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TECHNICAL NOTE 

Note on Prime Representations 
of Convex Polyhedral Sets ~ 
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Abstract. Consider a convex polyhedral set represented by a system 
of linear inequalities. A prime representation of the polyhedron is one 
that contains no redundant constraints. We present a sharp upper bound 
on the difference between the cardinalities of any two primes. 

Key Words. Convex polyhedral sets, linear inequalities, minimal rep- 
resentation, prime representation, redundancy. 

1. Introduction 

Cons ider  a convex polyhedra l  set P with init ial  representa t ion deno ted  
by the augmented  matr ix  [AIb], that  is, 

P={x~RntAx<_b; A~Rm×"}. 

This research was supported by the Natural Sciences and Engineering Research Council of 
Canada under Grant Nos. A8807, A4625, and A7742. 

2 Professor, The Hebrew University, Jerusalem, Israel. 
3 Associate Professor, Department of Mathematics and Statistics, University of Windsor, 

Windsor, Ontario, Canada. 
4 Professor, Department of Mathematics and Statistics, University of Windsor, Windsor, 

Ontario, Canada. 
5 Professor, Department of Applied Mathematics, Twente University of Technology, Enschede, 

The Netherlands. 
6 Professor, Erasmus Universiteit, Rotterdam, The Netherlands. 

137 

0022-3239/89/0400-0137506.00/0 ~) 1989 Plenum Publishing Corporation 



138 JOTA: VOL• 61, NO. 1, APRIL 1989 

We say that the representation [Allba] of P is a reduction of [A[b] if 
[A, lbd is obtained from [A!b] by removing at least one redundant 
constraint (Refs. 1 and 2). The reduction [Allb,] is called a prime (Ref. 3) 
if it contains no redundant constraints, and is called a minimal prime if it 
is a prime with minimum cardinality, that is, number of inequalities. We 
present a sharp upper bound on the difference between the cardinalities of 
any two primes. 

We first note that, if the original representation contains no implicit 
equalities and no duplicate constraints, then there is a unique prime and it 
is the minimal representation as defined by Telgen (Ref. 4). Also, if there 
are no implicit equalities, but there are duplicate constraints, then there is 
more than one prime, but they are all minimal representations. Finally, if 
there are implicit equalities, then the primes are not necessarily minimal 
representations. In fact, in order to obtain a minimal representation, Telgen 
(Ref. 4) has shown that the implicit equalities must be replaced with explicit 
equalities. 

Since the prime derived by an algorithm depends upon the order in 
which the constraints are classified, it is possible for primes with different 
cardinalities to be obtained for the same polyhedral set. The results of this 
paper can determine whether or not the observed difference is possible, or 
simply due to implementation error. If the observed difference is correct, 
the results can be used to provide an upper bound on the dimension of the 
polyhedral set. 

2. Results 

Consider the following example• Let 

P = {0} C R 2, 

with the original representation 

[AIb] = 

1 

-1  

0 
0 

1 

0 0 

0 0 

1 0 

-1  0 
-1  0 

1 0. 
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The following three pr ime representat ions o f  P are reduct ions o f  [ A I b ] :  

1 0 

[ A t t b l ]  = - t  0 
0 1 

0 - 1  

- 1  0 

[A3I b3] = 0 - t  

1 1 

A minimal representat ion o f  

{xl = 0, x2 = 0}. 

i I I  -1 °t 1 0 , [A2 ib2]=  1 - 1  , 

1 1 

ij 
P is the set o f  constraints 

Theorem 2.1 gives an upper  bound  on the difference between the 
cardinalities o f  any two primes. We first require the fol lowing lemma. 

Lemma 2.1. Let [ A I 0  ] be a pr ime representat ion o f  P = { 0 } C _ R  ", 
where A = [ a l , . . .  , a~] r ~ R m×n. Then, n + 1 -< m --- 2n. 

Proof. I f  r a n k ( A ) <  n, then there exists an x # 0 such that  A x  = 0, 
which contradicts  P = {0}. Thus,  A has full rank and m ~- n. I f  m = n, then 
A is nons ingular  and there exists an x ~ 0 such that  A x  = b < 0, which again 
contradicts  P = {0}. Therefore,  m --> n + 1. 

Suppose  that m > 2n. Farkas '  l emma (Ref. 5) implies that  P =  {0} is 
equivalent  to 

R n = K ( A ) : = { A r x [ x > _ O } .  

We need only  show that  there exists a matrix A*, whose rows are a p roper  
subset o f  the rows o f  A, such that  K ( A * )  = R". The p r o o f  is by induct ion 
on n. The result is true if n = 1. 

Since K ( A )  = R", there exists an x-> 0 such that  - a m  = Arc.  Let 

A~ r = [al  . . . .  , am-i] ,  

and define xm ~ R m-1 by 

(Xm) i=(X) i / ( l + (x )m) ,  for i = 1  . . . . .  m- -1 .  

Then, 

r ->0. - -am = A m x m ,  Xm 

T Let r be the min imum number  o f  rows o f  A,,  such that - a m  is a positive 
linear combina t ion  o f  those rows. Without  loss o f  generali ty suppose  that  

-a , .  ~ K * ( B )  = {BTxIx  > 0}, 
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where 

B v = [ a l , . . . ,  at]. 

Let s = rank (B) ,  and note that s = r a n k ( C ) ,  where C r = [ B  T a,,,]. Since 
[AI0 ] is prime, there is a permutation of  the columns of A 7- which results 
in s -> 2. Without loss of  generality, we assume that this is the case. 

Let 

--am=BTx, x > O ,  

and let 

y =  x/eTx, 

where e is a vector of  ones. Then, 

- a , , / e r x = B T y ,  0 < y < e ,  

and 

e r y =  1. 

Since we have a barycentric representation of  - a , , , / e r x e K + ( B )  using r 
vectors, Caratheodory 's  theorem (Ref. 5) and the fact that r is minimal 
implies that r <- s + 1. 

Let 

D T = [ d l , . . . ,  din-r-t], 

where d~ is the orthogonal projection of ar+~ onto the null space N ( C )  of 
C. Let v e  N ( C ) ,  and write 

v =A'rx, x>-O. 

This is equivalent to 

v = C T x l + E T x 2 ,  Xl>--O, X2>---O, 

where 

ET=[ar+, . . . .  , a,n_,]. 

Therefore, 

v= CTxI+ETx2, x I~O , X2~0, 

But 

and 

CTxI +(E T --Dr)X2 = v - D r x 2 ,  

v - Drx2 ~ N ( C )  n R ( C  r)  = {0}, 
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where R ( C  r )  is the range space o f  C r. Thus,  

v=Drx2 and  N(C)C_K(D). 

Since, by  construct ion,  

K ( D ) C N ( C ) ,  

we have 

K(D) = N(C).  

Since d i m ( N ( C ) ) =  n - s ,  the induct ion hypothesis  states that at most  
2 ( n - s )  vectors are needed to define K(D). Since s---20 it follows that 
m - r - I > 2(n - s). Therefore,  we can eliminate at least one o f  the m - r - 1 
rows o f  D to get a matrix D *  with 

K(D*) = N(C).  

Finally, this implies that  we can delete the cor responding  rows in A 
to get A* with 

K(A*) = R ( c T ) +  K(D*) = R". [] 

Theorem 2.1. Let k be the d imension o f  the convex polyhedra l  set P. 
Let [Allb,] and  [A2]b2], with cardinalities ml and rn2, respectively, be two 
prime representat ions o f  P that are reduct ions o f  [A Ib]. I f  k = n, then 
] rn l -  m21 = 0. Otherwise, I m l -  rn2[-< n - k - 1. 

Proof.  I f  k = n, then there are no implicit equalities in [AIb ]. As 
noted above,  all pr imes are therefore minimal  representat ions,  i .e ,  
Ira1 - m2[ = 0. 

N o w  assume that k < n. Let W be the k-dimensional  subspace generated 
by P. Since P has full d imension in W, the cardinali ty o f  a prime representa- 
t ion o f  P in W is unique. Thus, the only variation in the cardinali ty o f  
primes is due to the number  o f  constraints used in reducing the d imension  
o f  P f rom n to k. This is equivalent  to the possible variat ion in the number  
o f  constraints t that  reduce  the d imension o f  a po lyhedron  f rom ( n -  k) to 
zero. Lemma 2.1 implies that (n - k) + 1 ~ t -< 2(n - k). Thus, for k < n, the 
max imum variat ion is 2(n - k) - ((n - k) + 1) = n - k - 1. []  

To prove that the bounds  given by the theorem are sharp,  note  that 
the pr ime representat ion o f  P = {0} C R", given by 
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has cardinal i ty  n + 1, while the pr ime represen ta t ion  

{ x l O < - x i < - O , i = l , . . . , n }  

has cardinal i ty  2n. 
The  theo rem can be used  to provide  an uppe r  bound  on the d imens ion  

o f  a convex  po lyhedra l  set. In  the example ,  we had  m I = 4, m2 = 3, and 
n = 2. Thus,  k -  < 2 - 1 3 - 2 1 - 1  = 0, which implies  that  the po lyhed ron  has 
d imens ion  k = 0. 
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