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The propagation of a reaction front through a packed bed is analyzed theoretically. The chemical reaction rate
is represented by Arrhenius temperature kinetics with external transfer limitation and general power law
dependency on both gaseous and solid reactant concentrations. Analogous to so-called “Activation Energy
Asymptotics” developed for premixed laminar flames, the largeness of the activation energy of the chemical
reaction is exploited to derive asymptotic solutions from the three governing differential equations pertaining
to transport of heat, of solid reactant, and of gaseous reactant, making use of the method of matched asymptotic
expansions. Two regions are distinguished, i.e., an outer region or preheat zone and an inner region or reaction
zone. In the preheat zone, the reaction terms can be neglected as compared to the convective and diffusive
terms. In the reaction zone, the diffusion of heat is dominating over the convective heat transport mechanism
and balances the heat of reaction. In accordance with the magnitudes taken for the Lewis numbers, for solid
and gaseous reactants convective transports are dominating and submitting diffusive transports in the reaction
zone, respectively. Solutions in closed form are presented for governing variables including reaction front
velocity whereby previously published results appear as special cases. The solutions provide direct insight into
underlying physical processes and enable the effects of important parameters to be quantified analytically.
© 2001 by The Combustion Institute

NOMENCLATURE

B0 integration constant
C0 integration constant
Cp apparent specific heat [J/(kg K)]
cp specific heat [J/(kg K)]
Da,eff effective axial dispersion coefficient

[m2/s]
Ea activation energy [J/mol]
Es dispersion coefficient for solid phase

reactant [m2/s]
DHr reaction enthalpy [J/kg]
Kg ratio of generalized transport

coefficient to reaction rate at
temperature Tb

Kr reaction rate at temperature Tb

[(m3/kg)m1n21 s21]
ko generalized pre-exponential factor

[(m3/kg)m1n21 s21]
kg generalized transport limitation

coefficient [(m3/kg)m1n21 s21]
kr reaction rate at temperature T [(m3/

kg)m1n21 s21]
Le effective Lewis number
m reaction order solid key reactant
n reaction order gaseous key reactant

q diffusive heat flux [W/m2]
R universal gas constant [J/(mol K)],

total reaction rate [kg/(m3 s)]
T temperature [K]
uf reaction front velocity [m/s]
Ug superficial gas velocity [m/s]
x space coordinate in moving

coordinate system [m]
X scaled dimensionless space

coordinate
y mass fraction

Greek Symbols

a scaled dimensionless “burnt” mass
fraction of gaseous key reactant

G(v) complete gamma-function
G(v, w) incomplete gamma-function
g Zeldovich number
d arbitrary dimensionless number
eg packed bed porosity
z scaled mass fraction of gaseous key

reactant
h inner coordinate, effectiveness

factor
u dimensionless temperature
kr scaling constant for asymptotic

analysis [W/(m2 K)]
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La,eff effective packed bed axial heat
conduction coefficient [W/(m K)]

m relative temperature rise
yi stoichiometric factor
F convective mass flow [kg/(m2 s)]
f dimensionless convective energy flux
j notation for Riemann’s zeta-

function
r density [kg/m3]
s scaled mass fraction of solid key

reactant
c dimensionless diffusive heat flux

Frequently Used Indices

b “burnt” situation, situation after
reaction is completed

c convection dominated
d diffusion dominated
g related to gaseous phase
i ith reactant, here: key reactant in

gaseous phase
in inner zone or reaction zone
k kth reactant, here: key reactant in

solid phase
ou outer zone or preheat zone
s related to solid phase
u “unburnt” situation, initial situation

before reaction

INTRODUCTION

Many chemical conversion processes are carried
out in (catalytic or noncatalytic) packed bed
reactors or in homogeneous plug flow. If the
cold reactants are separated from the high-
temperature reaction products by a relatively
thin area in which the reactions take place, this
area is called the reaction front. The reaction
front propagates with a certain relative velocity
through the medium. For purpose of illustra-
tion, the premixed combustion in laminar
flames, the production of ceramic materials by
combustion synthesis processes, the conversion
of chemical reactants in catalytic packed beds,
and the fixed bed combustion or gasification of
solid fuels such as municipal waste and coal can
be mentioned [1].

At the initial temperature the reactant is in a
basically nonequilibrium thermodynamic state,
but chemical reactions are extremely slow. Heat

generated in the intense chemical conversion
zone is conducted to the upstream cold layers,
heating them and increasing the reaction rate.
As a result, propagation of the exothermic
reaction front occurs. In addition to heat con-
duction, diffusion of components over distances
comparable to the reaction front thickness pos-
sibly occurs. The reaction front propagates into
the reactant mixture with the reaction front
propagation speed or simply the front speed uf.
In case of a premixed flame, the front speed is
called the laminar flame speed and the problem
is known as the freely propagating flame prob-
lem. When the temperature dependency of the
chemical reaction is large enough, two zones
can be distinguished within the reaction front,
the preheat zone and the reaction zone. In the
preheat zone, the effect of the reaction can be
disregarded. In the reaction zone, the chemical
reaction is intense and can not be neglected.
The temperature rise from the initial tempera-
ture to temperatures somewhat lower than the
maximum reaction temperature occurs at the
expense of heat conducted from the reaction
zone to (and within) the preheat zone.

In this paper, a theoretical analysis of the
propagation of a reaction front in a packed bed
is presented. The analysis concentrates on a
situation in which the reaction front moves in
opposite direction with respect to the gas flow
through the packed bed. For the solution of the
governing differential equations, use has been
made of the “method of matched asymptotic
expansions” [2]. Although this method is capa-
ble of producing useful results of a high order of
accuracy, it is not either its only or its most
notable feature. Just the acquisition of a com-
plete first approximation in analytical form pro-
duces such a gain in understanding of the
physics of a situation that this alone makes the
method extremely valuable [3].

Most studies on reaction front propagation
problems are involved with the freely propagat-
ing laminar flame or burner stabilized flame
problem, in which diffusion of the gaseous
reactants is of the same order as the conduction
of heat (i.e., the Lewis number is equal to unity
or of order unity) [4–6]. The limiting problem
in which diffusion can be disregarded or is
absent, i.e., only convective transport of the
reactants is important, is considered numeri-
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cally by Von Karman [4] and analytically by
Merzhanov and Khaikin [5] and Gatica et al.
[7]. In contrast with a gas flame where the main
concentration change occurs in the preheat
zone due to diffusion of reactants and conduc-
tion of heat, the main change in concentration
in a medium with no or very low diffusion
occurs in the reaction zone. This is due to a
negligible role of diffusive transfer on distances
of the order of the reaction zone width. More
recent applications of the method in the field of
packed bed combustion are given by Dosanjh et
al. [8], Fateni and Kaviany [9], and Escobedo
and Viljoen [10]. A packed bed can be consid-
ered as a combination of the diffusion governed
and the convection governed case.

In this paper an analysis based on large
activation energy asymptotics is performed tak-
ing account of two reactants simultaneously.
Whereas for the gaseous reactant diffusion is
dominant in the reaction zone, for the solid
reactant convective transport dominates. Solu-
tions in closed form are given for governing
variables whereby previously published results
appear as special cases. Furthermore, an ap-
proach is proposed for cases that are not gov-
erned by either limiting situation.

The results can be applied to any packed bed
conversion process where a reaction front is
formed that moves in opposite direction to the
flow of the gaseous reactant, or to the simplified
case of pure homogeneous (either gaseous or in
solid state) conversion processes. Although sev-
eral assumptions have been made with regard to
the functional shape of the reaction rate equa-
tion, the analysis can equally well be applied to
any reaction where the reaction rate close to the
maximum temperature is exponentially large as
compared to the reaction rate at lower temper-
atures. Furthermore, the analysis assumes that
the diffusive processes can be described by
dispersion coefficients that can take the shape
of a constant for homogeneous processes or are
a function of the bed properties and flow pa-
rameters for a heterogeneous packed bed [1, 11,
12]. The impact of the various assumptions will
be discussed where relevant. An assessment of
the physical value of the parameters for various
applications, as well as a comparison to experi-
mental results is presented elsewhere [1].

GOVERNING EQUATIONS

The situation of a reaction front, propagating in
a packed bed of reacting particles, is schemati-
cally illustrated in Fig. 1. The situation is con-
sidered here, where the reaction front moves in
opposite direction with respect to the gaseous
flow entering from below.

Adopting a pseudohomogeneous modeling
approach and a one-step global heterogeneous
reaction with a key reactant in the solid phase
and a key reactant in the gaseous phase, the
governing equations can be written as [1]:

2ufrs

­ yk

­ x
1

­

­ x SrsEs

­ yk

­ x D 2 R 5 0, (1)

2Ugrg

­ yi

­ x
1

­

­ x SrgDa,eff

­ yi

­ xD 2 viR 5 0, (2)

2~Ugrgcpg
1 ufrscps

!
­T
­ x

1
­

­ x SLa,eff

­T
­ xD 1 R~2DHr!50 (3)

where the coordinate system is attached to the
reaction front, moving at a constant front speed
uf. The equations can alternatively be obtained
from the full instationary equations, by trans-
forming to a coordinate system attached to the
reaction front and neglecting transient terms,

Fig. 1. Schematical representation of the propagation of a
reaction front in a packed bed. Illustration of coordinate
transformation.
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which are of order O(d/L) compared to the
time needed for complete conversion of a layer
with thickness L, with d the reaction front
thickness and generally d ,, L.

The effective dispersion coefficients for mass
and energy can be described as a functional
dependency of various physical parameters [1,
11, 12]. The effective mass diffusion coefficients
ES and Da,eff are either constant or a function
of bed properties and flow parameters only. The
effective thermal conductivity La,eff also de-
pends on the bed temperature by means of the
radiative contribution, especially at high conver-
sion temperatures. It appears, however, that the
contribution due to fluid flow largely exceeds
the radiative contribution at higher fluid veloc-
ities. Therefore, the packed bed effective heat
conductivity coefficient is assumed constant and
is evaluated at the mean conversion tempera-
ture. This approach can be shown correct in first
order as long as the flow velocities are not
O(1022) or below, by means of an asymptotic
analysis [1].

The momentum equations are bypassed by
assuming isobaric and inviscid flow. Further-
more, in Eqs. 1 to 3, yi and yk are used to denote
the mass fraction of the gaseous ( g) and solid-
phase (s) reactants respectively. The solid den-
sity in the packed bed r9s is the product of the
local density rs

o within the solid phase and a
factor (1 2 eg) representing the fraction of
volume filled with solid material. The fraction yk

incorporates the combined effect of changing
solid density in the packed bed and changing
fraction y9k of the key reactant in the solid phase:

yk 5
r9s
rs

p y9k, (4)

where rs is a constant, representing the packed
bed solid density before reaction.

A generalized description of the effective
reaction rate is adopted, which is nth order in
the gaseous key reactant and mth order in the
solid key reactant:

R 5
1

1
kg

1
1
kr

~rsyk!
m~rgyi!

n, (5)

kr 5 ko p e2Ea/~RpT!. (6)

Equation 5 is discussed in detail elsewhere [1].
The constant kg constitutes a generalized limi-
tation coefficient, to account for effects of mass
or heat transfer to the external reaction surface.
The pre-exponential factor ko and activation
energy Ea may be lumped kinetic parameters,
i.e., for fully internally limited reactions in com-
busting coal particles the lumped activation
energy appears as half of the true Arrhenius
value [13, 14], but could vary anywhere between
0.5 and 1 times the true value depending on the
extent of diffusional control [14]. The descrip-
tion of the reaction rate is exact in case of true
Arrhenius kinetics, i.e., kg/kr .. 1, and in case
of a first-order partially external mass transfer
limited reaction. For all other cases an explicit
reaction can not be derived, e.g., for a nth order
partially external mass transfer limited reaction
an implicit rate equation is obtained [15]. In
such a situation, the reaction rate can only be
obtained by iterative methods. Thus, in general,
consecutive rate processes of general order can
not easily be described by an overall explicit
expression. Similar conclusions can be drawn
for nonisothermal situations [15–17]. In all
these cases, the use of a generalized rate equa-
tion (5) may provide a means to describe the
reaction rate by a matching explicit equation.
Although the proposed rate equation is defined
as general as possible, situations may arise
where the resulting functional form is not satis-
fying. In such a case, the solution procedure
outlined in this paper will still prove applicable,
as long as the reaction rate in the vicinity of the
maximum temperature is exponentially large as
compared to the reaction rate at lower temper-
atures [1].

As boundary conditions for the system, it is
assumed that far away from the reaction front,
no gradients in the mass fluxes of the reacting
species or temperature occur:

x3 2`: yk 5 yk
u, yi 5 yi

u, T 5 Tu,
­ yk

­ x
5

­ yi

­ x
5

­T
­ x

5 0,

x3 `:
­ yk

­ x
5

­ yi

­ x
5

­T
­ x

5 0.

(7)

The choice of the boundary conditions (7) re-
veals the so called “cold boundary” difficulty [4,
18–20]. Activation energy asymptotics elegantly
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circumvents the improperly posed problem [20].
The basic idea of the method is that the mixture
ahead of any reaction front is reacting exponen-
tially slow and may therefore be ignored for
times that are not correspondingly large. The
asymptotic analysis, which will be presented in
the next section, applies for such times.

DIMENSIONLESS FORMULATION

As customary in applying activation energy as-
ymptotics, a coordinate transformation is per-
formed in which the temperature T is taken as
independent variable and the diffusive heat flux
q as dependent variable:

q 5 La,eff

­T
­ x
3 La,eff

­

­ x
5 q

­

­T
(8)

Variables are nondimensionalized as

T 5 Tb 2 ~Tb 2 Tu!u

yk 5 yk
b 2 ~ yk

b 2 yk
u!s

(9)
yi 5 yi

b 2 ~ yi
b 2 yi

u!z

q 5 qdc

where the dimensionalization of the diffusive
heat qd is defined by

qd
2 5 La,eff~2DHr!koe2Ea/RTbrs

mSrg
uTu

Tb Dn

z ~ yk
u 2 yk

b!m~ yi
u 2 yi

b!n~Tb 2 Tu!. (10)

Upon substituting the above relations into
Eqs. 1–3 and nondimensionalizing, the nondi-
mensional conservation equations are obtained.
Making use of the total energy balance, which is
obtained by integrating Eq. 3 over the reaction
front under the boundary conditions (7), the
following equations for the scaled mass fraction
of solid key reactant s, the scaled mass fraction
of gaseous key reactant z, and the dimensionless
diffusive heat flux c are obtained:

c
­

­u
Sc

1
Les

­s

­u
D 1 fc

­s

­u
2 r~u, s, z! 5 0,

(11)

c
­

­u
Sc

1
Leg

­z

­u
D 1 fc

­z

­u
2 r~u, s, z! 5 0,

(12)

c
­c

­u
1 fc 2 r~u, s, z! 5 0, (13)

where r(u, s, z) is the dimensionless effective
reaction rate defined as

r~u, s, z! 5
e2~u/g!/~12mu !

1 1
1
Kg

e2~u/g!/~12mu !

~ek 1 s!m

z ~ei 1 z!nS 1
1 2 mu

Dn

. (14)

A linear temperature dependency of the gas
density has been assumed, which is correct in
first-order approximation.

The parameters Les and Leg are effective
Lewis numbers for solid and gaseous reactant,
respectively,

Les 5
La,eff

SrsCPs 1
ug

uf
rgCPgDEs

,

Leg 5
La,eff

SrgCPg 1
uf

ug
rsCPsDDa,eff

, (15)

while f is dimensionless convective energy flux,

f 5
~ugrgCpg 1 ufrsCps!~Tb 2 Tu!

qd
(16)

whereby it is noted that f or alternatively the
reaction front velocity uf, is an unknown quan-
tity which follows from solving Eqs. 11–13 sub-
ject to appropriate boundary conditions.

The ratio

Kg 5
kg

koe2Ea/RTb (17)

compares external reaction to internal reaction
kinetics at temperature Tb;

m 5
Tb 2 Tu

Tb , ei 5
yi

b

yi
u 2 yi

b , ek 5
yk

b

yk
u 2 yk

b ,

(18)
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represent relative temperature rise and relative
gas and solid conversions, respectively; and

g 5
RTb

2

Ea~Tb 2 Tu!
(19)

is the Zeldovich number. The boundary condi-
tions are

u 5 1~x32`!: c 5 0, s 5 1, z 5 1, (20)

u 5 0~ x3 `!: c 5 0, s 5 0, z 5 0.
(21)

In this analysis we are concerned with the
situation where either the gaseous or the solid
reactant has converted completely as u 5 0 ( x
3 `). Accordingly, r 5 0 at u 5 0, implying (cf.
Eq. 14) that either ek or ei is zero, correspond-
ing to the cases of oversupply of solid and
gaseous reactant, respectively.

Large activation energy asymptotics is in-
volved with small values of the Zeldovich num-
ber g:

g ,, 1. (22)

Distinction can then be made between the preheat
zone or outer zone u 5 0(1) and the reaction zone
or inner zone u 5 0(g). Solutions for these areas
using principles of matched asymptotic expansions
are presented in the subsequent sections.

SOLUTIONS FOR THE PREHEAT (OUTER)
ZONE

In the preheat zone, the reaction term is expo-
nentially small: Eqs. 10–12 can be written as

co
ou ­

­u
Sco

ou 1
Les

­so
ou

­u
D 1 fco

ou ­so
ou

­u
5 0,

(23)

co
ou ­

­u
Sco

ou 1
Leg

­zo
ou

­u
D 1 fco

ou ­zo
ou

­u
5 0,

(24)

co
ou ­co

ou

­u
1 fco

ou 5 0, (25)

where co
ou, so

ou, and zo
ou correspond to the first

terms of an expansion involving g of the solu-
tions of c, s, and z in the preheat or outer zone,
respectively.

The solution of Eq. 25 satisfying boundary
condition (20) is easily obtained as

co
ou 5 f~1 2 u !. (26)

Substituting this result into Eqs. 23 and 24 and
solving subject to boundary conditions (20) one
obtains

so
ou 5 1 1

B0

Les
~1 2 u !Les, (27)

zo
ou 5 1 1

C0

Leg
~1 2 u !Leg, (28)

where the constants B0 and C0 follow from
matching the solutions to those appropriate for
the inner or reaction zone.

SOLUTIONS FOR THE REACTION
(INNER) ZONE

To derive a solution appropriate for the inner
zone, a new independent variable, the inner
coordinate h is introduced:

h 5
u

g
3

­

­u
5

1
g

­

­h
(29)

Furthermore, a balance of terms which is phys-
ically meaningful for the reaction zone becomes
apparent if we scale s, z, and c as

s 5 sin

z 5 gLegz
in (30)

c 5 g~n11!/ 2~Leg!
n/ 2cin

and the dimensionless convective energy flux f
as

f 5 gn11/ 2~Leg!
n/ 2fo (31)

Equations 10–12 then become

cin ­

­h
S cin

gLes

­sin

­h
D 1 focin ­sin

­h

2 ro~uin, sin, zin! 5 0 (32)

cin ­

­h
Scin ­zin

­h
D 1 gLegfocin ­zin

­h

2 ro~uin, sin, zin! 5 0 (33)

cin ­cin

­h
1 gfocin 2 ro~uin, sin, zin! 5 0 (34)

where
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ro~u
in, sin, zin! 5 ~gLeg!

2nr~uin, sin, gLgz
in! (35)

is the scaled dimensionless reaction rate.
Clearly, the scaling of variables has been

chosen such that for g 3 0, a balance occurs
between heat of conduction and heat of reac-
tion in heat transport equation (34). The situa-
tion in the equations pertaining to transport of
solid and gaseous reactants, cf. Eqs. 32 and 33,
depends on the magnitude of the Lewis num-
bers Les and Leg with respect to the magnitude
of g. Guided by values encountered in practice,
the effective diffusivity of the solid-phase reac-
tant Es is taken to be very low such that

gLes .. 1. (36)

The effective Lewis number of the gaseous
phase is such that

gLeg ,, 1 (37)

Denoting the first term of an expansion involv-
ing g, gLeg, and (gLes)

21 in the solutions for
cin, zin, and sin by the subscript o, we have
from Eqs. 32–35:

foco
in ­so

in

­h
2 ro~uo

in, so
in, zo

in! 5 0, (38)

co
in ­

­h
Sco

in ­

­h
zo

inD 2 ro~uo
in, so

in, zo
in! 5 0,

(39)

co
in ­co

in

­h
2 ro~uo

in, so
in, zo

in! 5 0, (40)

where

ro~uo
in, so

in, zo
in! 5

e2h

1 1
1
Kg

e2h

~ek 1 so
in!m~ai 1 zo

in!n. (41)

and

ai 5 ei/~gLeg!. (42)

As any gaseous reactant surplus is considered to
be small, the parameter ai is assumed to be 0(1)
at most.

Eliminating the reaction term from Eqs. 39
and 40 and from Eqs. 38 and 40, respectively,
integrating the resulting equations, and apply-
ing boundary condition (21) yields

zo
in 5 h

(43)

so
in 5

co
in

fo

The equation determining co
in then follows from

Eqs. 40–43 as

co
in ­co

in

­h
2 KgSek 1

co
in

fo
Dm

~ai 1 h!n e2h

e2h 1 Kg

5 0 (44)

The solution to this equation is found by inte-
gration, where distinction has to be made be-
tween the cases m Þ 1, 2; m 5 1, and m 5 2,
respectively:

co
in~ekfo 1 co

in!12m

1 2 m
2

~ekfo 1 co
in!22m

~1 2 m!~2 2 m!
1

~ekfo!
22m

~1 2 m!~2 2 m!
5

Kg

fo
m E

o

h ~a 1 h!ne2h

e2h 1 Kg
dh ~m Þ 1, 2!,

(45)

co
in 2 ekfoln~ekfo 1 co

in! 1 ekfoln~ekfo! 5
Kg

fo
mE

o

h~a 1 h!ne2h

e2h 1 Kg
dh ~m 5 1!,

ln~ekfo 1 co
in! 2

co
in

ekfo 1 co
in 2 ln~ekfo! 5

Kg

fo
mE

o

h ~a 1 h!ne2n

e2h 1 Kg
dh ~m 5 2!,

Equation 45 is an implicit equation, from
which the 1-term inner solution of the dimen-
sionless diffusive heat flux c as function of the

boundary coordinate h can be solved by inte-
grating. Unfortunately, an analytic solution of
the integral in Eq. 45 can not be derived for
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general values of the parameter Kg and general
reaction orders n. For first-order reactions (n 5
1), it is known that the resulting integral can not
be written as a finite combination of elementary
functions [9]. In all cases, the integral is conver-
gent and can be solved numerically. In some
specific cases, it is possible to solve the integral
in closed form. These cases are: general Arrhe-
nius kinetics without transport limitations (Kg

3 `), general values of Kg in combination with
zero-th order reactions (n 5 0), and the case
Kg 5 1 for general reaction orders [1].

For the important special case ek 5 0, an
explicit solution in terms of an integral can be
obtained (m , 2):

co
in 5 S2 2 m

fo
m Kg E

o

h ~ai 1 h!ne2h

e2h 1 Kg
dhD1/ 22m

(46)

This solution depicts understoichiometric reaction
with respect to the reactant yk, where yk

b 5 0.

MATCHING INNER AND OUTER SOLUTIONS

The dimensionless convective energy flux f
follows from matching the inner solution for the
dimensionless diffusive heat flux c to the outer
solution [2]. This approach can be performed
easily in case ek 5 0, because an explicit
solution is known. If ek Þ 0, the 1-term outer
expansion of the 1-term inner solution can be
found by taking the limit for h3 ` in Eq. 45 and

solving for c. The formal matching procedure
corresponds to equating the limit-value for u3 0
of the 1-term outer solution to the limit-value for
h3 ` of the 1-term inner solution.

For reasons of illustration, the case ek 5 0
will be worked out, since an explicit solution for
co

in can be obtained for this situation. The 1-term
outer solutions for the scaled mass fractions s and
z and the dimensionless diffusive heat flux c are
given by Eqs. 26, 27, and 28, respectively. The
1-term inner solutions are given by Eqs. 30, 31, 43,
and 46. The matching procedure is performed for
the dimensionless diffusive heat flux c first, yield-
ing the convective energy flux f. The result is
substituted in the inner solution for the scaled
mass fraction of the key reactant in the solid phase
s, followed by matching s and z, yielding the
integration constants B0 and C0.

The result of the procedure is given by:

B0 5 0,

C0 5 2Leg, (47)
f 5 gn11/ 2 Leg

n/ 2fo,

fo 5 Î~1 2 m! Kg E
o

` ~ai 1 h!ne2h

e2h 1 Kg
dh

Within the validity range of the solution, the follow-
ing composite solution for the dimensionless mass
fractions s and z and diffusive flux c can be consti-
tuted by applying the matching principle [2]:

s~u ! 5 1Eo

u/g ~ai 1 h!ne2h

e2h 1 Kg
dh

E
o

` ~ai 1 h!ne2h

e2h 1 Kg
dh

dh2
1/ 22m

,

z~u ! 5 1 2 ~1 2 u !Leg,

c 5 gn11/ 2 Leg
n/ 2co~u !,

co~u ! 5 1 ~2 2 m! Kg

S ~2 2 m! Kg E
o

` ~ai 1 h!ne2h

e2h 1 Kg
dhDm/ 2 E

o

u/g ~ai 1 h!ne2h

e2h 1 Kg
dh2

1/ 22m

2 u S ~2 2 m! Kg E
o

` ~ai 1 h!ne2h

e2h 1 Kh
dhD1/ 2

. (48)
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Equations 47 and 48 are in essence a very
complex set of solutions, in which many situa-
tions are described. In order to illustrate the
importance of these, two simplified cases will be
considered here in more depth. Other examples
are described elsewhere [1].

RESULTS FOR m 5 0 AND KG 3 `

In the limit m 3 0, there is no dependency of
the reaction rate on the concentration of the
solid key reactant yk. In that situation, the solid
mass balance (11) can be disregarded. As has
been remarked, the integral appearing in Eqs.

47 and 48 can be solved analytically if Kg 3 `,
which describes a true Arrhenius type of reac-
tion (no transport limitation of the chemical
reaction). The following expressions are ob-
tained for the dimensionless convective energy
flux f, the scaled mass fraction z, and the
dimensionless diffusive heat flux c

f 5 gn11/ 2 Leg
n/ 2fo, (49)

fo 5 Î2eai~G~n 1 1! 2 G~~n 1 1!, ai!!

z~u ! 5 1 2 ~1 2 u !Leg,

c 5 gn11/ 2 Leg
n/ 2co~u !, (50)

co~u ! 5 Î2eai~G~~n 1 1!, ~ai 1 u/g!! 2 G~~n 1 1!, ai!! 2 uÎ2eai~G~n 1 1! 2 G~~n 1 1!, ai!!

For general positive reaction orders n, the
incomplete gamma function G appears in the
solution [21]. In the special case of homoge-
neous combustion, e.g., combustion of gases in
premixed flames (eg 5 1), and for Leg 5 1 and
ai 5 0 (i.e., the gaseous key reactant is fully
consumed) and the reaction order n being a
natural number, the above solution reduces to
that found by Zeldovich, Frank-Kamenetsky,
and Semenov [4, 18, 19, 22] and by Merzhanov
[5]. The case ai 5 0 can be easily obtained in
premixed flames, by taking the reactant that is
fully consumed as the gaseous key reactant yi.
Similar solutions for general Lewis numbers of
order unity and ai 5 0 have been obtained,
making use of activation energy asymptotics, by
Bush and Fendell [4] and Zeldovich et al. [23].
As far as known to the authors, the situation
ai . 0 (in which the gaseous key reactant is in
excess) has not been solved before. In the
following pages, results for reaction front prop-
agation with dominant diffusive transport of the
reacting species in the reaction zone for true
Arrhenius kinetics will be presented graphically.

The matching procedure is illustrated by Fig.
2, where the inner, outer, and composite solu-
tions for the dimensionless diffusive heat flux co

are given as function of dimensionless temper-
ature u, for a first-order reaction, ai 5 0 and
g 5 0.1 and g 5 0.01 respectively. For smaller
values of the parameter g, the reaction zone

(located at u3 0) is shifted to smaller values of
u. In other words, the boundary layer where the
inner solution is valid becomes smaller. As is
expected from the exponential temperature de-
pendence of the reaction rate, for a higher
activation energy, a larger part of the conver-
sion occurs in the vicinity of the maximum
temperature Tb (where u 5 0).

The influence of parameter ai on the dimen-
sionless convective energy flux fo (and conse-
quently on the propagation speed of the reac-
tion front) is illustrated in Fig. 3, for various
values of the reaction order n. It can be seen
that fo increases with increasing ai. The param-

Fig. 2. Inner, outer, and composite solutions for the dimen-
sionless diffusive energy flux co, for g 5 0.1 and g 5 0.01
(n 5 1, ai 5 0).
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eter ai is larger than zero for overstoichiometric
supply of the gaseous reactant (the gaseous
reactant is in excess). This results in a higher
reaction rate at the maximum combustion tem-
perature, caused by the larger concentration of
the gaseous reactant in the reaction zone. The
maximum temperature is limited by the supply
of the solid reactant. The composite solution for
the dimensionless mass fraction z as function of
the dimensionless temperature u is given in Fig.
4 for various values of the effective Lewis
number. The parameters n, ai, and g have no
influence on the composite solution as a func-
tion of u. If Leg 5 1, diffusion of species occurs
at equal speed as heat conduction (equi-diffu-
sion [20]). For Leg . 1, the conduction of heat
is faster than diffusion of species. The concen-
tration of the reacting species in the reaction
zone is found to increase with increasing Lewis
numbers, which is reflected in an increase in the
reaction front velocity uf.

Differentiating the expression for T in Eq. 9

and substituting into Eq. 8, making use of the
definition of y in Eq. 9 and the relation between
y and yo in Eq. 50, the solution for the dimen-
sionless mass fraction z is only a function of the
effective Lewis number. The solution for the
dimensionless diffusive heat flux co, however,
depends on the reaction order n, as well as on
the parameters ai and g. The influence of the
magnitude of g on the solution for a first-order
reaction was already shown in Fig. 2. The influ-
ence of the reaction order is illustrated by Fig. 5,
for the case g 5 0.1 and ai 5 0. As the extent
of the reaction zone increases with increasing
reaction order, the maximum of co shifts to the
direction of u 5 1 with increasing reaction
order.

The following relation between co and u can
be derived:

co 5 2
­u

­X
, X 5

qdgn11/ 2 Leg
n/ 2x

La,eff~Tb 2 Tu!
. (51)

Upon equating with the first-order solution for
c given by Eq. 50 and integrating once, the
distribution of dimensionless temperature as a
function of distance X is obtained: u 5 u (X).
The integration has to be performed numeri-
cally. Substituting the result in Eq. 50 finally
gives the dimensionless diffusive heat flux c and
dimensionless mass fraction z as function of
coordinate X.

Figure 6 shows an example of this procedure.
Here, the dimensionless temperature u and
mass fraction z have been presented as a func-
tion of the scaled distance X for the case of a
first-order reaction, with g 5 0.1 and ai 5 0. As
the scaled distance X is dependent on the Lewis

Fig. 3. Dimensionless convective energy flux fo as function
of parameter ai, for various reaction orders.

Fig. 4. Composite solution for the dimensionless mass
fraction z for various Lewis numbers.

Fig. 5. Composite solution for the dimensionless heat flux
co for various reaction orders (g 5 0.1, ai 5 0).
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number, Fig. 6 must be interpreted carefully.
The relative location of the mass fraction when
compared to the dimensionless temperature,
however, can be clearly observed. The thin
curve shows the extrapolation of the outer so-
lution for the dimensionless diffusive heat flux
c. Comparing the composite solution to the
outer solution gives an estimate of the extent of
the reaction zone. The results for g 5 0.01 are
similar to Fig. 6 and will not be presented here.
The main difference is a thinner reaction layer
as function of the scaled distance X, as might be
expected from the stronger dependence of the
reaction rate on temperature.

RESULTS FOR n 5 0 AND KG 3 `

In the limit n 3 0, there is no dependency of
the reaction rate on the concentration of the
gaseous key reactant yi. Similarly to the previ-
ous paragraph, solutions for the remaining set
of equations can be obtained. In the limit Kg 3
`, the analysis simplifies considerably and will
be treated here to enable comparison with the
previous paragraph. After some mathematical
derivations, Eqs. 47 and 48 reduce to:

f 5 g1/ 2fo, fo 5 Î2 2 m, (52)

s~u ! 5 ~1 2 e2u/g!1/~22m!,
(53)

c 5 g1/ 2co, co~u !c

5 g1/ 2co, co~u !

5 Î2 2 m ~1 2 e2u/g!1/~22m! 2 Î2 2 m u.

Figures 7 and 8 show the composite solutions
for the dimensionless diffusive heat flux co and
the dimensionless mass fraction s respectively.
The parameter along the various curves is the
reaction order m and the parameter g is taken
as g 5 0.1.

As before, the thickness of the reaction zone
decreases with decreasing g. Furthermore, for
higher order reactions, the reaction zone is
shifted toward higher concentrations of the
reactant. This causes the maximum for co to
shift to the left.

The scaled mass fraction s is equal to 1 in the
preheat zone, as can be observed from Fig. 8.
The first decrease occurs at the point where
reaction is started. The extent of the reaction
zone decreases with the parameter g and the
reaction order n, corresponding to the findings
for the dimensionless diffusive heat flux co.

As before, the composite solution for c can
be integrated, yielding an expression for the
dimensionless temperature u, as function of a

Fig. 6. Dimensionless temperature u and mass fraction z for
various Lewis number (n 5 1, g 5 0.1, ai 5 0).

Fig. 7. Composite solution for the dimensionless heat flux
co for various reaction orders (g 5 0.1).

Fig. 8. Composite solution for the dimensionless mass
fraction s, for various reaction orders (g 5 0.1).
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scaled distance X. Integration has to be done
numerically. Results are given elsewhere [1].

EFFECTS OF LEWIS NUMBER

The results discussed in the previous two sec-
tions apply to reaction front propagation with a
single key reactant, i.e., the gas phase as key
reactant obtained by setting m 5 0 and the solid
phase as key reactant obtained by setting n 5 0
in general solutions (47) and (48). In obtaining
these solutions the Lewis number for the gas
phase was taken such that gLeg ,, 1 so that
convective transport of gaseous reactant in the
reaction zone could be disregarded: cf. Eq. 33.
Conversely, for the solid phase the Lewis num-
ber was taken such that gLes .. 1, with the
result that diffusive transport of solid reactant
in the reaction zone could be disregarded: cf.
Eq. 32. As the mathematical expressions for the
dependencies on solid and gaseous reactant are
similar, the results of the previous two sections
can be treated as the solutions for reaction front
propagation involving a single key reactant for
the limits of gLe ,, 1 and gLe .. 1, respec-
tively. By comparing these solutions the effect
of the Lewis number on reaction front propa-
gation can be established.

From solution (50) it follows that in case of
dominant diffusive transport of the reacting
species in the reaction zone, i.e., when gLe ,,
1, the concentration of the reacting species at
u ; g, i.e., in the reaction zone, gLe. Con-
versely, in case of dominant convective trans-
port in the reaction zone, i.e., when gLe .. 1, it
follows from solution (53) that the concentra-
tion of reacting species is of unit order of
magnitude. From solutions (49) and (52) it
follows that the dimensionless convective en-
ergy flux f which determines the reaction front
velocity (cf. Eq. 16), ;gn11/ 2 Len/ 2 when gLe
,, 1 and ;g1/2 when gLe .. 1.

When gLe 5 O(1), both convection and
diffusion of reacting species are important in
the reaction zone. As for this situation no
simplification of the mass balance equation is
possible, finding solutions from the governing
equations becomes a cumbersome task. The
solutions for this situation will have character-
istics of the two limiting cases. Therefore, it is

proposed to construct an “engineering solution”
that provides a smooth change-over from the
one limiting solution to the other solution, as
function of the Lewis number. An important
parameter for overall engineering models is the
reaction front propagation speed. As indicated
below, this overall parameter can be described
by such an approach. Combining the different
temperature and concentration distributions of
the two limit situations is not realizable.

When the solutions for the dimensionless
convective energy flux are denoted by the su-
perscripts d and c for the diffusion (gLe ,, 1)
and convection dominated (gLe .. 1) limits, we
have

fd

fc 5
fo

d

fo
c ~g Le!n/ 2 (54)

where fo
d and fo

c are O(1) quantities. In case
gLe ,, 1, the solution is given by fd. When gLe
.. 1, the solution is captured by fc. On basis of
this result, the following approximate solution
can be constructed for general values of Le:

fappr. 5 S 1
1

~fd!d 1
1

~fc!d
D1/g

, (55)

where d is an arbitrary but positive constant. In
the limiting values, the solution goes to fd when
gLe ,, 1 and fc when gLe .. 1. The value of
d can be assessed by adjusting to numerical or
experimental results.

Fortunately, most practical situations are well
described by one of the limiting cases. As an
example, the premixed combustion of gases in
laminar flames can be mentioned, where Le 5
O(1). Furthermore, combustion synthesis pro-
cesses in a solid phase are generally character-
ized by Le3 `. For heterogeneous combustion
in packed beds, Leg appears to be of O(1),
whereas the solid-phase dispersion is character-
ized by very large Lewis numbers. For this
situation, the general solutions as described by
Eqs. 47 and 48 can be applied.

Finally, it is important to make a final remark
on the choice of the small parameter g:

g 5
R~Tb!2

Eact~Tb 2 Tu!
5

Tb

R/Eact

Tb

Tb 2 Tu . (56)
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According to Eq. 56, the requirement g ,, 1
has two implications. First, the activation tem-
perature (R/Eact) has to be large as compared
to the maximum reaction temperature Tb. Fur-
thermore, the temperature (Tb 2 Tu) must be
of the same order as the maximum reaction
temperature Tb, i.e., the initial temperature is
required to be much smaller than the final
reaction temperature. It follows that the prop-
agation of a reaction front is related to a strong
temperature dependence of the reaction rate
and also to a large reaction heat. The require-
ment g ,, 1 is more severe than the require-
ment e 5 RTb/Ea ,, 1, used by other authors
[20, 23–25]. This parameter can be much
smaller than unity even when the difference
(Tb 2 Tu), i.e., the adiabatic temperature rise,
is small. If the latter is not the case, however,
the reaction zone may well be non-narrow and
reaction will proceed over the entire domain.
This may occur in situations where the reactants
have to be heated to a temperature close to the
maximum reaction temperature, before enter-
ing the reactor, in order to achieve the neces-
sary conversion. In this case an asymptotic
treatment based on conversion in a small
boundary layer is no longer applicable.
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