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Abstract: Yamnitsky and Levin proposed a variant of Khachiyan's ellopsoid method for testing 
feasibility of systems of linear inequalities that also runs in polynomial time but uses simpliees 
instead of ellipsoids. Starting with the n-simplex S and the half-space {x[arx <_ fl}, the algorithm 
finds a simplex SrL of small volume that encloses S c~ {xlarx < B}- We interpret SrL as a simplex 
obtainable by point-sliding and show that the smallest such simplex can be determined by 
minimizing a simple strictly convex function. We furthermore discuss some numerical results. The 
results suggest that the number of iterations used by our method may be considerably less than that 
of the standard ellipsoid method. 
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1 Introduction 

The ellipsoid method  finds a feasible solution for a system of linear inequalities 
- provided one exists. Khach iyan  [1979] showed that  the running time of  the 
algori thm is bounded  from above by a polynomial  in the size of the input 
data. F r o m  a theoretical point  of  view this method  is "efficient". However,  the 
ellipsoid method  has not  shown good  results in practice (cf. Bland et al. [1981]). 
Yamni tsky and Levin [19823 proposed a variant  using simplices instead of 
ellipsoids. In  the present paper, we investigate this variant  more  in detail. We 
interpret the update  simplex of  Yamnitsky and Levin in each iteration as a 
simplex obtained by point-sliding. Our  main result (Theorem 4.4) shows that  the 
best update  simplex obtainable by point-sliding can be easily determined once 
the min imum of a simple strictly convex function is found. For  short, we refer to 
this algorithmic approach  as the simplices method. The paper works out  the 
details of  the theory and discusses some numerical  results. The results suggest 
that  in practice the number  of  iterations used by the simplices method  may  
be considerably less than that  of the ellipsoid method.  
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In Section 2, we review the ellipsoid method. In analogy with the ellipsoid 
method we introduce in Section 3 the concept of half-simplices. In each step of 
the simplices method, we construct a simplex containing the half-simplex. This 
is done by point-sliding as will be explained in Section 4. Under some condi- 
tions, a half-simplex forms a simplex as shown in Section 5. If the half-simplex 
is not already a simplex, we can still obtain a "reasonably small" simplex 
containing the half-simplex by rotating some hyperplane around a ( n -  2)- 
dimensional polytope. We summarize our computational results in Section 6. 

2 The Ellipsoid Method 

The ellipsoid method determines the feasibility of the system 

A x  < b (1) 

of linear inequalities with integral coefficients, where A ~ ~m • and b E ~". The 
algorithm is initialized with the ellipsoid 

E o : = { x ~ " l l l x l l _ < n 2  z} , 

which is in this case a sphere and contains a solution of (1) if one exists at all, as 
follows from the next (well-known) lemma. (L denotes the input length of the 
system, i.e., 

L = nm + [log2 IN[1 + 1 , 

where N is the product of all non-zero coefficients occurring in A and b.) 

Lemma 2.1: I f  (1) has a solution, then the system 

A x < b  , 

--2L<__Xi<__2 L , l < _ i < _ n  , 

has a solution, and the volume o f  the solution set o f  that system is at least 2 -(n+l)L. 
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Proof: See Gfics and Lovfisz [1981], p. 63. [] 

Starting with Eo, the ellipsoid method constructs a sequence of successively 
smaller ellipsoids. At some iteration k we have an ellipsoid Ek with center Ck, 

Ek = {x e N"l(x - Ck)TB;I(X - Ck) < 1} , 

which contains a solution of (1) if a solution exists. Check if Ck is a solution of (1). 
If so, stop. If not, pick an inequality in (1) which is violated by Ok: 

aTck > fl 

(a r is a row in A and fl an element of b). The hyperplane {x ~ N"rarx = arck} 
cuts E k into two half-ellipsoids. By the half-ellipsoid �89 k we mean the set of all 
points in Ek that satisfies aTx < aTk. Updating ellipsoid E k by 

1 ~ a  
Ck+ 1 := C k -- - -  (2) 

n + l a x / ~ k a  

na F 2 (Bka)(Bka)r] 
Bk+l :-- n2 ~ l LBk -- n q_ l ar  Bk a J 

(3) 

yields an ellipsoid Ek+ 1 that is the smallest ellipsoid containing 1E k. We denote 
by vol Ek the volume of Ek. The next lemma gives the reduction in volume at 
each iteration. 

Lemma 2.2: 

vol Ek+ 1 n ( n  2 ~(n--1)]2 
vol E ~  - n + ~  \ n ~ l -  l J  (4) 

Proof: See G/tcs and Lov/tsz [t981], p. 67 (see also Zorychta [1982] for an 
analysis of volume ratios obtained by "deep cuts"). [] 

If the ellipsoid method stops in iteration k, c k is a solution of (1). Using 
Lemma 2.1 and Lemma 2.2 one can prove that (1) is not solvable if the method 
does not stop after at most 6nZL iterations (see, e.g., G/tcs and Lovfisz [1981], 
p. 62). 
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Yamnitsky and Levin [1982] introduced a variant of the ellipsoid method 
with simplices taking over the role of ellipsoids. In the following, we will de- 
scribe an improvement on this method. 

3 Simplices and Half-Simplices 

At each iteration in the simplices method, we have a n-simplex S that contains a 
solution of (1), if one exists. We check feasibility of the center of S, which is 
defined as the point 

Vc - -  Vk 
n + l k = o  

where Vo, . . . ,  v, are the vertices of S. If the center vc is feasible, we are done. 
Otherwise, a violated constraint arvc >_ ~ is chosen. The hyperplane 

h : =  {x[aTx = ~} 

cuts S into two half-simplices, and by �89 we denote the one satisfying the 
constraint: 

1 
~S := S c~ {x[aTx <_ fl} . 

We generate a new simplex S' by point-sliding (see below) containing �89 and 
continue. This process is repeated until either the center of our current simplex 
is feasible or the volume of the simplex is so small that the system of inequalities 
must be infeasible. 

For all points x ~ ~" we define the error function 

e(x) = f l -  a r x  . 

We assume that v o is the vertex of S that maximizes the error function. An 
algorithm for computing S' that fixes Vo and slides each other vertex v~ along the 
line YOrk is called a point-slidin9 method. In the next section, we will present an 
algorithm that constructs a simplex of the smallest possible volume, obtainable 
by point-sliding and enclosing �89 
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4 Point-Sliding 

For  nota t iona l  convenience, let us t ransform S into the s tandard  simplex. So let 
S = conv{v o, V l , . . . ,  v,} be an arb i t ra ry  n-simplex and assume that  the center v c 
of  S violates the constra int  a r x  < ft. We assume that  v o is the vertex that  
maximizes  e(x) = fl - a rx .  

Using the affine t rans format ion  z o T~o: ~" ~ ~" with 

T(X) = [-V 1 - -  I ) O . . . V  n - -  V O ' ] - I x  

r~o(X)  = x - -  Vo , 

(5)  

we t ransform the simplex S into the simplex 

= cony{O, el . . . . .  e,} = {x[x >_ O, e r x  <_ 1} , (6)  

where e r = (1 , . . . ,  1). 
Since f l -  a r v o >  0, the affine t rans format ion  z o T,o t ransforms the half- 

space { x l a r x  < fl} into {x l~ rx  < 1}, where 

~r  = arEvl - V o . . . v , -  Vo] 
fl _ arvo (7) 

No te  g > 0 and ~o = 0 is the vertex of S that  maximizes  ~(x) = 1 - 8 rx ,  i.e., 
~(0) > ~(ei), 1 < i ___ n. 

No te  tha t  the t rans format ion  takes �89 into 

m 

~S  = {x lx  > O, e r x  <_ 1, 8 r x  < 1} . (8) 

We denote  by J~ the facet of  S which is opposite to Vo = O, i.e., 

fo := {x e S ] e T x  = 1} . 

Definition 4.1: We say that S' = conv(v'o,.. . ,  v',) is obtained f rom S by point-  
sliding, f ixing Vo = O, i f  for  some ~i > 0 
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' = 0  v o 

Vi ~ o~ie i (i _> 1) . 
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Equivalently, S' = {xlx  >_ O, d'Tx <_ 1} for some d' >_ O. 

Define, for 0 < t _< 1: 

S(t) :=  {xlx  > O, d(t)rx < 1} 

where 

(9) 

d(t) :=  (1 - t)~ + te . 

Thus �89 ~ S(t) Vt ~ [0, 1]. We say that  S(t) is obtained by rotating fo around P, 
where 

P := j~ c~ {xlgTx = 1} . 

If  we denote by Vo(t ) . . . . .  v,(t) the vertices of S(t), then 

Vo(t ) = 0 (10) 

vi(t) = ai(t)ei (i ~ 1) , (11) 

where 

~ , ( t )  = II v~(t)ll - 
t + (1 -- t)d i 

(The latter equality can be obtained by multiplying equat ion (11) by d(t).) So we 
get 

vol S(t) 
r ( t )  : =  = I I  ~ i ( t )  �9 ( 1 2 )  

vol S i=1 

Lemma 4.2: The function r(t) is strictly convex. 
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Proof: Define f(t) := In r(t). So, r(t) = e s(0 and r"(t) = f"( t )e  f(') + (f'(t))2e f(t). If 
f"(t) > 0 then r"(t) > 0. A straightforward calculation shows that 

(1 - -  ~ i )2  
f"(t)  = ~=1 ~ (t -~- ( i  ~ t)fi~) 2 > 0 , 

since fi > 0 and fi ~ e, and thus r(t) is strictly convex. []  

The next theorem states that minimizing r(t) yields the unique simplex with 
minimum volume obtainable by point-sliding. The proof of the theorem is 
based on the following lemma. 

Lemma 4.3: (Affine form of Farkas' Lemma) Let the system Ax <_ b of linear 
inequalities have at least one solution, and suppose that the linear inequality 
c rx  <_ 6 holds for each x satisfying Ax <_ b. Then for some 6' <_ 5 the linear 
inequality c TX <_ (5' is a nonnegative linear combination of the inequalities in the 
system Ax < b. 

Proof'. See Schrijver [1986], p. 93. 

We can now state our main result. 

[] 

Theorem 4.4: Let t* be the unique minimum of r(t). Then the simplex S(t*) has 
minimum volume among all simplices that contain �89 and are obtainable by point- 
sliding, fixing Vo = O. 

Proof: By definition, S(t*) has minimum volume among all simplices that con- 
tain �89 and are obtained by rotating J~ around P. Let now S be an arbitrary 
simplex of minimum volume among all simplices containing �89 that are being 
obtainable by point-sliding, fixing ~o. The Theorem follows if we can verify the 
following 

Claim: S is obtained by rotating j~ around P. 

Since S is obtained by point-sliding, we have 

= {xlx >>_ O, [Irx < 1} . 
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By Farkas' Lemma, the inequality d r x  < 1 can be written as a nonnegative 
linear combination of the inequalities defining �89 i.e., there exist nonnegative 
numbers #, v, 21, . . . ,  2, such that 

~l = kte + v d -  ~ 2iei and I l + v <_ l . 
i = 1  

Since S has minimum volume among all "point-sliding" simplices, we may 
assume that, in fact, /t + v = 1 (otherwise �89 ___ {x l x  >_ O, [t r < ~t + v} ~_ 
would contradict the assumed minimality). 

But then s #e + vg defines a simplex S := {x l x  >_ O, [ f ix  < 1}, obtained by 
rotating j~ around P (with t = #). 

By assumption, vol S < vol S. Also �89 _~ S ___ S holds and thus S = J~. So S is 
indeed obtained by rotating j~ around P. []  

5 The Algorithm 

Our algorithm computes in each step a new simplex S(t*), where t* e [0, 1] 
minimizes r(t). The main steps of the algorithm are as follows. 

Ao: Take S as a simplex containing the body defined by the inequalities 

- 2 L < x i < 2  L , l < i < _ n .  

AI: Calculate the center v c of S; 
IF vc satisfies system (1) T H E N  STOP (solution found); 
ELSE choose a violated inequality arvc > fl in system (1); 
Determine Vo as the vertex v maximizing e(v) = fl - ~rv;  
Take S as in (6) and �89 as in (8) with d as in (7); 
Determine t* ~ [0, 1] so that r(t) is minimized by t = t*; 
Compute S(t*) from equation (9). 

A2: Set S := (z o T~o)-lS(t*); 
IF vol S < 2 -~"+I)L T H E N  STOP (system (1) has no solution); 
ELSE calculate the new vertices of S and return to step A 1 . 

In general, P _c j~ is not necessarily (n - 2)-dimensional. In fact, it may happen 
that P is empty, in which case the term "rotating J~ around P" may be some- 
what misleading. However, the case dim P < n - 2 is extremely "easy", as can 
be seen from the following lemma. 
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Lemma 5.1: Let relint fo := {x e ~"]3e > 0: B(x, e) c~ aft.hull J~ _ fo) be the rela- 
tive interior of fo. Consider the statements 

(i) d i m P < n - 2 ,  
(ii) P c~ relint j~ = ~ ,  

(iii) j~ ~_ h + = {xI~Tx > 1}, 
(iv) �89 is a simplex. 

Then (i) ~ (ii) ~ (iii) ~ (iv). 

Proof: �89 is a simplex if and only if one of its defining inequalities is redundant. 
Obviously, the only possibly redundant inequality is erx  _< 1. This is redundant 
if and only if (iii) holds. Thus (iii)~:~ (iv). The equivalence of (ii) and (iii) is 
straightforward. Finally, if (ii) does not hold, then h c~ relint fo ~ ~ and there- 
fore dim P = n - 2. [] 

Note that if property (iv) in the preceding lemma holds, then the algorithm 
computes S(t) = �89 as the simplex of minimum volume (corresponding to t = 0). 
(Moreover, in practice one need not minimize r(t) but just determines S(0) if one 
knows that the error satisfies e(Vk) < 0 for all 1 < k < n. In that case namely, �89 
already is a simplex.) 

Because the function r(t) is strictly convex (by Lemma 4.2), we minimize it 
using the method of interval reduction in step A 1 of the algorithm. 

Yamnitsky and Levin [1982] compute the new simplex Srr for each iteration 
by point-sliding with the parameters 

n 2 

~ i  - n 2 _ 1 + ai ' 
l <_i<_n . 

(This simplex is also obtainable by rotating J~ around P.) Yamnitsky and Levin 
(see also the expositions of Akgtil [1984] and Chv~tal [1983]) proved that in 
this case 

vol SyL 

vol 
- -  < e - 1 / 2 ( " + 1 ) ~  ( 1 3 )  

Note that this upper bound is worse than the corresponding term for the 
ellipsoid method given in Lemma 2.2. 

In our notation, SrL = S(tyN), where trN = 1 - 1/n 2. With the optimal choice 
t* we will, therefore, obtain an update simplex S(t*) with a volume reduction at 
least as good. From this observation, a polynomial bound on the number of 
iterations of the algorithm can be derived as follows. 
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Assuming full dimensionality, the feasibility region of the system A x  < b 

of inequalities is contained in the cube Q = [ - 2  L, 2L] ". Hence there exists a 
simplex 

S o = x o + cony{0, ee 1 . . . .  , c~e,} ~_ Q 

where x o = ( - 2  L . . . .  , - 2  L) and c~ = n2 "(L+z). Straightforward computation 
yields 

1 r/n 
vol So = -~"  = - - 2  "(L+I) 

gt T/[ " 

Thus, by Lemma 2.1, the ratio p between the volumes of S o and the feasibility 
region of A x  < b is bounded from above by 

nn2n(L+l)2(n+l)L en22(n+l)L e2(n+l)L <_ <_ . 

Since the volume reduction in each iteration is at least e -1/zn~, we obtain the 
upper bound 

K < 4n2(n + 1)L 

on the number of iterations of our algorithm. (We remark that a rigorous 
analysis exhibits polynomial running time also when rounding errors are taken 
into account (cf. Bartels 1-1995] for the central cut version in the Yamnitsky and 
Levin model)). 

We would like to remark, however, that in practice one can hope to find much 
smaller initial simplices, e.g., by simply choosing n + 1 inequalities from the 
system A x  < b (cf. Akgiil [1984]). However, we did not take advantage of this 
possibility in our computational experiments. There, the initial ellipsoid and the 
initial simplex are taken to have roughly the same volume because we are 
interested in comparing the number of iterations of the two methods. 

6 Computational Results 

We have implemented our algorithm and compared it with an implementation 
of the deep cut ellipsoid method. The results are reported in the extended 
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Fig. 6.1. Volume reduction per iteration (example with n = 20 and m = 60) 

abstract Faigle et al. [1996]. It appears that the ellipsoid method generally 
converges considerably slower than the simplices method. It may be interesting 
to point out, however, that the volume reduction achieved in the iterative steps 
of the simplices method is not homogeneous as illustrated in the following figure 
(m is the number of inequalities and n the number of variables in the typical 
random example, the last 51 of the 230 iterations are recorded). 

From the figure we notice that the simplices method accelerates just before 
convergence. It quite often occurred that the volume reduction was quite sub- 
stantial (a reduction factor of less than 0.01), and then most of the time the 
half-simplex was a simplex. 

With n = 70 and m = 160, the running time that was used by the deep cut 
ellipsoid method was around 4350 seconds and by the simplices method around 
25 seconds in our implementation. 

A drawback of the ellipsoid method is that it takes no advantage of sparsity, 
when dealing with a sparse coefficient-matrix. We do not expect that the 
simplices method is an improvement with respect to sparsity. Another practical 
problem with the ellipsoid method arises from the fact that it does not lend itself 
easily to sensitivity analysis or to the addition or deletion of constraints or 
variables. Being a volume reduction method as well, the simplices method 
suffers from the same problem. On the other hand, this method seems to be 
more numerically stable than the ellipsoid method. 
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Ecker et al. 1-1985] and Frenk et al. [1994], for example, showed that the 
ellipsoid method can be a practical tool for solving convex and quasiconvex 
continuous location problems (and possibly for more general problems), where- 
by seperation hyperplanes are used to obtain an optimal solution. In that case, 
it may be of practical advantage to use a variant of the ellipsoid method with 
simplices instead of ellipsoids. 
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