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Crystal growth and interface relaxation rates from fluctuations
in an equilibrium simulation of the Lennard-Jones (100)
crystal-melt system
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The kinetic coefficient of crystallization is calculated according to a previously introduced
equilibrium method Phys. Rev. Lett79, 5074(1997]. The existence of two regimes of interface
relaxation and macroscopic growth, such as they were found in previous nonequilibrium
simulations, is fully confirmed by the results of the equilibrium method. Special attention is given
to the relation between pressure fluctuations and fluctuations of the amount of crystalline material.
Furthermore, we investigate the density and order parameter profiles of the interface and make a
clear distinction between the instantaneous structure and the time-averaged profile which is usually
presented. ©2002 American Institute of Physic§DOI: 10.1063/1.1452110

I. INTRODUCTION In our previous papéf we found that when nonequilib-

Over the past few decades, molecular dynaniM®) EUT grova'iﬂ S|mulat|onf tvt\]/ere Sltt z_arted a.ftter extggswilethll—
simulations have proved to be an extremely powerful tool in ration of the system at the melting point, considerable ime

the study of crystal growth and melting processésGiven was needed for the interface to relax to its nonequilibrium
the experimental difficulty in probing the interface betweenShaEe("e" thg shape thg-t corresp()jonds to the cwcunr;tances
two dense phases, the atomistic details coming from mpP! the experiment We discovered two regimes of linear

methods have provided an excellent alternative in underdroWth: a short-ime regime associated with interface relax-
standing the processes taking place at the interface. ation and a long-time regime associated with the macro-

Much information has been obtained on the structureSCOPiC limit of growth and melting. We studied_the influence
(e.g., diffuseness, anisotropyof various crystal-melt of size effects and found that th'e'second regime could only
interface€~" but on the dynamics of crystal growth from the P& measured accurately for sufficiently large systelarger
melt there are still some open questions, even for the simfhan mostly used in earlier simulatignsn a system of
plest model systems. As an example, concerning the growtf-0447 < 8.0447X69.595r (4048 atomp the initial regime
and melting rates of atomic systems, there has been mudfsts much longer than in a system of 8.6448.044r
debate on whether a slope discontinuity in the rates existX 139.19 (8096 atoms which makes an accurate calcula-
upon crossing the melting point. Such a singularity wagtion of the long-time dynamics in the smaller system quite
claimed by Tymczak and R&y in their study of crystalliza- cumbersome. To sum up, in simulations where two phases
tion and melting kinetics in sodium, in clear contradiction are combined, it is of utmost importance to take large enough
with earlier theoretical consideratiohs™ In a preceding system sizes, equilibration times and run times, meaning
study of ours? we did a very accurate investigation of generally much larger than in simulations of bulk systems.
growth and melting rates of the Lennard-Jones F@Q0) In our 1997 papéf we introduced a method to extract
surface close to equilibrium. From this we were able to rulethe kinetic coefficient(i.e., the slope of the rateR versus
out the possibility of a singularity at the melting point and temperaturél’) from fluctuations of the number of solid par-
argued that any such findings for similar systems must b#&cles in one simulation at equilibrium. Apart from avoiding
due to an artifact of the simulation. the computational cost of having to do humerous nonequilib-

One of the main problems to get accurate dynamics dateium simulations at a range of temperatures, this method has
out of simulations of two-phase systems is that it is ex-the advantage that the simulations can be carried out princi-
tremely difficult to ensure a properly prepared nonequilib-pally ad infinitum providing as accurate statistics as one
rium interface. The crystalline surface induces order whichwishes. Unless special measures are taken against it, non-
extends far into the liquid, and dynamic correlation lengthsequilibrium simulations are limited to the time during which
are probably even much longer. In an earlier stddgr in-  the whole box becomes crystalline or liquid. Given the enor-
stance, we found a clear slope discontinuity between crystaimous growth rates for atomic systems, this time can become
lization and melting rates. This was shown to disappear withinmanageably short even for moderate supersaturations.
the incorporation of lattice imperfections in the crystal that It is the main goal of the present paper to investigate

were only obtained after proper equilibration. whether the equilibrium method gives accurate results for the
system sizes of our previous nonequilibrium stuidg., 4048
3Electronic mail: Harald. Tepper@hec.utah.edu and 8096 atoms, respectivelyn particular, we would like to
PElectronic mail: w.j.briels@tn.utwente.nl find further evidence for the presence of two growth regimes.
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A second objective is to find a method to calculate the kinetidhe same thermostat parameters in both cases a direct com-
coefficient of normal growth exclusively using data from oneparison should be fully justified.
and the same two-phase equilibrium simulation, where in our  In the present study two box sizes were investigated: a
previous approach we needed external input to calculate thistal of 4048 particles and a total of 8096 particles. In cor-
coefficient. respondence with our previous study, these sizes will be re-

The paper is organized as follows. First we will briefly ferred to as the small and the intermediate box size, respec-
describe the model system and the way we carried out thavely.
equilibration. Then we will study the relation between num-  To properly equilibrate the two-phase systems, we
ber fluctuations and pressure fluctuations. We will suggesstarted withNV T simulations of bulk liquid(2048 and 4096
the substitution of a factor from the original derivati@on-  particles, respectivelyand bulk crystal2000 and 4000 par-
taining equilibrium thermodynamic properties of the bulk ticles, respectively Both the liquid and the crystal boxes
phasey by a correlation factor which can be measured di-were constructed with equal cross-sectional areas inxthe
rectly in the two-phase system. We will elaborate on this byandy directions (5<5 unit cell lengthg and with elongated
considering the influence of fluctuations of the pressure thatxes in thez direction to give the desired equilibrium vol-
are not directly related to fluctuations of the amount of crys-umes(at this state pointy,=1.18230" andv = 1.04140">).
talline material. In the subsequent section, we will compareAfter 100 000 timesteps of bulk simulations, we wrote con-
the prediction of the kinetic coefficient from the equilibrium figuration files once every 1000 timesteps. From those con-
method with the nonequilibrium data from the previousfiguration files, one liquid and one crystal box were set on
study and discuss the influence of system size on the acctep of each other(in the z direction to create two-phase
racy. After this, we will describe in detail the structure of the simulation boxes. For both system sizes we thus created four
interface and make a clear distinction between instantaneousfferent samples.
interface profiles and the overall, time-averaged, profile In order to release excessive potential energies due to
which is usually presented. We close with discussion angbarticle overlap in our two-phase system, we performed 300
suggest several routes for future investigations. timesteps oNVT simulations with rigid temperature scaling

at every step. Thereafter, 200 000 timesteps of Nékmver
dynamics were carried out before production runs were

Il. SIMULATIONS started. Production runs from which the data in this study

In this study, we performed extensive simulations of thewere gathered lasted for 20 000 000 timesteps for the small

two-phase atomic crystal-melt system at equilibrium. In alP0X and 10000000 for the intermediate box.
cases, the direction of growth was perpendicular to the face-

centered-cubidfcc) (100 surface. Interatomic interactions

were modeled by the Lennard-Jones potential, so that all. CORRELATION BETWEEN PRESSURE
properties will be presented in Lennard-Jones ufiits, e FLUCTUATIONS AP AND NUMBER

for unit energy,e for unit length, and/ma?/ e for unit time). FLUCTUATIONS AN

In our previous papéf the equilibrium temperature for this

system was estimated to B&%= 0.6972¢/kg at a pressure of In this section, we will briefly review the derivation of
P=2512<10 3 /0. This is also the state point for our OUr 1997 papéf [Eq. (10)] and investigate if the factor that

present simulations, which were all carried out at constanfOntains bulk equilibrium parameters can be replaced by a

number of particles))), constant volume\(), and constant factor that can readily be obtained from the two-phase simu-
temperature T). lation. Special attention will be given to the correlation be-

The simulations were performed with theL oLy tween pressure and number fluctuations and to the difference

packagé?® applying Nose-Hoover dynamics to keep the av- I decay of thg autocorrela’luon of both of them.

erage temperature at the desired value. We employed a [N OUr earlier paper we introduced an order parameter
timestep of 7.488 10 * mo2le and a thermostat relax- [© @ssign particles either tq the solid or to the liquid phgse.
ation time of 7r=0.0748 /moZ/e. In Ref. 12 we discussed Thus we cogld, at every instant, cqlc_ulate thg deviations
the tuning of these parameters in detail. The main objectiv N_f-: st N_Sq of the nelémber of solidiike particles from
of Ref. 12 was to find bare growth and melting rates, i.e.N€ir équilibrium valueNs". We measured the decay of fluc-
growth and melting rates for prescribed macroscopic condituations ofNs

tiqns at th_e interface. In p_art_icular thi_s_ means that, on the (AN(t)ANg(0))=(ANg(0)AN(0))exp{ —t/7}, (1)
microscopic level, nonequilibrium conditions were stationary

and homogeneous. For that reason we chose a very stiff thewhich we could relate to the kinetic coefficiekthat repre-
mostat. The thermostat used scales the velocities based eents the temperature dependence of growth and melting
the global temperature so in principle heat-up or coolingrates close to equilibrium

down at the interface could still occur. We checked this by

monitoring local averages of the kinetic energy during long Ry =K Hs _khfq— hs? AT
production runs and found no noticeable deviation of the - kgT - keT Ted’
interface temperature from the overall temperature. Note that

the objective of the present study is to show the equivalencENote that in the present study we present growth rates in
of equilibrium and nonequilibrium simulations. Since we useterms of numbers of particles per unit time, instead of dis-

@
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TABLE I. Thermodynamic data for the bulk Lennard-Jones crystal and liquid. Fits are given for the temperature
dependence at constant pressire=2.512< 10" 2 €/ o®). See the Appendix for computational details. Values at
T®9=0.6972 e/kg are shown in the second column, and in the last column comparison is made with the
thermodynamic data of Johns¢Ref. 18§ and van der HoefRef. 19.

xfit(-l—) Xﬁt(Tecﬁ xEoS(Teq)
v5=1.0513-0.340 68< T+ 0.468 30< T? 1.0414 1.0419
v'=1.0312-0.158 02X T+ 0.537 4& T2 1.1823 1.1842
hS=—7.6916-0.116 02 T+ 3.2364x T? -6.199 -6.195
h!=—8.313+3.953x T+0.9729% T2 —5.084 —5.047
c5=1.132+4.559< T—3.2554x T2 2.728 2.751
¢! =3.1172+0.750 3K T—2.0286< T? 2.654 1.398
¥y=—1.5643+27.041X T—20.177 T? 7.481 7.665
W=11.739-2.1269< T—7.8532< T? 6.439 5.714
k$=0.532 44- 15627 T+ 1.2256< T? 0.038 67 0.039 89
kh=—0.031853-0.076 666< T+0.113 9 T2 0.076 97 0.076 64
ap=0.266 16-0.551 6K T+0.853 14< T? 0.2962 0.3058
ap=—2.188H7.1913< T—4.7838< T2 0.5003 0.4380
w3={Uk5+ (y9) U csxvT) ! 0.024 54 0.024 64
kk={ 1+ (A) 2, xv T}t 0.038 66 0.030 93

tance per unit time as in Ref. 14. Therefore the faétta in ey
Egs. (5) and (10) and d in Eq. (12) of that paper will be AP=—CcAN,=— > AN;. (5)
dropped] S NS A NS IS T C

~ The basic assumption we make is that number fluctuarhis completes the macroscopic law for the decay of number
tions AN induce a volume and consequent pressure changg,ctuations

of the crystal and the liquid phase which is instantaneous and

homogeneous throughout both phases. In other words, we dANs Kk (079092 AN ©
propose that mechanical equilibrium be reached on a much dt kgT ,\,FqU;mKITJr NE% %S s

shorter timescale than the timescale of the crystallization . . _
process. The pressure change results in a chemical potentiEaking the hypothesis of Onsagét®that “slow fluctuations
difference between both phases, which acts as the drivingt equilibrium on average decay according to macroscopic

force back to equilibrium, laws” we find, with Eq.(1):
dANs Kk ( : 1k (vf4-vH? @
dt kg A1 Hs 7T KgT 4 S%SNE o 89 NEa

_ kK {om * p_ Ips quP In our previous study we measuredn an equilibrium simu-

~ kgT|\ 0P - P/ lation and the kinetic coefficiemtderived from it was shown
to give good agreement with data from nonequilibrium simu-

_k(vj*-vgh AP lations.

T keT ’ ) In essence, E(5) is just the statement that an instanta-

neous correlation exists betweAMNg andAP. Thus, assum-

where in the second line we have used the equilibrium Con|'ng instantaneous linear response, we could also have written

dition w%= ugl.
Now we need a relation betweeP andANg, which is (AP(0)AN4(0))
; . AP(t)=

provided by the condition of constant total volume, (AN(0)AN4(0))

V= (N7 ANg) (07 Av)) + (Ng™ ANg) (v g™ Avs) The latter expression has the advantage that all the informa-
N eq_ .eq. | tion in it can be taken from one and the same two-phase
(NP=ANS) (0= vk AP) simulation. No reference has to be made to separate bulk

AN(1). (8)

+ (NS AN) (089 v S%SAP) simulations.
| In Tables I, I, and Il we have listed the relevant bulk
~NF 7= NP AP — AN+ NS ¢ data and the factor of Ed8). The calculation of the bulk

data is described in full detail in the Appendix. The agree-
ment of Egs(5) and(8) is very good for both system sizes.
Note that the first line is equivalent to using the classical  Now we turn to the decay of pressure fluctuations. It is
definition of a Gibbs dividing surfadesee also Ref.)7Inthe  difficult to conceive that an exagtstantaneouselation ex-

first step we have assumed that both phases respond to tlss between pressure fluctuations and number fluctuations.
pressure change in the same way as bulk phases. The a&pne would rather think that E¢5) holds true after averaging
proximation in the second step is to neglect second-ordeover fast fluctuations. As a consequence one may nhot equate
terms. Now withV = N7% P+ N$% 9 we find the decay times of AP(t)AP(0)) and{ANg(t)ANg(0)). To

— NED AP+ AN &, (@)
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TABLE Il. Results from the fluctuations oNg and P at equilibrium (NVT) for the small system(4048
particleg. The columns show the results after 20 000 000 timesteps of experiments with four different starting

configurations.
(1) 2 ©) 4

Ns 1764.38 1794.81 1784.39 1776.84

N, 2283.62 2253.19 2263.61 2271.16

¢ [Eq. (5)] 0.000 505 26 0.000 508 07 0.000507 11 0.000 506 41

¢ (subst.kg for k) 0.000 942 67 0.000 946 55 0.000 945 22 0.000 944 25

(APAP) 0.006 678 7 0.006 547 7 0.006 3718 0.006 319 6

(ANGAN) 8391.6 8187.1 7006.3 7234.5

(APAN,) —4.8498 —4.6732 —4.1939 —4.4266

—(APANG/{ANAN,) 0.000577 94 0.000 570 80 0.000 598 59 0.000 611 87
investigate this point, we write the pressure fluctuation at (AP(0)AN(0))
timet as an instantaneous response to the number fluctuation €= — (AN(0)ANL(0))" (11)
ANg(t) (with for the moment an unknown proportionality S s
constant—c) plus a random componegtt): In Fig. 1 we plotted the various contributions to the pres-

AP(t)=—CcANg(t)+ &(1). (9) sure fluctuation autocorrelation function, with the above es-

o . _ _ timated value ot substituted. Clearly, the agreement of the
Multiplying on both sides withAP(0) and taking the en- |ower two lines is almost perfect. We found that any other

semble average gives value ofc gave worse agreement. It is also seen that there
AP(t)AP(0))=cX(ANg(t)AN(0))— c(ANg(t) £0) is a non-negligible difference between the decay of
< )= AN {(0)) ~c(AN ) (AN4(t)AN4(0)) and(AP(t)AP(0)), so that it is not pos-
—C(£&(1)ANg(0)) +(&(1)£(0)) sible to perform an accurate calculation of the kinetic coef-
— C2(ANDAN C(ANLDAP ficient by using the pressure fluctuations alone. This shows
CHANS(DANS(0)) = c(AN(DAP(0)) the merits of our solid—liquid discriminator which makes the
—c{AP(t)ANg(0))+(&(1)£(0)) counting of solid particles possible.

In Fig. 2 we plotted the functiog&(t)£(0)). It drops

+C((AP(1)— (1)) ANS(0)) rapidly to very small values, which is not surprising since

+c(ANg(t)(AP(0)— £(0))) one expects that the major contributionA® at long times
would come fromANg. The function remains fluctuating,
=—c(ANg(t)AP(0)) —c(AP(t)AN4(0)) however, over a long range of correlation times, much longer
—C2<ANs(t)AN5(O)>+<§(t)§(0)> than the_pres_su_re a_lutocorrelation function in bulk simula-
tions. This is indicative of the fact tha@tdoes not represent
=—2c(AP(t)AN4(0)) the autonomous pressure fluctuations such as they would oc-

cur in a bulk system, but should merely be interpreted
~CH(ANS(DAN(0))+(£(D(0)), (10 as the deviation from an exact instantaneous correlation of
where in the second step we have substituted (8. The AP andANq.

final step was made on the basis of time symmetry. The We once more turn to the agreement between Eg)s.
accuracy of equatingA P(t) ANg(0)) with (ANg(t)AP(0))  and(8). One might argue that, although the overall system is
was checked in our simulations and was shown to holdhermostatted, local fluctuations can have a distribution dif-

perfectly. ferent from the canonical one. For instance, if local pressure
Given the correspondence of EdS) and (8) that we fluctuations are so fast that no energy transfer is possible, the
found above, the best estimate @ivould be local subsystem behaves adiabatically and the relation be-

TABLE IIl. Results from the fluctuations dflg andP at equilibrium (NVT) for the intermediate size system
(8096 particles The columns show the results after 10 000 000 timesteps of experiments with four different
starting configurations.

1) 2 (3) (4)

Ng 3579.47 3576.11 3652.22 3597.42

N, 4516.53 4519.89 4443.78 4498.58

¢ [Eq. (5)] 0.000 253 80 0.000 25372 0.000 255 50 0.000 254 22
C (subst.kg for «7) 0.000472 95 0.000472 84 0.000 475 29 0.00047353
(APAP) 0.003 086 5 0.002943 6 0.003 118 2 0.002 803 2
(ANGANg) 13108 12 292 13693 10381
(APANg) —3.8981 —3.5878 —4.0642 —2.9783
—(APANg/{ANGANg) 0.000 297 38 0.000 291 88 0.000 296 81 0.000 286 90
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FIG. 1. Autocorrelation of the pressure fluctuations in a small simulation
box (4048 atoms Shown are the various contributions of H40) from

top to bottom: c2(ANg(t)ANg(0)) (dashed ling —c(AP(t)ANg(0))
(dotted ling; (AP(t)AP(0)) (bumpy ling; and —2c{AP(t)ANg(0))
—c?(AN(t) AN(0)).

FIG. 3. Fluctuation autocorrelation functions of the amount of solid par-
ticles averaged over 4 simulations with 4048 atdbwttom line and over 4
simulations with 8096 atom@op line). Also shown are the fits to the initial
regimes(dashed lingsand the long-time regimeglotted line$.

tweenAP and Av would be given by the isentropic com- they were found in the nonequilibrium simulations—we fit-
pressibility k5 instead of the isothermal one. For comparison,ted them to single-exponential functions. Note that the cross-
the factorc of Eq. (5) is also given in Tables Il and Il with over time from the initial to the second regimes is smaller for
kg Substituted fork;. Clearly, thext expression behaves the intermediate box than for the small box, in accordance
much better. From this we conclude that at the interfacewith the findings of our previous stud§.From the relaxation
temperature fluctuations are canonical. This conclusion isimes we calculated kinetic coefficients via Ed@), once as it
justified since we are not looking at the time decay here, buis printed, and once with coefficieotaccording to Eq(11).
only at the average response®P to ANg. The results are shown in Table IV, together with the
linear coefficients from the fits of Ref. TEqs.(7) and(8)].
There is some statistical scatter in the data, but the trends for
both box sizes are the same.

In Fig. 4, we have plotted the interface relaxation rates

Normalized autocorrelation functions of the numberas found from the nonequilibrium simulations together with
fluctuations[Eq. (1)] were averaged over the four indepen-the predicted curves from Table V. Within the statistical
dent experimentgfor each box size The result is displayed accuracy, the results lie between the linear component of the
in Fig. 3. Clearly, two regimes can be distinguished. To in-relaxation rates and the full curve. We conclude that the fluc-
vestigate if these regimes can be associated with the regimésations of the interface are such that a substantial part of the
of interface relaxation and macroscopic growth—such asionlinear response is probed by the system. From the figure,

IV. COMPARISON OF EQUILIBRIUM
AND NONEQUILIBRIUM RESULTS

it can be roughly estimated that the chemical potential dif-
ferences associated with fluctuations are equivalent to under-

0.004 — coolings and superheatings of maximun®.03 e/kg . It can
0.0008 000 | 1 also be seen that they do not depend too much on system
’ size. We will come back to this in the next sectidfig. 6).
0.002 i
0.0006 | i In Fig. 5 we have plotted the results for the second re-
0.001 I\/\’\‘ gime, both from equilibrium and nonequilibrium simula-
”’g 0.000 U tions. The results of both box sizes correspond very well
5 00004 | —0.001 S . with each other.and agree well with.the nonequilibrium line.
= From an analysis of the results for different stages of the run,
* we found that the statistical uncertainty in the slopes pre-
0.0002 sented in Table IV is of the same order as the difference
between the two expressions used. Given the present statis-
0.0000 | tical accuracy, we cannot draw further conclusions as to the
validity of Eq. (11).
0 100 200 300

FIG. 2. Autocorrelation of the random componentf the pressure fluctua-
tions in a small simulation bof4048 atomy taken from Eq(10).

V. THE EQUILIBRIUM INTERFACE

In this section we will take a closer look at the nature of
the interface fluctuations at equilibrium. It is generally
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TABLE IV. Relaxation timesr and their associated kinetic coefficients as represents growth and melting over several laydrse dis-
measured from Fig. 3 and Tables Il and Ill. For the small systewas il 1tion of N is broader in the intermediate box than in the

calculated from fit regions of 10-90 and 90-158¢(*/ €)', and for the . .
intermediate system from fit regions of 15-60 and 60-160¢)¥2  Small box. This is to be expected, since the larger bulk

respectively. phases in the intermediate box can more easily relax local
pressure fluctuations and thus give more ease to fluctuations
Interface Macroscopic of the interface. As a consequence, the broadness of any
relaxation growth time-averaged interface profile would depend on the overall
Small system size of the system, while the local instantaneous interface
T 108.14 148.70 profile would hardly be affected. The fact that the macro-
K1Eq. (7] 90.304 65.672 scopic growth rates we found in Fig. 5 are almost indepen-
k [Eas. (7) and(11)] 71.582 °6.420 dent of system size is a good indication of this point
dR/d(AT) [Eq. (7)] -207.14 —150.64 ; ) -
dR/d(AT) [Egs.(7) and (11)] ~177.96 ~129.42 In Fig. 7 we have plotted the time-averaged equilibrium
Intermediate system profile (over 1000000 timestepof one interface. Shown
I:[E - 3276?1 gzagi are both the density profile and the order parameter profile
‘ [EZS.(?) and (1] g5 537 =7 664 which is definedfor each histogram big; with a width A)
dR/A(AT) [Eq. (7)] —226.24 ~152.52 as
dR/d(AT) [Egs.(7) and (1)] -196.21 —-132.27 1/ N
Nonequilibrium results _
(dR/d(zAT))eq ~184.19 ~142.07 ®(z)=7 g‘l OV =0.56(z~2) |, (12)

with ® the unit step functionA the cross-sectional area, and

6 the discretized delta function, i.eg(x)=1/A for 0<x
known that the Lennard-Jones f¢t00) crystal-melt inter- <A and zero otherwise. The order parameter profile repre-
face is very diffuse and extends over several interlayesents the counting of liquidlike particles in each kaf. the
spacings:*’ The melting temperature lies well above the BT profile in Ref. 5, which is essentially the same, but di-
thermodynamic roughening transition, which means thatided byp). The order profile coincides with the density of
growth can occur everywhere on the surface without two+the liquid at the bulk liquid side and would give zero at an
dimensional nucleation barriers. Furthermore, for the fcddeal crystal sidgthe little bumps in the crystalline region
(100 surface, all growth sites are equivaldirt contradic-  represent the average amount of imperfectioifie order
tion to for instance thé¢111) surfacd. parameter in conjunction with the density profile provides a

In Fig. 6, we have plotted the distribution of the number much more revealing representation of the equilibrium inter-

of solid particledNg. The distribution is very smooth with no face than the density alone. We have used the interlayer spac-
indication of any preferred numbers. This may serve as eviing d as unit on thez axis. It can nicely be seen that, on going
dence that the interface is perfectly rough. Would it havefrom the crystal to the liquid phase, the interlayer spacings
been only slightly faceted, then certain numbers would havegradually grow larger, in good accordance with the results of
shown peaks in the distributioriNote that the surfaces in others’’
both systems contain 50 atoms, so the distributionNgf To investigate the instantaneous structure of the inter-

face, we took 5 representative stages in the (@000 000

16 & 1
NN 10 B
\\\\
NN
\\
8 i
5 i
% 0 T
w
E a0
« £
N [
-8 F N -
\\\\ -5 r i
N oy
Ny
N
~
—16 - N
L L L L _10 B
-0.06 -0.03 0.00 0.03 0.06 ! . . !
AT [e/kg] -0.06 -0.03 0.00 0.03 0.06

AT [e/kg]
FIG. 4. Interface relaxation rates vs temperature. The curved solid line
shows the fit of Ref. 12, the straight solid line shows its linear componentFIG. 5. Crystal growth and melting rates vs temperature. The solid line
The other lines show equilibrium results for the small idasheg and the shows the fit of Ref. 12. The other lines show equilibrium results for the
intermediate boxdotted. For both boxes, the lines with the largest slopes small box(dashed and the intermediate boiotted. For both boxes, the
refer to Eq.(7), the others to Eqq7) and(11). lines with the largest slopes refer to Eg), the others to Eqg7) and(11).
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FIG. 6. Equilibrium distributions of the number of solid particles in the
small box(solid line) and the intermediate boilashed ling
FIG. 8. Time-averageddotted line$ and instantaneougsolid lines
interface profiles for the small bofbottom halj and the intermediate box
. (top hal.
timestepg run of the small box. At each stage, we performed

a simulation of 100 000 timesteps and wrote 10 subsequent

configurations (one timestep apart once every 200 where we took the interlayer spacimgas width o of the
timesteps. To obtain sufficient accuracy, the atomic position&aussian. The smoothde profiles were then fitted to a tanh
of the 10 configurations were averaged and profiles weréunction:

calculated. We conjecture that these averaged positions are  fit,_\ _ _

still representative of the instantaneous interface. The pro- P2 =4[1-1(2)]+1(2) &5, (19
files were smoothed with a Gaussian filter as follofgse  With

also Hayward and Haynfet 1 2-7,
N f(z)= > 1—tan (16)
CIJ’(z)zf dz' w(z—z2")d(2'), (13
-n For each 10-step-averaged frame, the positipiof the
with right-hand interface was taken to be the new origin. Profiles

(of the right-hand interfagewere then constructed on the
1 1 N2 basis of the atomic positions with respect to this origin. The
w(z=2)= o 2Wexp< a ﬁ(z—z ) ) (14 thus found instantaneous interface profile is plotted in the
bottom half of Fig. 8(solid ling). The solid line thus repre-
sents thanstantaneousnterface profile, as all interface po-
‘ sitionsz, were put on top of each other.

| We also calculated théme-averagedprofile, i.e., the

} distribution of the order parameter with respect to the static

| bulk of the crystal. Since the meaning of this is not trivial,

} 1 we will explain our procedure. The center of mass of the

| whole box (liquid+crysta) is conserved in molecular dy-

} namics simulations. We checked that this was indeed the
case in our simulations. To study the time-averaged profile of
o i 1 i one interface, one might fix, say, the two central planes in the
bulk crystal and then measure the fluctuations with respect to
/\ their midpoint. But by the conservation of the total center of
§ mass, the fluctuations at one interface would then influence
4 those at the other interfageven if they would be a bulk
| distance apayt Besides that, fixing crystal planes would in-

} troduce an essentially zero Kelvin region in the crystal which

is not desirable. Therefore we decided to take as the origin
0 WU\U/\V\UAU } . P the midpoint of those two bulk crystal layers that were the
-8 -6 -4 -2 0 2 4 6 8  central layers at the start of the run, without constraining the
position of any plane. We found that this midpoint moved a

FIG. 7. Time-averaged profiles of the density and the order parameter fout_tle during the whole run. Pa_rtide _p_OSitionS were now
the small box, calculated over 1 000 000 timesteps. binned with respect to the moving origin and the resulting

=4

DO———
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profiles were averaged over all frames. For comparison with  Finally, we studied the density and order parameter pro-
the instantaneous profile, the thus found time-averaged prdHes of the equilibrium interface. A clear distinction could be
file was shifted to have its inflexion point at the origin and made between the time-averaged overall profile and the av-
drawn as the dotted line in Fig. 8. It is shown that the widtherage instantaneous profile of the interface, the latter being
of the instantaneous interface is smaller than the one of theoticeably smaller. This is of major importance in for ex-
time-averaged interface. ample classical density functional thedFT) where aver-

We repeated the procedure for the intermediate box sizaged profiles are mostly used to calculate both energy and
(now with 4 runs of 100 000 timestepshe results of which  entropy contributions to the free energy of the system,
are shown in the top half of the same figure. The time-whereas it seems reasonable that for energetic considerations
averaged profile of the larger box is broader than that of théhe instantaneous profile should be used.
smaller box(in accordance with the findings of Fig.),5
whereas the widths of the instantaneous profiles are hardixPPENDIX: BULK THERMODYNAMIC
affected by the overall box size. PROPERTIES OF THE LENNARD-JONES

CRYSTAL AND LIQUID

VI. CONCLUSIONS AND DISCUSSION In this appendix, we will describe how we derived the
We have investigated the performance of a previouslybulk thermodynamic properties for the Lennard-Jones liquid
introduced methodRef. 14 to extract the kinetic coefficient and fcc crystal as shown in Table I. Most of these could also
for crystal growth from fluctuations in an equilibrium simu- have been derived from collectioriand fit9 of thermody-
lation. We applied the method to the same two system sizesamic data on the Lennard-Jones system by others, the two
that we used in an earlier nonequilibrium stu@®ef. 12. We  most recent ones being the Johnson expre$Sidor the
showed that the two regimes that were found previogaty liquid) and the van der Hoef expressidrifor the crystal.
initial regime of interface relaxation and a long-time regimeThe use of these data, however, requires some caution. They
of macroscopic growthwere consistently reproduced by the represent fits over a limited range of state points and one has
equilibrium method. This also implies that the same amounto be careful that all state points that one wants to use are
of caution must be exercised in calculating growth kineticscovered by the expression. In the following, we will compare
from equilibrium simulations as in the nonequilibrium coun- our own results with both expressions from the literature.
terpart. In both cases, long runtimes, long observation times, The procedures for both phases were exactly the same.
and large box sizes are needed to avoid the confusion dkll liquid calculations were done on a system of 512 par-
growth rates with interface relaxation rates. ticles and all crystal simulations on a system of 500 particles.
We found that the crossover time between the initial re-We used cubic boxes with periodic boundaries. All simula-
gime and the long-time regime becomes smaller when thgons were run for 5000000 timesteps of which 50000
size of the system is increased, again in accordance with tHémesteps were regarded as equilibration and thus disre-
nonequilibrium study. This raises the question whether thgjarded in the evaluations. Nesdoover dynamics were ap-
initial regime would disappear completely in the limit of plied with a timestep of 7.48010 *\/mo?/ € and relaxation
infinite system size. We interpreted the initial regime to betimes 71=0.0748/mc?/e (for thermostatted simulations
associated with a relaxation of the equilibrium interfaceand ro=0.748/ma?/€ (for barostatted simulatioins
shape to the shape that corresponds to(ttemequilibriun) To obtain the appropriate densities, we started out with
circumstances of the experiment. If this interpretation is corNPT simulations at a range of temperatures and at the de-
rect, it seems reasonable to conjecture that there must bes&red pressure. The average particle volumes are plotted in
size limit where the crossover time levels off, which meansthe top half of Fig. 9. In all figures, the solid lines represent
that the initial regime should not disappear completely. ltour fits through the datésee also Table)land the dashed
would be interesting to further investigate this. lines represent the expressions of Johnson and van der Hoef.
We slightly modified the equilibrium method to incorpo- It is clear that the van der Hoef expression describes our
rate only properties that can directly be evaluated from theesults well over the entire range of temperatures. The
two-phase simulation, whereas the earlier approach requiretbhnson expression starts to deviate for lower temperatures.
external input from separate bulk simulations. Within the sta-This is not surprising since at that point we enter the meta-
tistical accuracy, it was shown that both approaches agrestable liquid region, which is not covered by the data used by
well, although we could not conclude which one of themJohnsonet al. Their fit region ranged fromlr=0.7 to T
gives the most reliable results. =2.0. Our figure clearly shows the danger of extrapolating
With the modification of the method, we found that, on fitted results out of the fitted regiofwhich becomes even
average, a close correlation exists between pressure fluctuasore apparent in the thermodynamic response functions in
tions and fluctuations of the amount of crystalline material.subsequent figurgs
We studied the decay of the autocorrelation function of pres-  Over the entire temperature range, we subsequently per-
sure fluctuations and found that, because the abovdermedNVT andNVE simulations, at the densities that we
mentioned correlation is not instantaneous, this cannot b®und with theNPT simulations. In all ensembles, we cal-
equated to the decay of the autocorrelation function of numeulated the average enthalpy per partiblethe results of
ber fluctuations. The number fluctuations of solid particleswhich are shown in the bottom half of Fig. 9.
(ANg(t)AN(0)) provide the most direct route to calculdte For calculating the thermodynamic response functions,
from equilibrium simulations. we evaluated the average fluctuations of several quantities in
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0FIG. 11. Isothermal compressibility and thermal expansion coefficient vs
trgmperature in a bulk liquid and a bulk crystal. Symbols denote results from
Egs. (A4) (filled circles, solid lines show fijs (A5) (open diamonds and
(A7) (filled circles, solid line shows fit Dashed lines represent the expres-
sions of Johnsofliquid) and van der Hoefcrysta).

FIG. 9. Enthalpies and volumes per atom vs temperature, as measured fr
4950 000 production steps in a bulk liqui12 atomg and a bulk crystal
(500 atomsy in different ensemblesNPT (filled diamond$;, NVT (open
squarel andNVE (filled circles. The solid lines represent our fits over the
measurement domaifsee also Table)l The dotted lines represent the ex-
pressions of Johnsaffiquid) and van der Hoefcrysta).

3Nkg

our simulations. For a detailed discussion of the use of fluc- 2Ny
tuation formulas to this end, the reader is referred to thélhe results are shown in Fig. 10. Clearly, E42) gives the
literature?®=2? The isochoric heat capacity per atojs,  best statistics, so that data were used for the fit.
=N"1(9U/4T),] was calculated from the fluctuations of the The thermal pressure coefficienif=(dP/JT)y) was
total energy and of the potential energy, both in 8¥T  calculated from

ensemble, and from the fluctuations of the kinetic energy in

. (A3)

AT 3 212
<ATAT>NVE:§N|(BT 1-

the NVE ensemble: (ADAP) Ny r=KET?(yy— pks), (A4)
AUAU)1=kgT?Ney, Al . NK3T? 3V
( InvT=Kp Cv (A1) (APAD)y = B 1- Y , (A5)
3 Vv 2Noy
(APAD)yyT=kgT?| Noy— ENkB)v (A2) " the results of which are also plotted in Fig. 10. Given the

small variations of bottc,, and y,, for the crystal over this
temperature rangésee the scale in the figupeshe van der
Hoef expression gives satisfactory results. The Johnson ex-

liquid crystal . :
ol ' o] [ ' ' ' 1 are pression seems to be way off for both properties, but the
7" re. T ' insets in the figures show that the data converge to the ex-
28f 1o A \;\\g 1276 pression just abové=0.7.
2.7l " 065 o75] 2 T~ ], Finally, the isothermal compressibility [«
s mﬁ =-V~Y(9V/oP);] and the thermal expansion coefficient
261 b WA | PR e 12 [ap=V YaV/dT)p] were calculated with
25 | g /4 n©on=mo 12,67
. ) ! TR ! . 1 1 1 <AVAV>NPT:VkBTKT (A6)
75t [ ™~ I Ry
~ and
o e N
e o N (AVA(U+PV))ypr=ksT2Vap. (A7)
S65 ) - . 75
= . .00..<>.~ ™~ Results for the latter two properties are shown in Fig. 11.
6or i o Jo N 17 Adamg? has emphasized that when fluctuation formulas
55| L M such as the above are used in a computer simulation, it is
02 oss 030 074 578 s ose 00 ova o a}dvisable to crosscheck them yvith the thg.rm.odynamic iQen-
T [efkg] T [e/kg] tity ap= r17yy . A quick check with the equilibrium values in

_ _ - Table | shows that the agreement is good.
FIG. 10. Isochoric heat capacity and thermal pressure coefficient vs tem- 9 9

perature in a bulk liquid and a bulk crystal. Symbols denote results from

Egs. (A2) (filled circles, solid line shows fit (A1) (open squargs (A3) K. A. Jackson, J. Cryst. Growth99199, 1 (1999.

(open triangles (A4) (filled circles, solid lines show fijs and (A5) (open 2B. B. Laird and A. D. J. Haymet, Chem. Re32, 1819(1992.
diamond$. Dashed lines represent the expressions of Joh(lgprid) and 3A. C. Levi and M. Kotrla, J. Phys.: Condens. Mat&r299 (1997.
van der Hoef(crysta). “R. L. Davidchack and B. B. Laird, J. Chem. Phy€8 9452(1998.
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