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Abstract

We give a strengthening of the closure concept for claw-free graphs introduced by the second
author in 1997. The new closure of a claw-free graph G de2ned here is uniquely determined and
preserves the value of the circumference of G. We present an in2nite family of graphs with n
vertices and 3

2n−1 edges for which the new closure is the complete graph Kn. c© 2001 Elsevier
Science B.V. All rights reserved.
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1. Introduction

We consider 2nite simple undirected graphs G=(V (G); E(G)). For concepts and no-
tation not de2ned here we refer the reader to [1]. We denote by c(G) the circumference
of G, i.e. the length of a longest cycle in G, by NG(x) the neighborhood of a vertex x
in G (i.e., NG(x)={y ∈ V (G)| xy ∈ E(G)}), and we denote NG[x]=NG(x)∪{x}. For
a nonempty set A⊆V (G), the induced subgraph on A is denoted by 〈A〉G, the notation
G−A stands for 〈V (G)\A〉G (if A �= V (G)) and we put NG(A)={x ∈ V (G)| N (x)∩A �=
∅} and NG[A] = NG(A) ∪ A. For a subgraph X of G we denote NG(X ) = NG(V (X ))
and NG[X ] = NG[V (X )].
If F is a graph, then we say that a graph G is F-free if G does not contain a

copy of F as an induced subgraph. The graph K1;3 will be called the claw and in
the special case F = K1;3 we say that G is claw-free (instead of F-free). The line
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graph of a graph H is denoted by L(H). If G = L(H), then we also say that H is
the line graph preimage of G and denote H = L−1(G). It is well known that for any
connected line graph G �� K3 its line graph preimage is uniquely determined.
Let T be a closed trail in G. We say that T is a dominating closed trail (DCT),

if V (G)\V (T ) is an independent set in G (or, equivalently, if every edge of G
has at least one vertex on T ). Harary and Nash-Williams [6] proved the following
result, relating the existence of a DCT in a graph to the hamiltonicity of its line
graph.

Theorem A (Harary and Nash-Williams [6]). Let H be a graph with |E(H)|¿3
without isolated vertices. Then L(H) is hamiltonian if and only if H contains
a DCT.

A special case is that H = K1; r for some r¿3; then L(H) = Kr and the DCT in H
consists of a single vertex.
For a vertex x ∈ V (G), set Bx={uv | u; v ∈ N (x); uv �∈ E(G)} and G′

x=(V (G); E(G)∪
Bx). The graph G′

x is called the local completion of G at x. It was proved in [8] that
if G is claw-free, then so is G′

x, and if x ∈ V (G) is a locally connected vertex (i.e.,
〈N (x)〉G is a connected graph), then c(G) = c(G′

x). A locally connected vertex x with
Bx �= ∅ is called eligible (in G) and the set of all eligible vertices of G is denoted by
VEL(G).
We say that a graph F is a closure of G, denoted F=cl(G) (see [8]), if VEL(F)=∅

and there is a sequence of graphs G1; : : : ; Gt and vertices x1; : : : ; xt−1 such that G1 =G,
Gt =F , xi ∈ VEL(Gi) and Gi+1 = (Gi)′xi , i=1; : : : ; t− 1 (equivalently, cl(G) is obtained
from G by a series of local completions at eligible vertices, as long as this is possible).
The following basic result was proved in [8].

Theorem B (Ryj,a(cek [8]). Let G be a claw-free graph. Then

(i) cl(G) is well-deAned (i.e., uniquely determined);
(ii) there is a triangle-free graph H such that cl(G) = L(H);
(iii) c(G) = c(cl(G)).

Consequently, a claw-free graph G is hamiltonian if and only if so is its closure
cl(G). A claw-free graph G for which G = cl(G) will be called closed. Clearly, G is
closed if and only if VEL(G) = ∅, i.e. if every vertex x ∈ V (G) is either simplicial
(〈N (x)〉G is a clique), or is locally disconnected (〈N (x)〉G is disconnected, imply-
ing that, since G is claw-free, 〈N (x)〉G consists of two vertex disjoint cliques). It is
easy to observe that G is a closed claw-free graph if and only if G is claw-free and
(K4 − e)-free. This implies that if G is closed claw-free, then so is every induced
subgraph of G. It is also straightforward to check that for any edge e of a closed
claw-free graph the largest clique containing e is uniquely determined. The order of the
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largest clique in a closed claw-free graph G containing a given edge e will be denoted
by !G(e).
The closure concept for claw-free graphs has been studied intensively since it has

been introduced in [8]. It is known to preserve a number of graph properties and values
of graph parameters, and has found many applications. Interested readers can 2nd more
information e.g. in the survey paper [3].
In the following section, we introduce a strengthening of this closure concept, and

we show that this new closure is again uniquely determined and that it preserves the
value of the circumference of G.

2. The cycle closure

Let G be a closed claw-free graph and let C be an induced cycle in G of length k.
We say that the cycle C is eligible in G if 46k66 and !G(e) = 2 for at least k − 3
nonconsecutive edges e ∈ E(C) (or, equivalently, if the k-cycle L−1(C) in H=L−1(G)
contains at least k − 3 nonconsecutive vertices of degree 2).
For an eligible cycle C in G set BC = {uv| u; v ∈ NG[C]; uv �∈ E(G)}. The graph

G′
C with vertex set V (G′

C) = V (G) and edge set E(G′
C) = E(G) ∪ BC is called the

C-completion of G at C.
The following proposition shows that the C-completion of a closed claw-free graph

at an eligible cycle C is again claw-free and has the same circumference. Note that a
C-completion of a closed claw-free graph is not necessarily closed (for example, the
graph G with V (G)={a; b; c; d; e; f; g} and E(G)={ab; bc; cd; de; ef; fa; ga; gb; gd; ge}
is closed and claw-free, the 4-cycle C = agefa is eligible in G, but G′

C is not closed
since b; d ∈ VEL(G′

C)).

Proposition 1. Let G be a closed claw-free graph, let C be an eligible cycle in G and
let G′

C be the C-completion of G. Then

(i) G′
C is claw-free;

(ii) c(G′
C) = c(G).

Proof: (i) Let H = 〈{z; y1; y2; y3}〉G′
C
be a claw. Then 16|E(H) ∩ BC | since G is

claw-free, and |E(H) ∩ BC |61 since 〈N [C]〉G′
C

is a clique. Let zy1 ∈ BC . Then
z ∈ N [C], implying zu ∈ E(G) for some u ∈ V (C). Then obviously uy2; uy3 �∈
E(G) (otherwise H is not a claw in G′

C), but then 〈{z; u; y2; y2}〉G is a claw in G, a
contradiction.
(ii) Obviously c(G′

C)¿c(G) since every cycle in G is a cycle in G′
C . To prove

the converse, it is suKcient to show that for every longest cycle C′
1 in G′

C there is a
cycle C1 in G with V (C1) = V (C′

1). This is clear if E(C′
1) ∩ BC = ∅; hence, suppose

E(C′
1)∩BC �= ∅. Since C′

1 is longest and 〈N [C]〉G′
C
is a clique, N [C]⊂V (C′

1), implying
that 〈V (C′

1)〉G′
C
is the C-completion of 〈V (C′

1)〉G. Since every induced subgraph of a
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closed claw-free graph is again claw-free and closed, it is suKcient to show that if G′
C

is hamiltonian then so is G.
Let H = L−1(G) and suppose that C is a k-cycle (46k66). Since C is eligi-

ble in G, the k-cycle L−1(C) in H contains k − 3 nonconsecutive vertices xi, i =
1; : : : ; k−3, of degree 2. Let x−i , x

+
i be the predecessor and successor of xi on L−1(C),

respectively.
It is straightforward to check that G′

C can be equivalently obtained by the following
construction:

(i) denote by H ′ the graph obtained from H by replacing the path x−i xix
+
i by the

edge x−i x
+
i ; i = 1; : : : ; k − 3;

(ii) denote by ai the vertices of L(H ′) corresponding to the edges x−i x
+
i , i=1; : : : ; k−3;

(iii) construct a graph LG from L(H ′) by a series of consecutive local completions at
the vertices a1; : : : ; ak−3;

(iv) add k−3 vertices z1; : : : ; zk−3 to LG and turn the set {z1; : : : ; zk−3}∪N LG[{a1; : : : ; ak−3}]
into a clique.

Note that step (i) turns C into a triangle, and hence the vertices a1; : : : ; ak−3 are locally
connected in L(H ′).
By the main result of [8], by the above considerations and by Theorem A, it

is suKcient to show that if H ′ contains a DCT, then so does H . Let T be a DCT
in H ′.
Suppose 2rst that k = 4 and, for simplicity, set x = x1. If x−x+ ∈ E(T ), then,

replacing in T the edge x−x+ by the path x−xx+, we have a DCT in H . Hence suppose
x−x+ �∈ E(T ). Since T is dominating, |{x−; x+} ∩ V (T )|¿1. If both x−, x+ are on
T , then T is dominating in H . Hence we can suppose x− ∈ V (T ) and x+ �∈ V (T ). If
x−x++ ∈ E(T ), then we replace in T the edge x−x++ by the path x−xx+x++, and if
x−x++ �∈ E(T ), then we add to T the 4-cycle x−xx+x++x−. In both cases, we have a
DCT in H .
Let now k = 5 and suppose the notation is chosen such that x+1 = x−2 . If x−1 x

+
1 ∈

E(T ) and x−2 x
+
2 ∈ E(T ), then, replacing in T the edges x−1 x

+
1 and x−2 x

+
2 by the paths

x−1 x1x
+
1 and x−2 x2x

+
2 , we have a DCT in H . If x−1 x

+
1 �∈ E(T ) and x−2 x

+
2 �∈ E(T ), then

for x−1 x
+
2 ∈ E(T ) we replace in T the edge x−1 x

+
2 by the path x−1 x1x

+
1 x2x

+
2 , and for

x−1 x
+
2 �∈ E(T ) we add to T the cycle x−1 x1x

+
1 x2x

+
2 x

−
1 . In both cases, we have a DCT in

H (note that at least two of the vertices x−1 ; x
+
1 ; x

+
2 are on T since T is dominating).

Up to symmetry, it remains to consider the case when x−1 x
+
1 ∈ E(T ) and x−2 x

+
2 �∈ E(T ).

Then for x−1 x
+
2 ∈ E(T ) the trail T is a DCT in H , and for x−1 x

+
2 �∈ E(T ) we get a

DCT in H by replacing in T the edge x−1 x
+
1 by the path x−1 x

+
2 x2x

−
2 (=x+1 ). Thus, in all

cases we have a DCT in H .
Finally, let k = 6 and choose the notation such that x+1 = x−2 and x+2 = x−3 . If at

least two of the edges x+1 x
+
2 , x

+
2 x

+
3 , x

+
3 x

+
1 are on T (say, x+1 x

+
2 , x

+
2 x

+
3 are on T ), then,

replacing in T the edges x+1 x
+
2 and x+2 x

+
3 by the paths x+1 x2x

+
2 and x+2 x3x

+
3 , we get a

DCT in H . If none of the edges x+1 x
+
2 , x

+
2 x

+
3 , x

+
3 x

+
1 is on T , then we get a DCT in H

by adding to T the cycle x1x+1 x2x
+
2 x3x

+
3 x1 (note that again at least two of the vertices
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x+1 ; x
+
2 ; x

+
3 are on T since T is dominating). Hence, it remains to consider the case that

exactly one of these edges, say, x+1 x
+
2 , is on T , but in this case we obtain a DCT in

H by replacing in T the edge x+1 x
+
2 by the path x+1 x1x

+
3 x3x

+
2 .

Now, we can de2ne the main concept of this paper which strengthens the closure
concept introduced in [8].

De�nition 2. Let G be a claw-free graph. We say that a graph F is a cycle closure
of G, denoted F = clC(G), if there is a sequence of graphs G1; : : : ; Gt such that

(i) G1 = cl(G),
(ii) Gi+1 = cl((Gi)′C) for some eligible cycle C in Gi, i = 1; : : : ; t − 1,
(iii) Gt = F contains no eligible cycle.

Thus, clC(G) is obtained from cl(G) by recursively performing C-completion oper-
ations at eligible cycles and each time closing the resulting graphs with the closure
de2ned in [8], as long as this is possible (i.e., as long as there is some eligible cycle).
It is easy to see that clC(G) can be computed in polynomial time.

It follows immediately from the de2nition that E(cl(G))⊆E(clC(G)) for any claw-free
graph G. We show that clC(G) is well-de2ned (i.e., uniquely determined) and that the
cycle closure operation preserves the value of the circumference of G.

Theorem 3. Let G be a claw-free graph. Then

(i) clC(G) is well-deAned;
(ii) c(G) = c(clC(G)).

From Theorem 3 we immediately have the following consequence.

Corollary 4. Let G be a claw-free graph. Then

(i) G is hamiltonian if and only if clC(G) is hamiltonian;
(ii) if clC(G) is complete; then G is hamiltonian.

Before proving Theorem 3, we 2rst prove the following lemma.

Lemma 5. Let G be a closed claw-free graph; let C; C1 be two eligible cycles in G
and let G′=cl(G′

C); where G′
C is the C-completion of G at C. Then either 〈V (C1)〉G′

is a clique; or there is a cycle C2 such that V (C2)⊆V (C1); C2 is eligible in G′ and;
in the graph G′′ = (G′)′C2

, 〈V (C1)〉G′′ is a clique.
This implies; in particular; that all vertices of C1 are locally connected in G′ or

G′′; respectively.

Proof: The last statement follows obviously from the eligibility of C1 in G and the
completeness of 〈V (C1)〉G′ or 〈V (C1)〉G′′ , respectively. To prove the 2rst statement,
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denote by k = |V (C1)| and let ei = aia+i (i=1; : : : ; k − 3) be the nonconsecutive edges
of C1 with !G(ei) = 2. Suppose the notation is chosen such that a+1 = a−2 if k¿5
and, moreover, a+2 = a−3 if k = 6. We can suppose that 〈V (C1)〉G′ is not a clique
(otherwise we are done) and that C1 is not eligible in G′ (otherwise we are done with
C2 = C1).
Suppose that !G′(ei) = 2 for all i, 16i6k − 3. Since C1 is not eligible, C1

is not an induced cycle in G′. For k = 4 this immediately implies that 〈V (C1)〉G′

is a clique (since G is closed), a contradiction. For k = 5, the only chord in C1

is a1a+2 (all other chords would imply !G′(ei)¿3 for some i), but then we are
done with C2 = a1a+1 a2a

+
2 a1. For k = 6, any chord in C1 implies !G′(ei)¿3 for

some i (using the fact that G′ is claw-free). Hence, we can suppose that !G′(ei)¿3
for some i, 16i6k − 3. By symmetry, suppose that !G′(e1)¿3. We claim the
following.

Claim 1: Let e= aa+ be an edge of C1 such that !G(e)=!G′
C
(e)=2 but !G′(e)¿3.

Then either aa++ ∈ E(G′); or a−a+ ∈ E(G′).

Proof of Claim 1: Suppose that !G′(e)¿3. By the de2nition of G′, there is a sequence
of graphs F1; : : : ; F‘ and vertices x1; : : : ; x‘−1 such that F1 =G′

C , F‘ =G′, x1 ∈ VEL(Fi)
and Fi+1=(Fi)′xi , i=1; : : : ; ‘−1. Let j (16j6‘−1) be the smallest integer for which
!Fj (e)¿3. Then there is a vertex c ∈ V (G) such that ca; ca+ ∈ E(Fj), but at least
one of ca; ca+ is not in E(Fj−1).
Let 2rst ca �∈ E(Fj−1). Then cxj−1; axj−1 ∈ E(Fj−1). Clearly xj−1a+ �∈ E(Fj−1)

(otherwise !Fj−1 (e)¿3) and a−a+ �∈ E(Fj−1) (otherwise there is nothing to prove).
Since 〈{a; a−; a+; xj−1}〉Fj−1 is not a claw, we have xj−1a− ∈ E(Fj−1). From xj−1a+ �∈
E(Fj−1) we also have ca+ ∈ E(Fj−1), since otherwise cannot be ca+ ∈ E(Fj). But
then a+cxj−1a− is an (a+; a−)-path in NFj (a), implying a ∈ VEL(Fj), from which,
since G′ = cl(Fj), we have a−a+ ∈ E(G′).
If ca+ �∈ E(Fj−1), then symmetrically aa++ ∈ E(G′). Hence the claim follows.

Claim 2: Let e = aa+ be an edge of C1 such that !G(e) = 2 and !G′
C
(e)¿3. Then

〈{a−; a; a+; a++}〉G′ is a clique.

Proof of Claim 2: Let c ∈ V (G) be such that ca; ca+ ∈ E(G′
C). By symmetry, suppose

ca+ �∈ E(G). Then c; a+ ∈ NG[C]. Let d be a neighbor of a+ on C, and denote by K+

(K−) the largest clique in G, containing the edge a+a++ (a−a), respectively. Since
〈{a+; a++; a; d}〉G cannot be a claw and da; a++a �∈ E(G) (since !G(e) = 2), we have
da++ ∈ E(G), implying, since G is closed, d ∈ V (K+). Since cd; ca+ ∈ E(G′

C) and G′

is closed, we have aa++ ∈ E(G′). For k = 4 this immediately implies that 〈V (C1)〉G′

is a clique, hence |V (C1)|¿5.
Now we consider the edge ca. If ca �∈ E(G), then, by a symmetric argument, we

have a−a+ ∈ E(G′) and we are done since G′ is closed. Hence ca ∈ E(G). Since
〈{a; c; a+; a−}〉G cannot be a claw and ca+ �∈ E(G), either a−a+ ∈ E(G) (and we
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are done), or ca− ∈ E(G), implying c ∈ V (K−). But then, since ca+ ∈ E(G′
C)

and G′ is closed, again a−a+ ∈ E(G′) and hence also a−a++ ∈ E(G′). This proves
Claim 2.

Now for k=4 from !G′(e1)¿3 and from Claims 1 and 2 we immediately have that
〈V (C1)〉G′ is a clique.
Let k = 5. If !G′

C
(e1)¿3, then 〈V (C1)〉G′ is a clique by Claim 2 and since G′ is

closed. Thus, let !G′
C
(e1) = 2. By Claim 1, a−1 a

+
1 ∈ E(G′) or a1a2 ∈ E(G′). If both

these edges are present or if !G′(e2)¿3, then clearly 〈V (C1)〉G′ is a clique. Otherwise,
we set C2 = a−1 a

+
1 a2a

+
2 a

−
1 (if a−1 a

+
1 ∈ E(G′)) or C2 = a1a2a+2 a

−
1 a1 (if a1a2 ∈ E(G′)).

Finally, suppose that k=6. We show that !G′
C
(e1)=2. If !G′

C
(e1)¿3 and !G′(e2)¿3

or !G′(e3)¿3, then, by Claims 1 and 2 and since G′ is closed, 〈V (C1)〉G′ is a clique. If
!G′

C
(e1)¿3 and !G′(e2)=!G′(e3)=2, then we are done with C2=a2a+2 a3a

+
3 a2. Hence

!G′
C
(e1)=2. By a symmetric argument we can prove that also !G′

C
(e2)=!G′

C
(e3)=2.

By the assumption !G′(e1)¿3 and by Claim 1, at least one of the chords a−1 a
+
1 , a1a2

is present. Now, if both a−2 a
+
2 ∈ E(G′) and a2a3 ∈ E(G′), then, since G′ is closed,

also a−2 a3 ∈ E(G′), which together with any of the chords a−1 a
+
1 , a1a2 implies that

〈V (C1)〉G′ is a clique. Hence at most one of a−2 a
+
2 , a2a3 is present. Symmetrically,

at most one of a−3 a
+
3 , a3a1 is present. Hence we have at least one of the chords

a−1 a
+
1 , a1a2, at most one of a−2 a

+
2 , a2a3, and at most one of a−3 a

+
3 , a3a1. Then it is

straightforward to check that in each of the possible cases either 〈V (C1)〉G′ is a clique
or we can 2nd a required cycle C2.

Proof of Theorem 3: (i) Let F1; F2 be two cycle closures of G, suppose E(F1) \
E(F2) �= ∅ and let G1; : : : ; Gt be the sequence of graphs that yields F1. Let e = xy ∈
E(Gj) \ E(F2) be chosen such that j is as small as possible. Since e ∈ E(Gj), either
x; y ∈ N [C] for some eligible cycle C in Gj−1, or there is a sequence of vertices
x1; : : : ; xk and graphs H1; : : : ; Hk such that H1=(Gj−1)′C , xi is eligible in Hi, Hi+1=(Hi)′xi ,
i = 1; : : : ; k, and x; y ∈ NHk (xk). By Lemma 5 (in the 2rst case) and since obviously a
locally connected vertex remains locally connected after adding edges to the graph (in
the second case), we have xy ∈ E(F2), a contradiction.
(ii) Part (ii) follows immediately from Proposition 1 and from the main result

of [8].

Example 1. The graph in Fig. 1(a) shows that Proposition 1 fails if we require only
one edge e with !G(e)=2 in a C5 or if we admit the two edges to be consecutive. The
graph in Fig. 1(b) gives a similar example for a C6 (elliptical parts represent cliques
of order at least three).

Example 2. Linderman [7] proved that the minimum number of edges of a claw-free
graph G of order n with a complete closure cl(G) equals 2n− 3. The graph in Fig. 2
is an example of a claw-free graph G of order n ≡ 0 (mod 6) with a complete cycle
closure clC(G) and with only 3

2n− 1 edges.
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Fig. 1.

Fig. 2.

Remarks: (i) The graph in Fig. 2 is a closed claw-free graph that contains neither a
C4 nor a K4 − e as an induced subgraph. This implies that the closure concepts based
on neighborhood conditions for the vertices of an induced K4 − e introduced in [2,4]
cannot be applied to add new edges to this graph (while its cycle closure is a complete
graph). On the other hand, the closures from [2,4] do not assume claw-freeness of the
original graph, and yield additional edges in graphs for which the closure of [8] and
the cycle closure are not de2ned.
(ii) Catlin [5] has introduced a powerful reduction technique that reduces the order

of the line graph preimage, preserving the existence of a spanning closed trail, and,
with some restrictions, of a DCT in this preimage. Considering the graph H = K2; t

for t¿3, it is not diKcult to check that H is equal to its reduction (i.e. Catlin’s
reduction technique is not applicable), L(H) is a closed claw-free graph (hence the
closure technique introduced in [8] is also not applicable), but the cycle closure of
L(H) is a complete graph. This example shows that the cycle closure technique is not
a special case of Catlin’s reduction technique. Moreover, it is not known whether the
reduction of a graph in the sense of Catlin’s technique can be obtained in polynomial
time. The same holds for the re2nement of Catlin’s technique due to Veldman [9].
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