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Abstract

The positioning of temporary facilities on a construction site is an area of research which has been recognised as important but

which has received relatively little attention. In this paper, a genetic algorithm is proposed to solve the problem in which m facilities

are to be positioned to n available sites such that the total cost of construction and interactive cost due to facility layout constraints

are minimised. A sequence-based genetic formulation of the problem is presented. Genetic crossover and mutation operators are

developed for the problem and their performance evaluated and compared on an example project. The results obtained suggest that

the different operators perform very differently but that one could be relied on to find the optimum. Overall, experiments suggest

that the technique will prove useful when tackling real problems.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

In the construction industry, site layout is a very
important planning problem. The objective of site
layout is to position temporary facilities both geogra-
phically and at the correct time such that the construc-
tion work can be served satisfactorily with minimal costs
and improved safety and working environment. This
paper starts with a general description and formulation
of the problem from which a specific formulation for
genetic algorithm solution is proposed. Following a
brief introduction to the problem and genetic algo-
rithms, a formulation of the site layout problem is
proposed in terms of a sequencing problem that is
suitable for solution using genetic algorithms. Various
mutation and crossover operators are considered for use
in the solution and an example is presented to illustrate
the techniques developed and to allow comparison of
their efficiency.
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2. The construction site layout problem

Site layout problems have long been recognised as
being of importance but whilst they have been written
about (see for example Twort and Rees, 1995), there has
been no complete solutions proposed.
The nature of the problem means that no well-defined

method can guarantee a solution. At best, guidelines
point out the issues that field managers must consider
while laying out their project sites (Rad and James,
1983). Layout problems have however been treated
using operations research (Seehof and Evans, 1967) and
artificial intelligence (Hamiani, 1989; Tommelein et al.,
1991).
They all have similar drawbacks; namely:

* They rely on the generation of a knowledge base
which will allow choice between various geographical
layouts. This has proved very difficult to produce for
real projects.

* The integration of the scheduling procedures with the
geographical aspects to generate the site layout has
proved difficult.

The positioning of major pieces of equipment might
be considered to be a sub-set of the general site layout
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problem. Several authors report research into this topic
by various methods. For example Warszawski and Peled
(1987) describe techniques for positioning cranes on a
building site. These employ knowledge-based systems.
They do not look at all aspects of the positioning
although it might be possible to extend them to do so.
Yeh (1995) and Zouein and Tommelein (1999)

identified a construction site layout problem. In Yeh’s
problem, there are n resources to be positioned and n
available positions and all the information about
operation and set-up cost is known, an assignment
of resources to positions is searched to minimise
the whole cost. A neural network was used to solve
the assignment type of construction site layout problem
in which the problem is formulated as a discrete
combinatorial optimisation problem. This is a static
and special case of more general construction site layout
problems.
A class of similar but different problems is facility

layout problems in manufacturing industries and VLSI
in electronics, which have been studied extensively. The
facility layout problem is concerned with finding the
most efficient arrangement of several indivisible depart-
ments with unequal area requirements within a facility.
The objective of facility layout problem is to minimise
the material handling cost or resource movement cost
inside a facility.
In facility layout problems there are in general two

sets of constraints considered:
(1)
 department and floor area requirements and

(2)
 department location restrictions (departments can-

not overlay, departments must be placed within the
facility and some must be fixed to a location or
cannot be placed in specific regions).
Floor loading and floor-to-ceiling clear-height con-
straints also exist in multiple-floor facilities in which the
vertical distances between departments are considered in
addition to the horizontal distance.
Two sets of solution methods are employed in

attacking facility layout problem: heuristics and exact
methods. Exact algorithms are developed to obtain, in
theory, optimal solutions, but because of the combina-
torial nature of the problem, they are only applicable for
small-scale problems.
Heuristic methods are usually used for larger pro-

blems. The current trend in research for facility layout
problems is concentrated in three areas: developing
more suitable models; extending existing models to
include a time element (dynamic layout); adding
uncertainty (stochastic layout); or adding multiple
criteria for evaluation. There are also special cases for
specific types of problems. A review of the facility layout
problem can be found in Russell and Gau, (1996).
In this paper, the construction site layout problem is

specified as ‘to position a set of facilities on the site so
that the layout objectives are optimised subject to layout
constraints’. The objective functions can be of any form
that might be considered by a site manager or builder.
Typically the ‘best’ layout is defined in terms of the

cost to the project overall although this is difficult to
define. It will have some relationship to the cost of
setting up and removing the facility in the given
position, to the amount of movement necessitated by
the layout, to the extra time it adds to the overall
construction, to the inconvenience caused to the site
users and many other factors.
In practical terms, this is best described by means

of a simple example. Consider a typical private
housing estate being constructed on a green-field
site by a speculative builder. At the start of the
project, the builder will have to install an office, fence
the site, build some roads and put in some services
such as water, gas and sewers. As the work progresses,
the builder will construct some of the houses starting
with the foundations and moving through the walls,
roofs and internal finishes to completing the external
works with fences and landscaping. When some of the
houses have been built, the builder will move on to
others while purchasers will move into those that are
complete.
Temporary facilities will be required; for example to

act as welfare facilities for the operatives; to store the
materials which are delivered to the site and before they
are built into the works; and for the heavy equipment to
move around the project. The state of the site will be
continuously changing and what might have been the
‘best’ position for the office at the start of the project
might not be the ‘best’ at other stages. In theory, the
facilities can be of any shape and positioned anywhere
on the site but in practice, offices are usually rectangular
and other facilities can be approximated to that shape.
This example is in two physical dimensions and the

third one is ignored. On real construction sites this is
often a practical approximation. However, this is not
the case on all projects. For example, if the project were
the construction of a multi-storey city centre block, then
the third dimension would be of considerable impor-
tance. It can also be seen that in reality, a fourth
dimension, time, is important as the layout will change
throughout the life of a project.
The general problem has been worked on for a

considerable time (see for example Rad and James,
1983) and has been the subject of several papers in
artificial intelligence, see for example (Hamiani, 1989)
and (Tommelein et al., 1991). Some authors have also
proposed formulations and solutions for specific site
layout problems (see for example Warszawski and
Peled, 1987). However, there is still no formulation
and solution which is widely used in industry.
If the problem is constrained slightly by assuming that

all the possible locations for the different facilities can be
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identified, then the problem can be stated in mathema-
tical terms, as follows:

* m facilities are to be positioned on a site.
* n locations are available for each facility to position,

nXm.
* For each assignment of a facility to a candidate

location, there are different set-up and removal costs.
Consequently, different assignments will mean dif-
ferent operational costs.

* There are adjacency constraints which dictate that
certain facilities must be adjacent to other facilities.

* The objective is to position all the facilities such that
the total cost will be minimised subject to the
constraints.

This problem can be modelled as a Quadratic
Assignment Problem (QAP). This formulation requires
an equal number of facilities and locations. If the
number m of facilities is less than the number n of
locations, n � m dummy facilities can be created and
zero set-up cost and transportation cost assigned to
them. However, if there are fewer locations than
facilities, the problem is infeasible.
Based on these ideas, the construction site layout

problem can be formulated as (Yeh, 1995)

Min F ¼
X

x

X

i

dxiCxi þ
X

x

X

i

X

y

X

j

dxidyjAijDxy

s:t:
dyj ¼ 0 if dxi ¼ 1 and yax;

dxj ¼ 1 if dxi ¼ 1 and jai;

where F is the cost function; dxi the permutation matrix
variable (=1 if facility x is assigned to site i); Cxi the
construction cost of assigning facility x to site i; Aij the
site neighbouring index, Aij ¼ 1 if site i is neighbouring
to site j; Dxy the interactive cost of assigning facility x on
the site neighbouring facility y:
The solution of the problem can be represented by

an n � n matrix. For example, for a problem of
four facilities, a site layout could be represented by
Table 1
In this, facility A is assigned to location 2; facility B to

location 1; facility C to location 4 and facility D to
location 3. Any specific layout can be represented by a
matrix similar to Table 1.
Table 1

A solution matrix for a problem of four facilities

Facility Location

1 2 3 4

A 0 1 0 0

B 1 0 0 0

C 0 0 0 1

D 0 0 1 0
3. Genetic algorithms

Genetic algorithms are modelling techniques based on
biological behaviour (Wilson, 1997). They rely on the
speed of computers either to combine elements from two
solutions, or to mutate a single solution to a complex
problem to produce a third solution and evaluate it. If
the third solution is ‘better’ than one of the others, then
it ‘survives’ and the worst one ‘dies’—along the lines of
‘survival of the fittest in Darwin’s theory of evolution’.
The process continues through a number of iterations or
‘generations’ with each solution contributing to the next
generation in proportion to its ‘goodness’. Random
factors ensure that the solution space is adequately
covered. (See Dowsland, 1996 for a brief introduction to
Genetic Algorithms and a discussion on their possible
use to assist managers.)
Since genetic algorithms are generic and flexible and

need little knowledge and information about the
problem domain, they have found wide application in
diverse areas (Goldberg, 1989). There have been many
applications of genetic algorithms in civil engineering.
Soh and Yang, (1996) used a genetic based search
technique for shape design of structures in civil
engineering in the least weight design of truss structure.
Navon and McCrea (1997) established a genetic algo-
rithm to optimise a construction robot’s kinematics
based on collision avoidance, percentage of coverage,
dexterity, unit cost and total cost. Al-Tabtabai and Alex
(1997) applied a genetic algorithm to manpower
scheduling optimisation. There are also many other
application cases for using genetic algorithms in
scheduling, planning and management.
The main aspects to be considered in the development

and use of genetic algorithms are encoding, fitness
function, the selection procedure, crossover, mutation
operations and termination.
4. Construction site layout using genetic algorithms

There are several possible genetic algorithm formula-
tions of the construction site layout problem. In this
paper, a sequence-based formulation is proposed and
investigated.

4.1. Sequence-based encoding

A specific solution to the site layout problem as
shown by Table 1 is a very sparse matrix and would
therefore consume considerable computing resources if
it were used for large, practical problems. However,
because of the property of one to one correspondences
between facilities and locations, a sequence can be used
as a more efficient alternative.
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Table 3

Generation of child by order crossover 2

Parent 1 1 2 3 4 5 6 7

Cross at � � �
Parent 2 3 6 2 5 1 7 4

Child 1 6 2 3 4 5 1 7
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For example, for a problem of m facilities that are
labelled as A, B, C,y, a sequence S can be established
which contains a permutation of all the labels. S can be
interpreted as: assigning facility S½i� to site i; where
iA½1;m�: Different sequences mean different layout
solutions and any manipulation of the sequence S will
correspond to a new layout. The sequence of facilities
can consequently be used as a chromosome representa-
tion scheme. If this is done, the simple forms of
crossover and mutation described in classical papers
on genetic algorithms are not directly applicable and
possible alternatives are described below.

4.2. Crossover operators

Sequence-based representation has been used in
genetic algorithms for many problems (Davis, 1991)
and many related crossover operators have been
developed. In this section, four sequence-based cross-
over operators, chosen from the literature, are described
and their performance for the site layout problem
compared.

Crossover ‘a’ (order crossover 1). The order crossover
operator was originally developed by Davis (1985) and
Davis (1991). In this operation, two crossover locations
are generated randomly and an offspring inherits the
elements between the two crossover points from a
selected parent in the same order and position as they
appeared in that parent. The remaining elements are
from the other parent in the order in which they appear
in that parent, beginning with the first position
following the second crossover point and skipping over
all elements already present in the offspring. The
operation can be represented as
Step 1:
Table 2

Generation

Parent 1

Cross at

Parent 2

Child 1

Child 2
Randomly generate two integers t1 and t2;
t1ot2; t1; t2A½1;N�
Step 2:
 For i :¼ t1 to t2 do

Child1[i]:=Parent1[i];

Remove jAChild from Parent2;
Step 3:
 for i :¼ t2þ 1 to N and i :¼ 1 to t1� 1

Child1[i]:=Parent2[j], jA½1;N� and Parent2[j]
e Child1.
This is illustrated in Table 2.
of children by order crossover 1

1 2 3 4 5 6 7

� �
3 6 2 5 1 7 4

1 7 3 4 5 6 2

6 7 2 5 1 3 4
This operator was meant to preserve the relative order
of elements in the sequences to be combined. However,
through this operation, the offspring actually inherits
part of the order, adjacency and absolute position from
one parent and the relative order from the other.

Crossover ‘b’ (order crossover 2). Introduced by
Syswerda and Palmucci, (1991), this operator differs
from the order crossover 1 in that in this method several
positions are chosen randomly from a parent and the
order of the activities in the corresponding positions in
the other parent is imposed on the same elements in the
first parent to make an offspring.
Suppose positions 2,4,5 have been chosen for the

operation. Child1 inherits elements 2 4 5 from parent 1
directly, child1=(, 2, ,4,5, , , ) and in the positions 2 4 5
in parent 2, the elements are 6 5 1 and their positions in
parent 1 are 1 5 6 so child1=(6, 2, ,4,5,1, , ). Copy the
other elements from parent 1 and child1 becomes (6 2 3
4 5 1 7) as shown in Table 3.

Crossover ‘c’ (partially mapped crossover (PMX)).
This operation was proposed by Goldberg and Lingle
(1987). In this method, two crossover sites are generated
randomly and the offspring inherits the elements
between these two sites of a parent directly. Each
element between the two crossover points in the
alternate parent is mapped to the position held by this
element in the first parent. Then the remaining elements
are inherited from the alternate parent. As in the order
crossover 1 the direct transfer of elements of the first
parent to offspring preserves order, adjacency and
position for that section.
Suppose wSðiÞ = the position of activity i in

sequence S:
The algorithm for PMX can be as
Step 1:
 Randomly generate two integers t1} and t2;
t1ot2; t1 and t2A½1;N�;
Step 2:
 for i :¼ t1 to t2

Child1[I ]:=Parent1[i];
Step 3:
 For i :¼ t1 to t2

If Parent1[i] aParent2[j] and jA½t1; t2�

Child1[wParent2ðiÞ�:=Parent2[j]; jA½1;N� and
Parent2[j] e Child1.
Step 4:
 For the rest of elements

Child1[I ]:=Parent1[i].
Suppose t1 ¼ 3 and t2 ¼ 4; then using this method,
child1[i]:=Parent1[i], iA½3; 4�: For the first selected
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Table 4

Generation of child by PMX

Parent 1 1 2 3 4 5 6 7

Cross at � �
Parent 2 3 6 2 5 1 7 4

Child 1 2 6 3 4 1 7 5

Table 5

Generation of child by cycle crossover

Parent 1 1 4 3 2 5 6 7

Start point �
Parent 2 3 6 2 5 1 7 4

Child 1 1 6 3 2 5 7 4
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element 3 of parent 1, it is the first element in parent 2,
so child[1]:= Parent2[3]:=2; Off[7]:= Parent2[4]:=5,
the rest of the elements of child are inherited from
parent 2 directly and the child is as shown in Table 4.
It should be noted that PMX is influenced by position

and in some cases it results in a mutation where neither
adjacency, position nor relative order is preserved.

Crossover ‘d’ (cycle crossover). This method, originally
developed by Oliver et al. (1987), preserves the absolute
position of elements in the present sequence. In this
method, a starting position is randomly selected. The
offspring inherits the starting element in the starting
position of a parent. The element in the same position of
the other parent is located in the first parent and the
offspring inherits the element from this located position
in the other parent. The procedure continues until the
starting element is reached again. The rest of the
positions of the offspring are filled with elements from
the other parent. This method preserves the position of
elements from one or the other parent without any
disruption.
In the example shown in Table 5, position 3 is chosen

as the starting point. Child1[3]:=3; the element of
parent 2 in this position is 2 and element 2 appears in
position 4 of parent 1, so child1[4]:=2; Parent2[4]=5=
Parent1[5], so child1[5]:=5; Parent2[5]=1= Parent1[1]
so child1[1]:=1; Parent2[1]=3= Parent1[3], the starting
point is reached. We have child1=(1, ,3,2,5, , ) and fill
the empty positions with elements in the same positions
of parent 2 thus we get child1=(1,6,3,2,5,7,4).

4.3. Mutation operations

For order based chromosomes, the conventional
mutation of bit switch cannot be applied directly. In
the following sections, four order specific mutation
operators are described.
Mutation ‘a’. Davis (1991) proposed a so-called
scramble sub-list mutation for his order based genetic
algorithm. In this mutation, the operator selects a sub-
list of the items from a parent chromosome and
permutes them in the child, leaving the rest of the
chromosome as it was in the parent. Scramble sub-list
mutation has no parameters although a variation can be
made involving limiting the length of the section of the
chromosome that can be scrambled. An example is
shown as
Parent: 1 4 3 2 5 6 7
Child: 1 4 2 3 5 6 7
In this example, a subsection containing 3, 2, 5 is

selected and a permuted order 2, 3, 5 is generated and
chosen. The rest of the chromosomes remain un-
changed.

Mutation ‘b’. The reversal of the sequence of activities
has been used as mutation for TSP and proves to be
effective and useful. Here it is applied in this GA as a
mutation operator as well. In this operation, the whole
sequence is reversed. For example, after the operation, a
chromosome (1,2,3,4,5) will become (5,4,3,2,1).
This operation can be generalised as to randomly

select a subsection of the chromosome sequence and
then reverse the subsection only and remain the orders
of the rest activities of the chromosome.

Mutation ‘c’. In this operation, a sequence is
randomly parted into two sections and then the two
sections are reconnected with swapped positions. So if
the parting position is k; kAð1; nÞ; then S½i � k� :¼ S½i�;
for iA½k þ 1; n�; and S½i þ k� :¼ S½i� for iA½1; k�:

Mutation ‘d’. In this operation, the start of the
sequence to be mutated is connected to its end to form
a cycle. This cycle is cut randomly to produce a new
sequence.

4.4. Fitness function

Fitness values are used to represent the relative
goodness of chromosomes. Traditionally, better chro-
mosomes have larger fitness values. In site layout
problems, facilities are typically positioned to reduce
cost and the objective is usually to minimise the
construction cost. In this work, the construction cost
is used as the fitness function and the genetic algorithm
is designed to produce a minimum rather than a
maximum.
5. Numerical examples

In this section, a numerical example is taken from Yeh
(1995) and used to demonstrate the genetic algorithm
formulation and to compare the performance of the
operators.
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Fig. 1. The example site layout problem (after Yeh, 1995).

Table 6

Construction cost matrix (C)

1 2 3 4 5 6 7 8 9 10 11 12

R1 35 35 30 30 35 15 10 15 6 6 7 10

R2 35 30 9 9 13 30 30 35 15 18 12 7

C1 18 15 15 15 15 8 14 10 8 10 15 15

C2 13 7 12 18 18 15 15 15 15 8 8 12

F1 18 15 15 20 15 8 10 8 8 7 15 15

F2 14 8 10 17 12 15 15 15 15 8 7 9

B1 32 35 15 15 15 10 9 13 7 10 15 15

B2 31 30 9 8 15 18 15 16 15 15 15 15

JO 39 35 13 8 8 15 18 15 8 18 9 18

LR 18 8 8 8 15 10 15 15 13 15 15 15

E 7 10 8 19 15 10 10 8 15 10 6 15

W 9 10 6 7 7 7 15 15 18 15 15 12

able 7

ite neighbouring index matrix (A)

1 2 3 4 5 6 7 8 9 10 11 12

1 0 1 0 0 0 0 0 0 0 0 0 0

2 1 0 1 0 0 0 0 0 0 0 0 0

3 0 1 0 1 0 0 0 0 0 0 0 0

4 0 0 1 0 1 0 0 0 0 0 0 0

5 0 0 0 1 0 1 0 0 0 0 0 0

6 0 0 0 0 1 0 1 0 0 0 0 0

7 0 0 0 0 0 1 0 1 0 0 0 0

8 0 0 0 0 0 0 1 0 1 0 0 0

9 0 0 0 0 0 0 0 1 0 1 0 0
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In this example, there are two permanent buildings to
be constructed. The description of the site including 12
locations where temporary facilities may be placed is
shown in Fig. 1. The following 12 facilities are to be
positioned:
0 0 0 0 0 0 0 0 0 1 0 1 0

1 0 0 0 0 0 0 0 0 0 1 0 1
1. Reinforcing steel shop 1
 R1
2 0 0 0 0 0 0 0 0 0 0 1 0
2. Reinforcing steel shop
 R2

3. Carpentry shop 1
 C1

4. Carpentry shop 2
 C2
Table 8
5. Falsework shop 1
 F1

Interactive cost matrix (D)
6. Falsework shop 2
 F2
1 2 3 4 5 6 7 8 9 10 11 12
7. Concrete batch plant 1
 B1
1 0 0 0 0 0 0 0 0 100 100 0 0

8. Concrete batch plant 2
 B2
2 0 0 0 0 0 0 0 0 100 100 0 0
9. Job office
 JO
3 0 0 0 0 0 0 0 0 0 0 0 0
10. Labour residence
 LR

4 0 0 0 0 0 0 0 0 0 0 0 0
11. Electricity equipment and water-supply shop
 E

5 0 0 0 0 0 0 0 0 0 0 0 0
12. Warehouse
 W

6 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0 0

9 100 100 0 0 0 0 0 0 0 0 0 0

10 100 100 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0
Their data, construction cost matrix (C), site neigh-
bouring index matrix (A) and interactive cost matrix (D)
(the unit of all costs in the test case is d1000) are shown
in Tables 6–8 respectively.
It should be noted here that the site neighbouring

index matrix is slightly different to that proposed by
Yeh since on the site, location 1 is not adjacent to
location 12 as suggested in the original.
The interactive cost matrix shows that there is a

penalty of 100 for positioning facility 1 next to facility
10 or 11 and a similar penalty for positioning facility 2
next to facility 10 or 11. This penalty is large compared
to the cost of setting up the facilities in position and so it
would be expected to act as an absolute constraint.
All the solutions obtained by the techniques imply

that this constraint is, in fact, not tight and thus this part
T

S

1

1

1

of the fitness function could be removed for part of the
testing.
6. Experiments

A package was written specifically to solve the
problem under consideration. It was written in Delphi
running under Windows NT. A generation of the
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Table 9

Possible choice of parameters

Crossover type Parameter values Mutation type Mutation proportion

a—order crossover 1 a—mutation 1 0, 0.2, 0.4

b—order crossover 2 2,4,6,8,10 b—mutation 2 0, 0.2, 0.4

c—partially mapped crossover c—mutation 3

d—cycle crossover d—mutation 4
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Fig. 2. Typical values of fitness for different generations for order

crossover 1, mutation type 1.
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Fig. 3. Typical values of fitness for different generations for order

crossover 1, mutation type 2.
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Fig. 5. Typical values of fitness for different generations for order

crossover 2 and partially mapped crossover and various mutation

types.
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problem with a population of 100 took approximately
0.4 s to run on a P2-233 processor with 64MB of RAM.
This timing was taken by averaging and no attempt has
been made to optimise the programming.
In order to determine the performance of the

operators in the particular problem under consideration,
several experiments have been devised. The choice of the
parameters is summarised in Table 9.
The behaviour of any genetic algorithm on any

problem depends on many factors, some of which are
random and, consequently, it is not totally predictable.
Two types of experiments were therefore devised.
In the first, the different combinations of the possible

values of the parameters from Table 5 were selected and
the genetic algorithm was run for 100 generations with a
maximum number in the population of 80. In the
second, a single combination of parameters was used for
multiple runs of the genetic algorithm.
Space does not allow presentation of all the results for

the first set of experiments in this paper since there is a
large number of combinations possible. Typical results
of the first set of experiments are shown in Figs. 2–6.
It can be seen that the behaviour of the algorithm

varied widely with different ‘optima’ being found and
with varying amounts of stability in the solution.
Of the examples shown, in the 100 generations

allowed, the combination to produce the lowest value
for the cost was the order crossover 2 with no mutation.
This can be seen in both Figs. 4 and 5. This crossover
F

c
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runs of the algorithm.
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Table 10

Location of the facilities in the three optimal solutions

Solution Facility

R1 R2 C1 C2 F1 F2 B1 B2 JO LR E W

1 9 12 6 10 8 11 7 4 5 2 1 3

2 10 12 6 2 8 11 7 4 9 3 1 5

3 10 12 9 2 8 11 7 4 5 3 1 6
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performed differently depending on the position selected
for the crossover, with an early position giving by far the
best results. Crossover ‘a’ (order crossover 1) generally
performed worse than the others on this problem, never
producing values of fitness function below 100.
Figs. 4 and 5 illustrate the effects of the initial random

population on the performance of the procedure since
one of the lines in each figure is for order crossover 2
with crossover at 4 and no mutation. In Fig. 4, the
lowest value attained is 92 whilst in Fig. 5 it is 90.
In fact, analysis of the results indicated that three

‘optimal’ solutions were found as shown in Table 10.
The optimal value of the fitness function was 90, which
is 4 above the infeasible lower bound solution of all
facilities in their optimal position. It was also 3 below
the answer suggested by Yeh although, as mentioned
earlier, the problem used here was slightly changed from
that in the original paper.
Figs. 7 and 8 show the results of 50 runs of the

algorithm all for a maximum of 100 generations but
terminating if the fitness function attained the value 90
(which was taken to be the optimum). The optimum
value was attained in 19 runs of the 50 runs. Values
above 92 only occurred in 4 runs. The number of
generations taken to attain the ‘optimum’ value appears
not to be related to the value of the optimum.
Fig. 9 shows the results of using the optimum value as

the only termination criterion in 50 runs of the
algorithm. The parameters used were order crossover 2
with the crossover at 2 and no mutation. The algorithm
always found the optimum value although in one case it
did take nearly 1000 generations. In more than half of
the runs (26), the optimum was found in less than 300
generations.
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7. Conclusions

It has been shown to be possible to formulate the site
layout problem as a sequence-based genetic algorithm.
Four crossover and four mutation operators have

been tested for their efficiency at finding the optimum
layout for a problem proposed and solved by Yeh.
For the twelve-facility problem, the best crossover

operator was found to be order crossover 1 with
crossover at position 2. In the tests, it was found to be
best to have no mutation. This combination always
found the optimum in the particular problem being
studied. This was surprising since, without mutation, it
would be expected to sometimes converge to local
optima rather than always finding the global optimum.
This might have happened because there were three
equally good solutions to the problem.
Some of the operators never found the optimum in

any of the tests carried out.
The example problem formulation provided in this

paper can be extended to include many other costs
without significant increase in computer power require-
ment.
Although this problem did not require it, the dynamic

nature of a site can be taken into account by the
development of several different layouts for the different
phases of the work. If this is done, the benefits and costs
of moving a facility during the execution of the project
can be balanced in the fitness function.
It may be possible to include more complex, less

tangible but equally important aspects into the fitness
function. Thus, work is ongoing to extend these ideas to
include safety and environmental aspects and balance
these with the finances of a project.
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