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Abstract

We consider a tandem 
uid model with multiple consecutive bu�ers. The input of bu�er j + 1 is the output from bu�er
j; while the �rst bu�er is fed by a, possibly in�nite, number of independent homogeneous on–o� sources. The sources
have exponentially distributed silent periods and generally distributed active periods. Under the assumption that the input
rate of one source is larger than the maximum output rate of the �rst bu�er, we are able to characterize the output from
each bu�er. Due to this fact we �nd (i) an equation for the Laplace–Stieltjes transform of the marginal content distribution
of any bu�er j¿2; (ii) explicit expressions for corresponding moments, and (iii) an explicit expression for the correlation
between two bu�er contents, again from the second bu�er on. These results make use of a key observation concerning the
aggregate contents of several consecutive bu�ers. For the case in which the active periods of the sources are exponential,
the Laplace–Stieltjes transform is inverted. If there is only one source, all results are also valid for the �rst bu�er. c© 2000
Elsevier Science B.V. All rights reserved.
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1. Introduction

In the area of modern telecommunication systems,

uid queues are often used as burst scale models for
multiplexers, see e.g. [16]. In such models, a 
uid
queue (or 
uid bu�er) receives input at a rate which
is determined by some stochastic process X (t). Often
this process is integer-valued and the input rate is ic0
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at times when X (t) = i. In addition, the bu�er leaks

uid at a �xed rate c1 as long as it is not empty. The
physical interpretation of such models is as follows.
A multiplexer consists of a number of input lines, a
bu�er and an output line. The parameters c0 and c1
can be thought to be the transmission rates of each
input line and of the output line, respectively. At time
t; there are X (t)¿0 sources active, each of which is
generating 
uid (information), feeding this into the
bu�er at a constant rate c0. Whenever the total input
rate exceeds the capacity of the output line, 
uid is
temporarily stored in the bu�er. As long as there is
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uid in the bu�er, the output line transmits at full
capacity c1.
The sources are often assumed to be on–o� sources.

When active, such a source generates 
uid (at rate
c0), and when silent, no 
uid is generated. The con-
secutive active and silent periods of each source con-
stitute an alternating renewal process. Moreover, the
sources are often assumed to be homogeneous and in-
dependent. In that case, the number of active sources
X (t) behaves like the number of customers in a cer-
tain queue. Assuming that the silent periods of the
sources are exponential and the active periods have
a general distribution, this queue is either a so-called
M=G=N=N=N queue if the number of sources, N; is �-
nite, or it is an M=G=∞ queue if N =∞. Classical
examples of these models can be found in [3,14], re-
spectively. As an aside, we note that in some papers
the 
uid queue driven by an M=G=∞ queue is called
an M=G=1 gradual input queue, see e.g. [6,13].
Although many papers consider these types of 
uid

queues (see e.g. the survey paper [4] and the references
therein), there are hardly any explicit results concern-
ing the bu�er content distribution when the on times
of the sources have a general distribution. For exam-
ple, for the 
uid queue driven by an M=G=∞ queue
the mean bu�er content seems to be known only when
c0 = c1 (see [19,13]).
Besides the bu�er content, it is important to char-

acterize the output process, one reason being that this
knowledge enables the analysis of a tandem system.
Some results have been obtained in this area, one im-
portant result being that whenever c0¿c1; the output
process looks like another on–o� source with expo-
nential silent periods and generally distributed active
periods. Rubinovitch [17] and Cohen [6] found that if
c0 = c1; then the active periods on the output line are
distributed like busy periods in a certainM=G=1 queue.
Recent studies [5,2] show that similar results are valid
also in the case c0¿c1. However, when c0¡c1; the
output process is much more complicated. In this case,
the output has been characterized only for the model
with exponential sources, see [1].
In this paper we use these results to consider a tan-

dem 
uid queue fed by a �nite or an in�nite number of
independent homogeneous on–o� sources with expo-
nential silent periods and generally distributed active
periods. Thus, the input rate to the �rst bu�er is mod-
ulated by the appropriate queue length process X (t);

and the output from bu�er j is the input to bu�er j+1.
In view of the previous paragraph it is no surprise that
we assume c0¿c1; leaving the opposite case for fu-
ture research. As an aside, we remark that this tandem

uid queue is essentially di�erent from ordinary tan-
dem queues, where each workload process has jumps.
Moreover, the sizes of these jumps are all random,
whereas in our model all randomness relates to the
behaviour of the sources, the network itself being de-
terministic.
Kella andWhitt [9] considered a tandem 
uid model

where the 
ow between consecutive bu�ers is deter-
ministic (as in our model) but the input 
ow to the
�rst bu�er is instantaneous. They assumed that the in-
put process is a non-decreasing L�evy process. Their
main results concern the case where the input pro-
cess is a compound Poisson process. This can be seen
as a limiting case of our model with a single source
(N = 1): let the rate c0 tend to ∞ and the active pe-
riods tend to 0 in such a way that the burst sizes (i.e.,
the product of c0 and the length of an active period)
converge to a proper random variable. In some more
recent papers, see e.g. [10,11], Kella considers more
general tandem 
uid networks, also with instantaneous
input and hence di�erent from ours. In [12], some
Markov-modulated 
uid networks are considered. For
a particular model in this setting, namely a two-node
tandem 
uid queue driven by one on–o� source with
exponential on times and o� times, the joint content
distribution was found explicitly in [15,18].
Our main results in this paper are as follows. We

show that the output from each bu�er in the tandem
looks like an on–o� source with exponential o� times
and on times distributed as busy periods in an M=G=1
queue. Due to this fact, we �nd (i) an implicit equa-
tion for the Laplace–Stieltjes transform of themarginal
content distribution of any bu�er j¿2; (ii) explicit ex-
pressions for corresponding moments, and (iii) an ex-
plicit expression for the correlation between two bu�er
contents, again from the second bu�er on. For the case
in which the active periods of the sources are expo-
nential, the Laplace–Stieltjes transform is inverted, as
in [18]. If there is only one source, all results are also
valid for the �rst bu�er.
The paper is organized as follows. First, in Sec-

tion 2, we introduce the tandem 
uid queue and make
some key observations that hold under rather general
conditions. The most important observation gives a
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relation between the behaviour of the aggregate con-
tents of several consecutive bu�ers and the behaviour
of the content of a single bu�er in a related tandem
system. In Section 3, we present some (known) re-
sults concerning the model with a single source and
a single bu�er. These results serve as a basis for the
main results which are presented in Section 4, where
we consider the tandem 
uid queues driven by the
M=G=N=N=N and M=G=∞ queues.

2. Key observations

Consider a tandem 
uid queue driven by a stochas-
tic process X (t). In later sections we will further spec-
ify this process, but since the observations we make in
this section hold in a more general sense, we will only
assume here that X (t) takes values in {0; 1; : : : ; N}
for some N ¿ 0 (possibly N =∞). Assume that there
are M 
uid bu�ers connected in series. Let cj denote
the leak rate (i.e. the maximum output rate) of the jth
bu�er. The output from bu�er j is the input to bu�er
j + 1. The input rate to the �rst bu�er is X (t)c0.
We denote the content of bu�er j at time t by Zj(t).

We assume that the system is stable, and let Zj be
distributed according to the limiting distribution of
Zj(t) as t → ∞. Since we are interested in this limiting
behaviour, we may assume that Zj(0)=0 for all j; and
we will henceforth do so.
We assume, without loss of generality, that

Nc0¿c1¿c2¿ · · ·¿cM : (2.1)

When this condition does not hold, one or more bu�ers
will always be empty in stationarity, so that these
bu�ers can be removed from the tandem (ensuring va-
lidity of (2.1) in the modi�ed system) before employ-
ing the analysis in this paper. We can now make the
following observation.

Proposition 2.1. Consider the tandem 
uid queue
model described above. Let i¡ j6M . Then; for all
t¿0;

Zi(t)¿ 0⇒ Zj(t)¿ 0:

Proof. Suppose Zi(t)¿ 0 for some i¡M and t ¿ 0.
De�ne t0 = sup{s¡ t |Zi(s) = 0}. Then bu�er i + 1
has experienced an in
ow at rate ci during the interval
(t0; t]. Since ci ¿ ci+1; this has resulted in an increase

of the 
uid level in bu�er i + 1; so that Zi+1(t)¿ 0.
The proposition now follows by induction.

Finally, if N ¿ 1; we assume that

c0¿c1: (2.2)

This is a rather restrictive assumption, but it guarantees
that the output from the �rst bu�er looks like another
on–o� source.
Under Assumptions (2.1) and (2.2), it now follows

formally that the evolutions of the processes Zj(t) are
given by

Z1(t) =
∫ t

0
(c0X (u)− c11{Z1(u)¿ 0}) du; (2.3)

Zj(t) =
∫ t

0
(cj−11{Zj−1(u)¿ 0}

− cj1{Zj(u)¿ 0}) du; j¿2; (2.4)

where 1{A} is the indicator function of the event {A}.
We now present another observation, characterizing
the distribution of a sum of the contents of consecutive
bu�ers.

Corollary 2.2. Consider the tandem 
uid queue
model described above. Let j¿i¿1. Then

Zi + Zi+1 + · · ·+ Zj ∼ Z̃ i;

where Z̃ i refers to the stationary version of the con-
tent of bu�er i in a modi�ed tandem 
uid queue model
with i bu�ers; where the input rate into the �rst bu�er
is modulated by X (t) in the same way as before; but
the leak rates of the bu�ers are c1; c2; : : : ; ci−1; cj.

Proof. We couple the original and the modi�ed tan-
dem system such that they are regulated by the same
process X (t). Assume �rst that i¿2. For the modi�ed
system, we �nd that Z̃ i(t) satis�es

Z̃ i(t) =
∫ t

0
(ci−11{Z̃ i−1(u)¿ 0}

− cj1{Z̃ i(u)¿ 0}) du: (2.5)
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In the original system, we �nd, by summing (2.4) for
k = i; : : : ; j, that

Zij(t) ≡ Zi(t) + Zi+1(t) + · · ·+ Zj(t); (2.6)

satis�es

Zij(t) =
∫ t

0
(ci−11{Zi−1(u)¿ 0}
− cj1{Zj(u)¿ 0}) du: (2.7)

By applying Proposition 2.1, we can see that
Zij(u)¿ 0 (that is, Zk(u)¿ 0 for some k = i; : : : ; j,)
implies Zj(u)¿ 0, while clearly also the converse
is true. Therefore we can replace 1{Zj(u)¿ 0} by
1{Zij(u)¿ 0} in (2.7). It follows that Z̃ i(t) = Zij(t)
for all t¿0. A similar reasoning holds when i=1, re-
placing ci−11{Zi−1(u)¿ 0} by c0X (u) in both (2.5)
and (2.7). Hence the proposition follows.

Notice in particular that, by taking i = 1, we �nd
that Z1+ · · ·+Zj is distributed as the content of a 
uid
bu�er with leak rate cj and driven by X (t).

3. Preliminaries: single source, single bu�er

In this section we present some known results con-
cerning the characterization of the output process and
the bu�er content distribution in a system with only
one source and one bu�er. These results will be uti-
lized later in this paper.
Consider a 
uid queue driven by the process X (t),

where X (t) is now taken to be the number of customers
present in an M=G=1=1=1 queue. In other words, we
make the assumption that there is a single on–o�
source, with exponentially distributed silent periods
and generally distributed active periods. Let S0 and A0
denote a typical silent period and a typical active pe-
riod of the source, respectively.We denote �=1=E[S0],
�(�) = E[e−�A0 ], and �k = E[Ak0]. Following the no-
tation of Section 2, we denote the output rate of the
source by c0 and the leak rate of the bu�er by c1. Since
there is only one source, we may assume that

c0¿c1: (3.1)

3.1. Output from the bu�er

Under Assumption (3.1) the output from the bu�er
looks like another on–o� source: when non-empty, the

bu�er is leaking out with rate c1, and when empty, no

uid 
ows out. Thus, the empty periods (non-empty
periods) of the bu�er are the same as the silent periods
(active periods) of the output rate process. This 
uid
system is stable if and only if c0�1¡c1(�1 + 1=�), or
equivalently, if

� ≡ c0
c1

��1
1 + ��1

¡ 1: (3.2)

Let S1 and A1 denote a typical empty period and a
typical non-empty period of the bu�er, respectively.
It is easy to see that empty periods are independently
and exponentially distributed with mean

E[S1] = 1=�: (3.3)

The non-empty periods are characterized by the fol-
lowing lemma. For the proof, see e.g. Proposition 1
in [2].

Lemma 3.1. Non-empty periods A1 are distributed
as busy periods in an M=G=1 queue with arrival rate
�(c0 − c1)=c0 and Laplace–Stieltjes transform of
the service time distribution given by �(�c0=c1). In
addition; this M=G=1 queue is stable if and only if
�¡ 1.

3.2. Content of the bu�er

We now turn to the stationary distribution of the
content of the bu�er. Let Z denote the (stationary)
bu�er content. First we note that, under the assumption
that �¡ 1, the bu�er content process is regenerative
with cycles consisting of a non-empty period and the
following empty period. It follows immediately that

P{Z ¿ 0}= E[A1]
E[A1] + E[S1]

= �: (3.4)

The following lemma is due to Corollary 3 in Kella
and Whitt [8].

Lemma 3.2. Let V denote the stationary version of
the workload in an M=G=1 queue with arrival rate
�=c1 and Laplace–Stieltjes transform of the service
time distribution given by �((c0 − c1)�). This queue
is stable if and only if �¡ 1. In the stable case; for
all z¿0;

P{Z ¿z}= 
P{V ¿z};
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where


 ≡ P{Z ¿ 0}
P{V ¿ 0} =

c0
c0 − c1

1
1 + ��1

: (3.5)

Corollary 3.3. If �¡ 1; then

E[e−�Z ] = 1− 
+ 
 (c1 − (c0 − c1)��1)�
c1�− �+ ��((c0 − c1)�) :

Proof. From Lemma 3.2 it follows that E[e−�Z ]=1−

 + 
E[e−�V ]. Then apply the Pollaczek–Khintchine
formula for E[e−�V ].

Corollary 3.4. If �¡ 1; then

E[Z] =
�2
2�1

c0 − c1
1 + ��1

�
1− � ;

E[Z2] =
�3
3�1

(c0 − c1)2
1 + ��1

�
1− �

+2
(
�2
2�1

)2 (c0 − c1)3
c0(1 + ��1)

(
�

1− �
)2
:

Proof. From Lemma 3.2 it follows that E[Zk ] =

E[V k ] for all k¿1. Then apply the Pollaczek–
Khintchine formulas for the �rst moments of V .

4. Main results: multiple sources, multiple bu�ers

In this section we present new results concerning
a tandem 
uid queue fed by multiple on–o� sources.
First, we characterize the output from each of the
bu�ers (Theorem 4.1). Then, we derive an implicit
formula for the Laplace–Stieltjes transform (Theorem
4.4) and explicit expressions for the �rst moments
(Theorem 4.5) of the marginal content distribution of
any bu�er j¿2. The Laplace–Stieltjes transform is
found explicitly and inverted for the case in which the
active periods of the sources are exponentially dis-
tributed (Theorem 4.6). Furthermore, we obtain an
explicit expression for the correlation coe�cient be-
tween the contents of any two bu�ers i; j¿2 (Theorem
4.7). The results are formulated for a �nite number of
sources. In Section 4.5 we explain how they extend to
the case N =∞. If there is only one source, all the
results also hold for the �rst bu�er (j = 1).

We take the process X (t) that modulates the tandem

uid queue now to be the number of customers in an
M=G=N=N=N queue (N ¡∞). So, there is a series of

uid bu�ers, the �rst of which is fed byN -independent
homogeneous on–o� sources with exponential silent
periods and generally distributed active periods. The
notation used to describe these sources is the same
as in Section 3. For the notation used to describe the
tandem system, we refer to Section 2. In addition, we
denote, for all k,

�̃k ≡ E[(c0A0)k ] = �kck0 : (4.1)

Note that c0A0 is the amount of 
uid generated in an
active period A0 of a source. As in Section 2, we make
Assumptions (2.1) and (2.2) concerning the bu�er
rates. Furthermore, we de�ne, for all j¿1,

�j =
�c
cj
; �j =

�c
cj − �c

; (4.2)

where �c is the mean input rate to the �rst bu�er,

�c = Nc0
��1

1 + ��1
: (4.3)

Notice that �j can also be given as

�j =
�j

1− �j ; j¿1: (4.4)

In addition, we let

�0 =
�c

Nc0 − �c
: (4.5)

Notice that, if N = 1, then �0 = ��1.

4.1. Output from the jth bu�er

As mentioned in Section 2, under Assumptions
(2:1) and (2:2), the output from any bu�er j¿1 looks
like an on–o� source: the empty periods (non-empty
periods) of the bu�er are the same as the silent pe-
riods (active periods) of the corresponding output
rate process. Since the �rst bu�er can be empty only
if all the N sources are silent, and bu�er j + 1 can
be empty only if bu�er j is empty (by Proposition
2.1), we deduce that, for any j¿1, the empty periods
Sj of bu�er j are independently and exponentially
distributed with mean

E[Sj] = 1=(N�): (4.6)

The non-empty periods Aj are characterized in the
following theorem.
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Theorem 4.1. Let j¿1. Non-empty periods Aj are
distributed as busy periods in an M=G=1 queue with
arrival rate �(Nc0 − cj)=c0 and Laplace–Stieltjes
transform of the service time distribution given by
�(�c0=cj). In addition; this M=G=1 queue is stable if
and only if �j ¡ 1.

Proof. For j=1, the theorem is proved in [5,2]. How-
ever, due to Corollary 2.2 (take i = 1), the result im-
mediately generalizes to any j¿1.

We get the following corollaries for the Laplace–
Stieltjes transform �j(�) = E[e−�Aj ] and the �rst mo-
ments of Aj, which will be needed for Theorem 4.5.

Corollary 4.2. Let j¿1. If �j ¡ 1; then �j(�) is the
unique solution; with the property |�j(�)|61; of the
following implicit equation:

x = �
(
c0
cj

[
�+ �

(
N − cj

c0

)
(1− x)

])
; Re �¿0:

Corollary 4.3. Let j¿1. If �j ¡ 1; then

E[Aj] =
�j
N�
;

E[A2j ] = �2
cj
c0

(
�j
N��1

)3
;

E[A3j ] = �3
cj
c0

(
�j
N��1

)4

+3��22
cj
c0

(
N − cj

c0

)(
�j
N��1

)5
:

4.2. Content of the jth bu�er

Now we consider the (stationary) bu�er content
Zj. We note that results concerning the �rst bu�er
(j=1) have only been derived for N=1, see Section 3
(unless the on times of the sources are exponentially
distributed, see [3]). Therefore, we assume in this sub-
section that j¿2, or that j = 1 and N = 1.
By Theorem 4.1, the input to bu�er j looks like an

on–o� source with exponential silent periods and gen-
erally distributed active periods. This implies that we
may apply the results of Section 3 to get formulas for
the Laplace–Stieltjes transform and the �rst moments

of Zj. All we have to do, is replace c0; c1; S0; S1; A0
and A1 (and hence �; �(·) and �k) by cj−1, cj, Sj−1,
Sj, Aj−1, and Aj (and N�; �j−1(·) and E[Akj−1]), re-
spectively.
First, the stability condition given in Lemma 3.2

translates into

cj−1
cj

N�E[Aj−1]
1 + N�E[Aj−1]

¡ 1;

which, using Corollary 4.3 and the fact that �j−1cj−1=
�jcj, is easilly seen to be equivalent to �j ¡ 1. Note
that the interpretation of �j is given by

P{Zj ¿ 0}= E[Aj]
E[Aj] + E[Sj]

= �j:

Theorem 4.4. Let j¿2; or let j = 1 and N = 1. If
�j ¡ 1; then

E[e−�Zj ]

=1− 
j + 
j (cj − (cj−1 − cj)�j−1)�
cj�− N�+ N��j−1((cj−1 − cj)�) ;

where �j−1 is given in Corollary 4:2 for j¿2; �0(·)=
�(·); and


j ≡ P{Zj ¿ 0}
P{Vj ¿ 0} =

cj−1
cj−1 − cj (1− �j−1): (4.7)

Proof. In both cases, the result is a consequence of
Corollary 3.3. For j = 1 and N = 1, it is immedi-
ate, while for j¿2 we apply the substitutions as men-
tioned.

Theorem 4.5. Let j¿2; or let j = 1 and N = 1. If
�j ¡ 1; then

E[Zj] =
�̃2
2�̃1

(
1

1 + ��1

)2
(�j − �j−1);

E[Z2j ] =
�̃3
3�̃1

(
1

1 + ��1

)3 (�j − �j−1)2
�j

+2

(
�̃2
2�̃1

)2(
1

1 + ��1

)4

× (�j − �j−1)2(�j−1 + �j − 2��1)
�j

:
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Proof. For j = 1 and N = 1, the result can easily be
veri�ed using Corollary 3.4. Now assume j¿2. We
invoke Corollary 3.4 and substitute the moments of
Aj−1 using Corollary 4.3. After strenuous rewriting
and using (4.1) we �nd the claimed results.

We notice that, apart from the moments, �̃k , these
expressions depend on the active period distribution
only through the mean.

4.3. Content of the jth bu�er when the active
periods are exponential

When we assume that not only the silent periods but
also the active periods of the sources are distributed
according to an exponential distribution, with intensity
� say (=1=�1), it is possible to invert the transform in
Theorem 4.4.

Theorem 4.6. Let j¿2; or let j = 1 and N = 1.
Furthermore; let the active periods of the sources be
exponentially distributed with intensity �. If �j ¡ 1;
then

P{Zj ∈ (y; y + dy)}
=(1− �j)�0(y) dy + (1− �j)e−�jy

×
(
cj−1
cj

N�
cj−1 − cj −

1
2
Nc0!j
Nc0 − cj

×
∫ y

0
e−(�j−�j)u

I1(u
√
!)

u
√
!

du
)
dy;

where �0 denotes the Dirac measure at 0 and I1 the
modi�ed Bessel function of the �rst kind of order 1.
Furthermore; �j is de�ned as in (4:2) and the other
parameters are given by

�j =
N�+ (� − �)cj−1=c0

cj−1 − cj ; (4.8)

�j =
N�

Nc0 − cj −
N�
cj
; (4.9)

!j =
4��cj−1(Nc0 − cj−1)
c20(cj−1 − cj)2

: (4.10)

Proof. Since Aj−1 is now distributed as the busy
period of an M=M=1 system, its Laplace–Stieltjes
transform �j−1(�) can be found explicitly. After
putting things together and rewriting, we obtain

E[e−(�−�j)Zj ] = 1− �j

+(1− �j)
(
cj−1
cj

N�
cj−1 − cj

1
�− (�j − �j)

− 1
2

Nc0
Nc0 − cj

�−√� 2 − !j
�− (�j − �j)

)
:

(4.11)

Inversion can be done by using (28) in [7, p. 235].

We mention that the density of Z1 with N = 1 is
exponential, since !1 = 0 in this case.

4.4. Correlation between bu�er contents

Returning to the case where the active periods of
the sources are generally distributed, we now consider
the correlation between the bu�er contents Zi and Zj
for some j¿ i. As before, we exclude the �rst bu�er
from this analysis in the general case, unless N = 1.
Throughout this subsection, we assume that �k ¡∞
for k = 1; 2; 3.

Theorem 4.7. Let j¿ 1¿2; or let j¿ i=1 andN=1.
If �j ¡ 1; then

Corr[Zi; Zj] =
√
�i

�j−1
√
�j

× b(�i−1 + �i) + �2i−1 + �i−1�i + �
2
i√

(2b+ 2�i−1 + �i)(2b+ 2�j−1 + �j)
; (4.12)

where the constant b is de�ned as follows:

b=
2�3�1
3�22

(1 + ��1)− 2��1: (4.13)

Proof. By de�nition,

Corr[Zi; Zj] =
Cov[Zi; Zj]√
Var[Zi]Var[Zj]

;
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where Cov[·; ·] and Var[·] refer to covariance and vari-
ance, respectively. The variances Var[Zi] and Var[Zj]
can be derived from the formulas presented in Theo-
rem 4.5. As before, we let Zij=Zi+ · · ·+Zj, with the
convention that Zij = 0 if j¡ i. Since

2ZiZj = Z2ij + Z
2
i+1; j−1 − Z2i; j−1 − Z2i+1; j ;

we obtain

2Cov[Zi; Zj] = Var[Zij] + Var[Zi+1; j−1]

−Var[Zi; j−1]− Var[Zi+1; j]:
By Corollary 2.2, all these variances can also be de-
rived from the formulas presented in Theorem 4.5.
After some straightforward manipulations the claimed
result can be obtained.

Proposition 4.8. Let j¿ i¿2; or let j¿ i = 1 and
N = 1. If �j ¡ 1; then

Corr[Zi; Zj]¿ 0:

Proof. In this proof we make use of the fact that

�M ¿�M−1¿ · · ·¿�1¿ 0: (4.14)

In fact, by (2.1) we can show that �i ¿��1 for any
i¿1. By further taking into account that �3�1¿�22 for
any active period distribution, we get the following
lower bound for b:

b=
2�3�1
3�22

(1 + ��1)− 2��1¿23 − 4
3
�i−1;

i = 1; : : : ; M:

It now follows that

b(�i−1 + �i) + �2i−1 + �i−1�i + �
2
i

¿ 2
3 (�i−1 + �i)− 4

3�i−1(�i−1 + �i)

+�2i + �i−1(�i−1 + �i)

¿ 2
3 (�i−1 + �i)− 2

3�
2
i + �

2
i¿0;

so that Corr[Zi; Zj] clearly is positive as well.

Consider now two consecutive bu�ers i and
i + 1 (i¿2; or i¿1 and N = 1). When the source
characteristics are �xed, the correlation coe�cient
Corr[Zi; Zi+1] depends just on the rates ci−1; ci and
ci+1. We now �x ci−1 and ci for the time being (such

Fig. 1. Corr[Z1; Z2] as a function of the rates c1 and c2.

that ci−1¿ci), and vary ci+1 between �c and ci. It can
be shown that
(i) Corr[Zi; Zi+1]→ 0 whenever ci+1 → �c, and
(ii) Corr[Zi; Zi+1] is increasing and continuous as a

function of ci+1.
Let then f(ci) denote the limit of Corr[Zi; Zi+1] as
ci+1 → ci. It can be shown that f(ci) is continu-
ous on the interval ( �c; ci−1), with f( �c) = 1=

√
3 and

f(ci−1) = 1, while in between f(ci)¿1=2. It follows
that, with ci−1 �xed, the correlation coe�cient takes
all values from 0 to 1, as ci and ci+1 vary in the
range ci−1¿ci ¿ci+1¿ �c. In addition, we �nd that,
in any neighbourhood of the point (ci; ci+1) = ( �c; �c),
the correlation coe�cient takes all values from 0 to
1=
√
3. As an aside, we remark that in corresponding

instantaneous input models, the correlation between
the �rst two bu�ers is limited to the interval (0; 1=

√
3),

cf. [9–11].

4.4.1. Numerical example
As a numerical example we consider a tandem 
uid

model with one source and two bu�ers. Silent and ac-
tive periods of the source are exponentially distributed
with means 1=�=1=4 and �1 =1. The source rate and
the mean input rate are c0 = 1 and �c = 1=5, respec-
tively. Thus, we have the following constraints for
the leak rates of the two bu�ers: 1¿c1¿c2¿ 1=5.
The correlation coe�cient between the bu�er contents,
Corr[Z1; Z2], is plotted as a function of the rates c1
and c2 in Fig. 1. A warning might be in place here,
since it is not clear from this �gure that the correla-
tion coe�cient takes all values from 0 to 1=

√
3 in any

neighbourhood of the point (c1; c2) = ( �c; �c). In Fig. 2,
the function f(c1), that is the limit of Corr[Zi; Zi+1]
as c2 → c1, is plotted for this particular example.
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Fig. 2. The limit f(c1) of Corr[Z1; Z2] as a function of the rate c1.

4.5. In�nite number of sources

Consider then the tandem 
uid queue driven by the
M=G=∞ queue (N =∞). So, there is a series of 
uid
bu�ers, the �rst of which is fed by random bursts
arriving according to a Poisson process with intensity
�. Note that bursts in this model play the same role as
the active periods in the previous model with �nitely
many sources. Clearly, the present model can be seen
as a limiting case of the previous one: let N → ∞ and
�→ 0 in such a way that N�→ �.
The central observation here is that, under Assump-

tions (2.1) and (2.2), the output from each bu�er has
a similar characterization as before: the empty peri-
ods Sj of bu�er j are independently and exponentially
distributed with mean E[Sj]= 1=�, and the non-empty
periods Aj are distributed as busy periods in an
M=G=1 queue with arrival rate � and Laplace–Stieltjes
transform of the service time distribution given by
�(�c0=cj). For j=1, these results were proved in [5].
However, again due to Corollary 2.2 (take i= 1), the
result immediately generalizes to any j¿1.
It follows that all the other results derived earlier

in this section have their counterparts in the present
model: just replace � by �=N and then let N → ∞.

4.6. Tandem 
uid model presented in [9]

As mentioned in Section 1, the tandem 
uid model
presented in [9] can be seen as a limiting case of our
model with a single source (N = 1): the rate c0 tends
to∞ and the active periods tend to 0. It follows that,
for example, the correlation between the contents of

any two bu�ers i and j (in the model of [9]) has
the same formula (4.12) as in our model but with

b=2�̃3�̃1=(3�̃
2
2). The �’s are de�ned as in (4.2) with

�c = ��̃1 (and �0 = 0). As mentioned in [9], the cor-
relation between the �rst two bu�ers is always in the
interval (0; 1=

√
3). However, the correlation between

two consecutive bu�ers from the second bu�er on can
have any value from 0 to 1.
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