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Crystal growth and interface relaxation rates from fluctuations
in an equilibrium simulation of the Lennard-Jones „100…
crystal-melt system

H. L. Teppera) and W. J. Brielsb)

Computational Dispersion Rheology, University of Twente, P.O. Box 217, 7500 AE Enschede,
The Netherlands

~Received 11 September 2001; accepted 28 December 2001!

The kinetic coefficient of crystallization is calculated according to a previously introduced
equilibrium method@Phys. Rev. Lett.79, 5074~1997!#. The existence of two regimes of interface
relaxation and macroscopic growth, such as they were found in previous nonequilibrium
simulations, is fully confirmed by the results of the equilibrium method. Special attention is given
to the relation between pressure fluctuations and fluctuations of the amount of crystalline material.
Furthermore, we investigate the density and order parameter profiles of the interface and make a
clear distinction between the instantaneous structure and the time-averaged profile which is usually
presented. ©2002 American Institute of Physics.@DOI: 10.1063/1.1452110#
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I. INTRODUCTION

Over the past few decades, molecular dynamics~MD!
simulations have proved to be an extremely powerful too
the study of crystal growth and melting processes.1–3 Given
the experimental difficulty in probing the interface betwe
two dense phases, the atomistic details coming from M
methods have provided an excellent alternative in und
standing the processes taking place at the interface.

Much information has been obtained on the struct
~e.g., diffuseness, anisotropy! of various crystal-melt
interfaces,4–7 but on the dynamics of crystal growth from th
melt there are still some open questions, even for the s
plest model systems. As an example, concerning the gro
and melting rates of atomic systems, there has been m
debate on whether a slope discontinuity in the rates ex
upon crossing the melting point. Such a singularity w
claimed by Tymczak and Ray8,9 in their study of crystalliza-
tion and melting kinetics in sodium, in clear contradictio
with earlier theoretical considerations.10,11 In a preceding
study of ours12 we did a very accurate investigation o
growth and melting rates of the Lennard-Jones FCC~100!
surface close to equilibrium. From this we were able to r
out the possibility of a singularity at the melting point an
argued that any such findings for similar systems must
due to an artifact of the simulation.

One of the main problems to get accurate dynamics d
out of simulations of two-phase systems is that it is e
tremely difficult to ensure a properly prepared nonequil
rium interface. The crystalline surface induces order wh
extends far into the liquid, and dynamic correlation leng
are probably even much longer. In an earlier study13 for in-
stance, we found a clear slope discontinuity between crys
lization and melting rates. This was shown to disappear w
the incorporation of lattice imperfections in the crystal th
were only obtained after proper equilibration.

a!Electronic mail: Harald.Tepper@hec.utah.edu
b!Electronic mail: w.j.briels@tn.utwente.nl
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In our previous paper12 we found that when nonequilib
rium growth simulations were started after extensive equ
bration of the system at the melting point, considerable ti
was needed for the interface to relax to its nonequilibriu
shape~i.e., the shape that corresponds to the circumstan
of the experiment!. We discovered two regimes of linea
growth: a short-time regime associated with interface rel
ation and a long-time regime associated with the mac
scopic limit of growth and melting. We studied the influen
of size effects and found that the second regime could o
be measured accurately for sufficiently large systems~larger
than mostly used in earlier simulations!. In a system of
8.044s38.044s369.595s ~4048 atoms!, the initial regime
lasts much longer than in a system of 8.044s38.044s
3139.19s ~8096 atoms!, which makes an accurate calcul
tion of the long-time dynamics in the smaller system qu
cumbersome. To sum up, in simulations where two pha
are combined, it is of utmost importance to take large eno
system sizes, equilibration times and run times, mean
generally much larger than in simulations of bulk system

In our 1997 paper14 we introduced a method to extrac
the kinetic coefficient~i.e., the slope of the ratesR versus
temperatureT) from fluctuations of the number of solid pa
ticles in one simulation at equilibrium. Apart from avoidin
the computational cost of having to do numerous nonequi
rium simulations at a range of temperatures, this method
the advantage that the simulations can be carried out pri
pally ad infinitum, providing as accurate statistics as o
wishes. Unless special measures are taken against it,
equilibrium simulations are limited to the time during whic
the whole box becomes crystalline or liquid. Given the en
mous growth rates for atomic systems, this time can beco
unmanageably short even for moderate supersaturations

It is the main goal of the present paper to investig
whether the equilibrium method gives accurate results for
system sizes of our previous nonequilibrium study~i.e., 4048
and 8096 atoms, respectively!. In particular, we would like to
find further evidence for the presence of two growth regim
6 © 2002 American Institute of Physics
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5187J. Chem. Phys., Vol. 116, No. 12, 22 March 2002 Crystal growth and interface relaxation
A second objective is to find a method to calculate the kine
coefficient of normal growth exclusively using data from o
and the same two-phase equilibrium simulation, where in
previous approach we needed external input to calculate
coefficient.

The paper is organized as follows. First we will briefl
describe the model system and the way we carried out
equilibration. Then we will study the relation between nu
ber fluctuations and pressure fluctuations. We will sugg
the substitution of a factor from the original derivation~con-
taining equilibrium thermodynamic properties of the bu
phases! by a correlation factor which can be measured
rectly in the two-phase system. We will elaborate on this
considering the influence of fluctuations of the pressure
are not directly related to fluctuations of the amount of cr
talline material. In the subsequent section, we will comp
the prediction of the kinetic coefficient from the equilibriu
method with the nonequilibrium data from the previo
study and discuss the influence of system size on the a
racy. After this, we will describe in detail the structure of t
interface and make a clear distinction between instantane
interface profiles and the overall, time-averaged, pro
which is usually presented. We close with discussion a
suggest several routes for future investigations.

II. SIMULATIONS

In this study, we performed extensive simulations of t
two-phase atomic crystal-melt system at equilibrium. In
cases, the direction of growth was perpendicular to the fa
centered-cubic~fcc! ~100! surface. Interatomic interaction
were modeled by the Lennard-Jones potential, so that
properties will be presented in Lennard-Jones units~i.e., e
for unit energy,s for unit length, andAms2/e for unit time!.
In our previous paper12 the equilibrium temperature for thi
system was estimated to beTeq50.6972e/kB at a pressure o
P52.51231023 e/s3. This is also the state point for ou
present simulations, which were all carried out at const
number of particles (N), constant volume (V), and constant
temperature (T).

The simulations were performed with theDL_POLY

package,15 applying Nose´–Hoover dynamics to keep the av
erage temperature at the desired value. We employe
timestep of 7.48031024 Ams2/e and a thermostat relax
ation time oftT50.0748Ams2/e. In Ref. 12 we discussed
the tuning of these parameters in detail. The main objec
of Ref. 12 was to find bare growth and melting rates, i
growth and melting rates for prescribed macroscopic con
tions at the interface. In particular this means that, on
microscopic level, nonequilibrium conditions were stationa
and homogeneous. For that reason we chose a very stiff
mostat. The thermostat used scales the velocities base
the global temperature so in principle heat-up or coolin
down at the interface could still occur. We checked this
monitoring local averages of the kinetic energy during lo
production runs and found no noticeable deviation of
interface temperature from the overall temperature. Note
the objective of the present study is to show the equivale
of equilibrium and nonequilibrium simulations. Since we u
Downloaded 03 Oct 2008 to 130.89.112.51. Redistribution subject to AIP
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the same thermostat parameters in both cases a direct
parison should be fully justified.

In the present study two box sizes were investigated
total of 4048 particles and a total of 8096 particles. In c
respondence with our previous study, these sizes will be
ferred to as the small and the intermediate box size, res
tively.

To properly equilibrate the two-phase systems,
started withNVT simulations of bulk liquid~2048 and 4096
particles, respectively! and bulk crystal~2000 and 4000 par-
ticles, respectively!. Both the liquid and the crystal boxe
were constructed with equal cross-sectional areas in thx
andy directions (535 unit cell lengths! and with elongated
axes in thez direction to give the desired equilibrium vo
umes~at this state point,v l51.1823s3 andvs51.0414s3).
After 100 000 timesteps of bulk simulations, we wrote co
figuration files once every 1000 timesteps. From those c
figuration files, one liquid and one crystal box were set
top of each other~in the z direction! to create two-phase
simulation boxes. For both system sizes we thus created
different samples.

In order to release excessive potential energies du
particle overlap in our two-phase system, we performed 3
timesteps ofNVT simulations with rigid temperature scalin
at every step. Thereafter, 200 000 timesteps of Nose´–Hoover
dynamics were carried out before production runs w
started. Production runs from which the data in this stu
were gathered lasted for 20 000 000 timesteps for the sm
box and 10 000 000 for the intermediate box.

III. CORRELATION BETWEEN PRESSURE
FLUCTUATIONS DP AND NUMBER
FLUCTUATIONS DNs

In this section, we will briefly review the derivation o
our 1997 paper14 @Eq. ~10!# and investigate if the factor tha
contains bulk equilibrium parameters can be replaced b
factor that can readily be obtained from the two-phase sim
lation. Special attention will be given to the correlation b
tween pressure and number fluctuations and to the differe
in decay of the autocorrelation of both of them.

In our earlier paper we introduced an order parameteC
to assign particles either to the solid or to the liquid pha
Thus we could, at every instant, calculate the deviatio
DNs5Ns2Ns

eq of the number of solidlike particles from
their equilibrium valueNs

eq. We measured the decay of fluc
tuations ofNs

^DNs~ t !DNs~0!&5^DNs~0!DNs~0!&exp$2t/t%, ~1!

which we could relate to the kinetic coefficientk that repre-
sents the temperature dependence of growth and me
rates close to equilibrium

R~T!5k
m l2ms

kBT
'2k

hl
eq2hs

eq

kBT

DT

Teq
. ~2!

@Note that in the present study we present growth rates
terms of numbers of particles per unit time, instead of d
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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TABLE I. Thermodynamic data for the bulk Lennard-Jones crystal and liquid. Fits are given for the tempe
dependence at constant pressure (P52.51231023 e/s3!. See the Appendix for computational details. Values
Teq50.6972 e/kB are shown in the second column, and in the last column comparison is made wit
thermodynamic data of Johnson~Ref. 18! and van der Hoef~Ref. 19!.

Xfit(T) Xfit(Teq) XEoS(Teq)

vs51.051320.340 683T10.468 303T2 1.0414 1.0419
v l51.031220.158 023T10.537 483T2 1.1823 1.1842
hs527.691620.116 023T13.23643T2 26.199 26.195

hl528.31313.9533T10.97293T2 25.084 25.047
cv

s51.13214.5593T23.25543T2 2.728 2.751
cv

l 53.117210.750 393T22.02863T2 2.654 1.398
gV

s 521.5643127.0413T220.1773T2 7.481 7.665
gV

l 511.73922.12693T27.85323T2 6.439 5.714
kT

s50.532 4421.56273T11.22563T2 0.038 67 0.039 89
kT

l 520.031 85310.076 6663T10.113 923T2 0.076 97 0.076 64
aP

s 50.266 1620.551 693T10.853 143T2 0.2962 0.3058
aP

l 522.188117.19133T24.78383T2 0.5003 0.4380
kS

s5$1/kT
s1(gV

s )2/cV
s 3vT%21 0.024 54 0.024 64

kS
l 5$1/kT

l 1(gV
l )2/cV

l 3vT%21 0.038 66 0.030 93
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tance per unit time as in Ref. 14. Therefore the factorA/a in
Eqs. ~5! and ~10! and d in Eq. ~12! of that paper will be
dropped.#

The basic assumption we make is that number fluct
tions DNs induce a volume and consequent pressure cha
of the crystal and the liquid phase which is instantaneous
homogeneous throughout both phases. In other words
propose that mechanical equilibrium be reached on a m
shorter timescale than the timescale of the crystalliza
process. The pressure change results in a chemical pote
difference between both phases, which acts as the dri
force back to equilibrium,

dDNs

dt
5

k

kBT
~m l2ms!

5
k

kBT H S ]m l

]P D
T

eq

DP2S ]ms

]P D
T

eq

DPJ
5

k~v l
eq2vs

eq!

kBT
DP, ~3!

where in the second line we have used the equilibrium c
dition m l

eq5ms
eq.

Now we need a relation betweenDP andDNs , which is
provided by the condition of constant total volume,

V5~Nl
eq2DNs!~v l

eq1Dv l !1~Ns
eq1DNs!~vs

eq1Dvs!

5~Nl
eq2DNs!~v l

eq2v l
eqkT

l DP!

1~Ns
eq1DNs!~vs

eq2vs
eqkT

sDP!

'Nl
eqv l

eq2Nl
eqv l

eqkT
l DP2DNsv l

eq1Ns
eqvs

eq

2Ns
eqvs

eqkT
sDP1DNsvs

eq. ~4!

Note that the first line is equivalent to using the classi
definition of a Gibbs dividing surface~see also Ref. 7!. In the
first step we have assumed that both phases respond t
pressure change in the same way as bulk phases. The
proximation in the second step is to neglect second-o
terms. Now withV5Nl

eqv l
eq1Ns

eqvs
eq we find
t 2008 to 130.89.112.51. Redistribution subject to AIP
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DP52cDNs52
v l

eq2vs
eq

Nl
eqv l

eqkT
l 1Ns

eqvs
eqkT

s
DNs . ~5!

This completes the macroscopic law for the decay of num
fluctuations

dDNs

dt
52

k

kBT

~v l
eq2vs

eq!2

Nl
eqv l

eqkT
l 1Ns

eqvs
eqkT

s
DNs . ~6!

Taking the hypothesis of Onsager14,16 that ‘‘slow fluctuations
at equilibrium on average decay according to macrosco
laws’’ we find, with Eq.~1!:

1

t
5

k

kBT

~v l
eq2vs

eq!2

vs
eqkT

sNs
eq1v l

eqkT
l Nl

eq
. ~7!

In our previous study we measuredt in an equilibrium simu-
lation and the kinetic coefficientk derived from it was shown
to give good agreement with data from nonequilibrium sim
lations.

In essence, Eq.~5! is just the statement that an instant
neous correlation exists betweenDNs andDP. Thus, assum-
ing instantaneous linear response, we could also have wr

DP~ t !5
^DP~0!DNs~0!&

^DNs~0!DNs~0!&
DNs~ t !. ~8!

The latter expression has the advantage that all the infor
tion in it can be taken from one and the same two-ph
simulation. No reference has to be made to separate
simulations.

In Tables I, II, and III we have listed the relevant bu
data and the factor of Eq.~8!. The calculation of the bulk
data is described in full detail in the Appendix. The agre
ment of Eqs.~5! and~8! is very good for both system sizes

Now we turn to the decay of pressure fluctuations. It
difficult to conceive that an exactinstantaneousrelation ex-
ists between pressure fluctuations and number fluctuati
One would rather think that Eq.~5! holds true after averaging
over fast fluctuations. As a consequence one may not eq
the decay times of̂DP(t)DP(0)& and^DNs(t)DNs(0)&. To
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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TABLE II. Results from the fluctuations ofNs and P at equilibrium (NVT) for the small system~4048
particles!. The columns show the results after 20 000 000 timesteps of experiments with four different st
configurations.

~1! ~2! ~3! ~4!

Ns 1764.38 1794.81 1784.39 1776.84
Nl 2283.62 2253.19 2263.61 2271.16
c @Eq. ~5!# 0.000 505 26 0.000 508 07 0.000 507 11 0.000 506 41
c ~subst.kS for kT) 0.000 942 67 0.000 946 55 0.000 945 22 0.000 944 25
^DPDP& 0.006 678 7 0.006 547 7 0.006 371 8 0.006 319 6
^DNsDNs& 8391.6 8187.1 7006.3 7234.5
^DPDNs& 24.8498 24.6732 24.1939 24.4266
2^DPDNs&/^DNsDNs& 0.000 577 94 0.000 570 80 0.000 598 59 0.000 611 87
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investigate this point, we write the pressure fluctuation
time t as an instantaneous response to the number fluctua
DNs(t) ~with for the moment an unknown proportionalit
constant2c) plus a random componentj(t):

DP~ t !52cDNs~ t !1j~ t !. ~9!

Multiplying on both sides withDP(0) and taking the en-
semble average gives

^DP~ t !DP~0!&5c2^DNs~ t !DNs~0!&2c^DNs~ t !j~0!&

2c^j~ t !DNs~0!&1^j~ t !j~0!&

5c2^DNs~ t !DNs~0!&2c^DNs~ t !DP~0!&

2c^DP~ t !DNs~0!&1^j~ t !j~0!&

1c^~DP~ t !2j~ t !!DNs~0!&

1c^DNs~ t !~DP~0!2j~0!!&

52c^DNs~ t !DP~0!&2c^DP~ t !DNs~0!&

2c2^DNs~ t !DNs~0!&1^j~ t !j~0!&

522c^DP~ t !DNs~0!&

2c2^DNs~ t !DNs~0!&1^j~ t !j~0!&, ~10!

where in the second step we have substituted Eq.~9!. The
final step was made on the basis of time symmetry. T
accuracy of equatinĝDP(t)DNs(0)& with ^DNs(t)DP(0)&
was checked in our simulations and was shown to h
perfectly.

Given the correspondence of Eqs.~5! and ~8! that we
found above, the best estimate ofc would be
t 2008 to 130.89.112.51. Redistribution subject to AIP
t
on

e

d

c52
^DP~0!DNs~0!&

^DNs~0!DNs~0!&
. ~11!

In Fig. 1 we plotted the various contributions to the pre
sure fluctuation autocorrelation function, with the above
timated value ofc substituted. Clearly, the agreement of t
lower two lines is almost perfect. We found that any oth
value of c gave worse agreement. It is also seen that th
is a non-negligible difference between the decay
^DNs(t)DNs(0)& and ^DP(t)DP(0)&, so that it is not pos-
sible to perform an accurate calculation of the kinetic co
ficient by using the pressure fluctuations alone. This sho
the merits of our solid–liquid discriminator which makes t
counting of solid particles possible.

In Fig. 2 we plotted the function̂j(t)j(0)&. It drops
rapidly to very small values, which is not surprising sin
one expects that the major contribution toDP at long times
would come fromDNs . The function remains fluctuating
however, over a long range of correlation times, much lon
than the pressure autocorrelation function in bulk simu
tions. This is indicative of the fact thatj does not represen
the autonomous pressure fluctuations such as they would
cur in a bulk system, but should merely be interpret
as the deviation from an exact instantaneous correlation
DP andDNs .

We once more turn to the agreement between Eqs.~5!
and~8!. One might argue that, although the overall system
thermostatted, local fluctuations can have a distribution
ferent from the canonical one. For instance, if local press
fluctuations are so fast that no energy transfer is possible
local subsystem behaves adiabatically and the relation
erent

TABLE III. Results from the fluctuations ofNs andP at equilibrium (NVT) for the intermediate size system
~8096 particles!. The columns show the results after 10 000 000 timesteps of experiments with four diff
starting configurations.

~1! ~2! ~3! ~4!

Ns 3579.47 3576.11 3652.22 3597.42
Nl 4516.53 4519.89 4443.78 4498.58
c @Eq. ~5!# 0.000 253 80 0.000 253 72 0.000 255 50 0.000 254 22
c ~subst.kS for kT) 0.000 472 95 0.000 472 84 0.000 475 29 0.000 473 53
^DPDP& 0.003 086 5 0.002 943 6 0.003 118 2 0.002 803 2
^DNsDNs& 13 108 12 292 13 693 10 381
^DPDNs& 23.8981 23.5878 24.0642 22.9783
2^DPDNs&/^DNsDNs& 0.000 297 38 0.000 291 88 0.000 296 81 0.000 286 90
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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tweenDP and Dv would be given by the isentropic com
pressibilitykS instead of the isothermal one. For compariso
the factorc of Eq. ~5! is also given in Tables II and III with
kS substituted forkT . Clearly, thekT expression behave
much better. From this we conclude that at the interfa
temperature fluctuations are canonical. This conclusion
justified since we are not looking at the time decay here,
only at the average response ofDP to DNs .

IV. COMPARISON OF EQUILIBRIUM
AND NONEQUILIBRIUM RESULTS

Normalized autocorrelation functions of the numb
fluctuations@Eq. ~1!# were averaged over the four indepe
dent experiments~for each box size!. The result is displayed
in Fig. 3. Clearly, two regimes can be distinguished. To
vestigate if these regimes can be associated with the reg
of interface relaxation and macroscopic growth—such

FIG. 1. Autocorrelation of the pressure fluctuations in a small simula
box ~4048 atoms!. Shown are the various contributions of Eq.~10! from
top to bottom: c2^DNs(t)DNs(0)& ~dashed line!; 2c^DP(t)DNs(0)&
~dotted line!; ^DP(t)DP(0)& ~bumpy line!; and 22c^DP(t)DNs(0)&
2c2^DNs(t)DNs(0)&.

FIG. 2. Autocorrelation of the random componentj of the pressure fluctua-
tions in a small simulation box~4048 atoms!, taken from Eq.~10!.
Downloaded 03 Oct 2008 to 130.89.112.51. Redistribution subject to AIP
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they were found in the nonequilibrium simulations—we fi
ted them to single-exponential functions. Note that the cro
over time from the initial to the second regimes is smaller
the intermediate box than for the small box, in accordan
with the findings of our previous study.12 From the relaxation
times we calculated kinetic coefficients via Eq.~7!, once as it
is printed, and once with coefficientc according to Eq.~11!.

The results are shown in Table IV, together with t
linear coefficients from the fits of Ref. 12@Eqs.~7! and~8!#.
There is some statistical scatter in the data, but the trends
both box sizes are the same.

In Fig. 4, we have plotted the interface relaxation ra
as found from the nonequilibrium simulations together w
the predicted curves from Table IV. Within the statistic
accuracy, the results lie between the linear component of
relaxation rates and the full curve. We conclude that the fl
tuations of the interface are such that a substantial part of
nonlinear response is probed by the system. From the fig
it can be roughly estimated that the chemical potential d
ferences associated with fluctuations are equivalent to un
coolings and superheatings of maximum60.03e/kB . It can
also be seen that they do not depend too much on sys
size. We will come back to this in the next section~Fig. 6!.

In Fig. 5 we have plotted the results for the second
gime, both from equilibrium and nonequilibrium simula
tions. The results of both box sizes correspond very w
with each other and agree well with the nonequilibrium lin
From an analysis of the results for different stages of the r
we found that the statistical uncertainty in the slopes p
sented in Table IV is of the same order as the differen
between the two expressions used. Given the present s
tical accuracy, we cannot draw further conclusions as to
validity of Eq. ~11!.

V. THE EQUILIBRIUM INTERFACE

In this section we will take a closer look at the nature
the interface fluctuations at equilibrium. It is genera

n
FIG. 3. Fluctuation autocorrelation functions of the amount of solid p
ticles averaged over 4 simulations with 4048 atoms~bottom line! and over 4
simulations with 8096 atoms~top line!. Also shown are the fits to the initia
regimes~dashed lines! and the long-time regimes~dotted lines!.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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known that the Lennard-Jones fcc~100! crystal-melt inter-
face is very diffuse and extends over several interla
spacings.7,17 The melting temperature lies well above th
thermodynamic roughening transition, which means t
growth can occur everywhere on the surface without tw
dimensional nucleation barriers. Furthermore, for the
~100! surface, all growth sites are equivalent@in contradic-
tion to for instance the~111! surface#.

In Fig. 6, we have plotted the distribution of the numb
of solid particlesNs . The distribution is very smooth with no
indication of any preferred numbers. This may serve as
dence that the interface is perfectly rough. Would it ha
been only slightly faceted, then certain numbers would h
shown peaks in the distribution.~Note that the surfaces in
both systems contain 50 atoms, so the distribution ofNs

TABLE IV. Relaxation timest and their associated kinetic coefficients
measured from Fig. 3 and Tables II and III. For the small systemt was
calculated from fit regions of 10–90 and 90–150 (ms2/e)1/2, and for the
intermediate system from fit regions of 15–60 and 60–150 (ms2/e)1/2,
respectively.

Interface
relaxation

Macroscopic
growth

Small system
t 108.14 148.70
k @Eq. ~7!# 90.304 65.672
k @Eqs.~7! and ~11!# 77.582 56.420
dR/d(DT) @Eq. ~7!# 2207.14 2150.64
dR/d(DT) @Eqs.~7! and ~11!# 2177.96 2129.42
Intermediate system
t 197.27 292.63
k @Eq. ~7!# 98.631 66.491
k @Eqs.~7! and ~11!# 85.537 57.664
dR/d(DT) @Eq. ~7!# 2226.24 2152.52
dR/d(DT) @Eqs.~7! and ~11!# 2196.21 2132.27
Nonequilibrium results
(dR/d(DT))eq 2184.19 2142.07

FIG. 4. Interface relaxation rates vs temperature. The curved solid
shows the fit of Ref. 12, the straight solid line shows its linear compon
The other lines show equilibrium results for the small box~dashed! and the
intermediate box~dotted!. For both boxes, the lines with the largest slop
refer to Eq.~7!, the others to Eqs.~7! and ~11!.
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represents growth and melting over several layers.! The dis-
tribution of N is broader in the intermediate box than in th
small box. This is to be expected, since the larger b
phases in the intermediate box can more easily relax lo
pressure fluctuations and thus give more ease to fluctuat
of the interface. As a consequence, the broadness of
time-averaged interface profile would depend on the ove
size of the system, while the local instantaneous interf
profile would hardly be affected. The fact that the mac
scopic growth rates we found in Fig. 5 are almost indep
dent of system size is a good indication of this point.

In Fig. 7 we have plotted the time-averaged equilibriu
profile ~over 1 000 000 timesteps! of one interface. Shown
are both the density profile and the order parameter pro
which is defined~for each histogram binzi with a width D)
as

F~zi !5
1

A K (
k51

N

Q~Ck20.5!d~zi2zk!L , ~12!

with Q the unit step function,A the cross-sectional area, an
d the discretized delta function, i.e.,d(x)51/D for 0,x
,D and zero otherwise. The order parameter profile rep
sents the counting of liquidlike particles in each bin~cf. the
BT profile in Ref. 5, which is essentially the same, but d
vided byr). The order profile coincides with the density o
the liquid at the bulk liquid side and would give zero at
ideal crystal side~the little bumps in the crystalline regio
represent the average amount of imperfections!. The order
parameter in conjunction with the density profile provides
much more revealing representation of the equilibrium int
face than the density alone. We have used the interlayer s
ing d as unit on thez axis. It can nicely be seen that, on goin
from the crystal to the liquid phase, the interlayer spacin
gradually grow larger, in good accordance with the results
others.7,17

To investigate the instantaneous structure of the in
face, we took 5 representative stages in the long~20 000 000

e
t.FIG. 5. Crystal growth and melting rates vs temperature. The solid
shows the fit of Ref. 12. The other lines show equilibrium results for
small box~dashed! and the intermediate box~dotted!. For both boxes, the
lines with the largest slopes refer to Eq.~7!, the others to Eqs.~7! and~11!.
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timesteps! run of the small box. At each stage, we perform
a simulation of 100 000 timesteps and wrote 10 subseq
configurations ~one timestep apart! once every 200
timesteps. To obtain sufficient accuracy, the atomic positi
of the 10 configurations were averaged and profiles w
calculated. We conjecture that these averaged positions
still representative of the instantaneous interface. The p
files were smoothed with a Gaussian filter as follows~see
also Hayward and Haymet6!:

F8~z!5E
2n

n

dz8 w~z2z8!F~z8!, ~13!

with

w~z2z8!5
1

sA2p
expS 2

1

2s2
~z2z8!2D , ~14!

FIG. 6. Equilibrium distributions of the number of solid particles in th
small box~solid line! and the intermediate box~dashed line!.

FIG. 7. Time-averaged profiles of the density and the order paramete
the small box, calculated over 1 000 000 timesteps.
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where we took the interlayer spacingd as width s of the
Gaussian. The smoothedF profiles were then fitted to a tan
function:

Ffit~z!5f l@12 f ~z!#1 f ~z!fs , ~15!

with

f ~z!5
1

2 F12tanhS z2z0

w D G . ~16!

For each 10-step-averaged frame, the positionz0 of the
right-hand interface was taken to be the new origin. Profi
~of the right-hand interface! were then constructed on th
basis of the atomic positions with respect to this origin. T
thus found instantaneous interface profile is plotted in
bottom half of Fig. 8~solid line!. The solid line thus repre-
sents theinstantaneousinterface profile, as all interface po
sitionsz0 were put on top of each other.

We also calculated thetime-averagedprofile, i.e., the
distribution of the order parameter with respect to the sta
bulk of the crystal. Since the meaning of this is not trivia
we will explain our procedure. The center of mass of t
whole box ~liquid1crystal! is conserved in molecular dy
namics simulations. We checked that this was indeed
case in our simulations. To study the time-averaged profile
one interface, one might fix, say, the two central planes in
bulk crystal and then measure the fluctuations with respec
their midpoint. But by the conservation of the total center
mass, the fluctuations at one interface would then influe
those at the other interface~even if they would be a bulk
distance apart!. Besides that, fixing crystal planes would in
troduce an essentially zero Kelvin region in the crystal wh
is not desirable. Therefore we decided to take as the or
the midpoint of those two bulk crystal layers that were t
central layers at the start of the run, without constraining
position of any plane. We found that this midpoint moved
little during the whole run. Particle positions were no
binned with respect to the moving origin and the resulti

or

FIG. 8. Time-averaged~dotted lines! and instantaneous~solid lines!
interface profiles for the small box~bottom half! and the intermediate box
~top half!.
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profiles were averaged over all frames. For comparison w
the instantaneous profile, the thus found time-averaged
file was shifted to have its inflexion point at the origin a
drawn as the dotted line in Fig. 8. It is shown that the wid
of the instantaneous interface is smaller than the one of
time-averaged interface.

We repeated the procedure for the intermediate box
~now with 4 runs of 100 000 timesteps!, the results of which
are shown in the top half of the same figure. The tim
averaged profile of the larger box is broader than that of
smaller box ~in accordance with the findings of Fig. 5!,
whereas the widths of the instantaneous profiles are ha
affected by the overall box size.

VI. CONCLUSIONS AND DISCUSSION

We have investigated the performance of a previou
introduced method~Ref. 14! to extract the kinetic coefficien
for crystal growth from fluctuations in an equilibrium simu
lation. We applied the method to the same two system s
that we used in an earlier nonequilibrium study~Ref. 12!. We
showed that the two regimes that were found previously~an
initial regime of interface relaxation and a long-time regim
of macroscopic growth! were consistently reproduced by th
equilibrium method. This also implies that the same amo
of caution must be exercised in calculating growth kinet
from equilibrium simulations as in the nonequilibrium cou
terpart. In both cases, long runtimes, long observation tim
and large box sizes are needed to avoid the confusion
growth rates with interface relaxation rates.

We found that the crossover time between the initial
gime and the long-time regime becomes smaller when
size of the system is increased, again in accordance with
nonequilibrium study. This raises the question whether
initial regime would disappear completely in the limit o
infinite system size. We interpreted the initial regime to
associated with a relaxation of the equilibrium interfa
shape to the shape that corresponds to the~nonequilibrium!
circumstances of the experiment. If this interpretation is c
rect, it seems reasonable to conjecture that there must
size limit where the crossover time levels off, which mea
that the initial regime should not disappear completely
would be interesting to further investigate this.

We slightly modified the equilibrium method to incorpo
rate only properties that can directly be evaluated from
two-phase simulation, whereas the earlier approach requ
external input from separate bulk simulations. Within the s
tistical accuracy, it was shown that both approaches ag
well, although we could not conclude which one of the
gives the most reliable results.

With the modification of the method, we found that, o
average, a close correlation exists between pressure flu
tions and fluctuations of the amount of crystalline mater
We studied the decay of the autocorrelation function of pr
sure fluctuations and found that, because the abo
mentioned correlation is not instantaneous, this canno
equated to the decay of the autocorrelation function of nu
ber fluctuations. The number fluctuations of solid partic
^DNs(t)DNs(0)& provide the most direct route to calculatek
from equilibrium simulations.
Downloaded 03 Oct 2008 to 130.89.112.51. Redistribution subject to AIP
th
o-

e

e

-
e

ly

y

es

t
s

s,
of

-
e

he
e

e

r-
a

s
t

e
ed
-
ee

ua-
l.
-

e-
e
-

s

Finally, we studied the density and order parameter p
files of the equilibrium interface. A clear distinction could b
made between the time-averaged overall profile and the
erage instantaneous profile of the interface, the latter be
noticeably smaller. This is of major importance in for e
ample classical density functional theory~DFT! where aver-
aged profiles are mostly used to calculate both energy
entropy contributions to the free energy of the syste
whereas it seems reasonable that for energetic considera
the instantaneous profile should be used.

APPENDIX: BULK THERMODYNAMIC
PROPERTIES OF THE LENNARD-JONES
CRYSTAL AND LIQUID

In this appendix, we will describe how we derived th
bulk thermodynamic properties for the Lennard-Jones liq
and fcc crystal as shown in Table I. Most of these could a
have been derived from collections~and fits! of thermody-
namic data on the Lennard-Jones system by others, the
most recent ones being the Johnson expression18 ~for the
liquid! and the van der Hoef expression19 ~for the crystal!.
The use of these data, however, requires some caution. T
represent fits over a limited range of state points and one
to be careful that all state points that one wants to use
covered by the expression. In the following, we will compa
our own results with both expressions from the literature

The procedures for both phases were exactly the sa
All liquid calculations were done on a system of 512 pa
ticles and all crystal simulations on a system of 500 partic
We used cubic boxes with periodic boundaries. All simu
tions were run for 5 000 000 timesteps of which 50 0
timesteps were regarded as equilibration and thus di
garded in the evaluations. Nose´–Hoover dynamics were ap
plied with a timestep of 7.48031024Ams2/e and relaxation
times tT50.0748Ams2/e ~for thermostatted simulations!
andtP50.748Ams2/e ~for barostatted simulations!.

To obtain the appropriate densities, we started out w
NPT simulations at a range of temperatures and at the
sired pressure. The average particle volumes are plotte
the top half of Fig. 9. In all figures, the solid lines represe
our fits through the data~see also Table I! and the dashed
lines represent the expressions of Johnson and van der H
It is clear that the van der Hoef expression describes
results well over the entire range of temperatures. T
Johnson expression starts to deviate for lower temperatu
This is not surprising since at that point we enter the me
stable liquid region, which is not covered by the data used
Johnsonet al. Their fit region ranged fromT50.7 to T
52.0. Our figure clearly shows the danger of extrapolat
fitted results out of the fitted region~which becomes even
more apparent in the thermodynamic response function
subsequent figures!.

Over the entire temperature range, we subsequently
formedNVT andNVE simulations, at the densities that w
found with theNPT simulations. In all ensembles, we ca
culated the average enthalpy per particleh, the results of
which are shown in the bottom half of Fig. 9.

For calculating the thermodynamic response functio
we evaluated the average fluctuations of several quantitie
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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our simulations. For a detailed discussion of the use of fl
tuation formulas to this end, the reader is referred to
literature.20–22 The isochoric heat capacity per atom@cV

5N21(]U/]T)V# was calculated from the fluctuations of th
total energy and of the potential energy, both in theNVT
ensemble, and from the fluctuations of the kinetic energy
the NVE ensemble:

^DUDU&NVT5kBT2NcV , ~A1!

^DFDF&NVT5kBT2S NcV2
3

2
NkBD , ~A2!

FIG. 9. Enthalpies and volumes per atom vs temperature, as measured
4950 000 production steps in a bulk liquid~512 atoms! and a bulk crystal
~500 atoms! in different ensembles:NPT ~filled diamonds!; NVT ~open
squares!; andNVE ~filled circles!. The solid lines represent our fits over th
measurement domain~see also Table I!. The dotted lines represent the e
pressions of Johnson~liquid! and van der Hoef~crystal!.

FIG. 10. Isochoric heat capacity and thermal pressure coefficient vs
perature in a bulk liquid and a bulk crystal. Symbols denote results f
Eqs. ~A2! ~filled circles, solid line shows fit!, ~A1! ~open squares!, ~A3!
~open triangles!, ~A4! ~filled circles, solid lines show fits!, and ~A5! ~open
diamonds!. Dashed lines represent the expressions of Johnson~liquid! and
van der Hoef~crystal!.
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^DT̂DT̂&NVE5
3

2
NkB

2T2S 12
3NkB

2NcV
D . ~A3!

The results are shown in Fig. 10. Clearly, Eq.~A2! gives the
best statistics, so that data were used for the fit.

The thermal pressure coefficient (gV5(]P/]T)V) was
calculated from

^DFD P̂&NVT5kB
2T2~gV2rkB!, ~A4!

^D P̂DF&NVE5
NkB

2T2

V S 12
3VgV

2NcV
D , ~A5!

the results of which are also plotted in Fig. 10. Given t
small variations of bothcV and gV for the crystal over this
temperature range~see the scale in the figures!, the van der
Hoef expression gives satisfactory results. The Johnson
pression seems to be way off for both properties, but
insets in the figures show that the data converge to the
pression just aboveT50.7.

Finally, the isothermal compressibility @kT

52V21(]V/]P)T# and the thermal expansion coefficie
@aP5V21(]V/]T)P# were calculated with

^DVDV&NPT5VkBTkT ~A6!

and

^DVD~U1 P̂V!&NPT5kBT2VaP . ~A7!

Results for the latter two properties are shown in Fig. 11
Adams23 has emphasized that when fluctuation formu

such as the above are used in a computer simulation,
advisable to crosscheck them with the thermodynamic id
tity aP5kTgV . A quick check with the equilibrium values in
Table I shows that the agreement is good.
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