhibits that the DDDP
forms a proper extension of the standard (static) DDP (cE 13]). As stated our solution
is obtained for inveible (square) nonlinear systems. An extension of the results in
this paper to nonsquare, noninveible systems can be found in [10].
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