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USING RESPONSE TIMES TO DETECT ABERRANT RESPONSES 
IN COMPUTERIZED ADAPTIVE TESTING 
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A lognormal model for response times is used to check response times for aberrances in exami- 
nee behavior on computerized adaptive tests. Both classical procedures and Bayesian posterior predictive 
checks are presented. For a fixed examinee, responses and response times are independent; checks based 
on response times offer thus information independent of the results of checks on response patterns. Empir- 
ical examples of the use of classical and Bayesian checks for detecting two different types of aberrances 
in response times are presented. The detection rates for the Bayesian checks outperformed those for the 
classical checks, but at the cost of higher false-alarm rates. A guideline for the choice between the two 
types of checks is offered. 
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Though the primary use of response vectors in testing is to construct accurate ability esti- 
mates, they also contain useful information to detect possible aberrances in examinee behavior. 
Most statistical analyses to identify such behavior belong to the class of statistical procedures 
known as residual analysis. That is, they are based on the residuals of an examinee's response 
vector left after a model known to explain the responses of a population of regular examinees 
has been fitted. The first step in this residual analysis is to check for examinees with unexpected 
behavior. A more challenging second step is to diagnose their response vector for specific types 
of aberrances. Ideally, the analysis would support the hypothesis of one type of aberrance and 
exclude competing hypotheses. Papers with seminal techniques for this type of analysis are Brad- 
low, Weiss, and Cho (1998), Drasgow, Levine and Williams (1985), Levine and Rubin (1979), 
Molenaar and Hoijtink (1990), and Trabin and Weiss (1983). A review of the literature is given 
in Meijer and Sijtsma (1995). 

The introduction of computerized adaptive testing (CAT) has increased the necessity of 
checks on examinee behavior. For example, a new type of aberrance is response behavior due to 
preknowledge of some of the items in the pool. To return investments, item pools in CAT have to 
remain operational for some time. Particularly in high-stakes testing programs, examinees may 
try to use this time to memorize and share items in the pool. Another potential new source of 
aberrant behavior is due to differential speededness of the test. Adaptive tests are selected to 
have optimal information at the ability level of the examinee. However, items differ not only 
in their information but also in the amount of time they require. As a consequence, some CAT 
examinees operate under higher time pressure than others. A recent study revealed that high- 
ability examinees may suffer especially from this type of speededness. For those examinees, 
item selection CAT results in more difficult items, and more difficult items generally require 
more time (van der Linden, Scrams & Schnipke, 1999). 

Also, residual analysis of response vectors has difficulty maintaining its power when applied 
to adaptive tests. One reason is that adaptive tests are typically much shorter than paper-and- 
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pencil tests. More importantly, in an adaptive test the difficulty of the items converge to the 
examinee 's  ability level. Hence, items toward the end of the test tend to have a probabil i ty of 
success close to .50. However, residual analysis typically has its maximum power for tests with 
probabilit ies of correct responses close to one or zero. For more details on these issues, see van 
Krimpen-Stoop and Meijer  (1999, 2000). 

One possible way to counter these problems is to complement analysis of response data 
with analyses of other types of data. An obvious additional source of data are the examinee 's  
response times. In computerized testing the time between keystrokes can easily be stored. Par- 
ticularly in high-stake testing, the assumption that these records reflect the time the examinee 
actually needed to process the items and produce a response seems realistic. More importantly, 
unexpected response times can be indicative of specific types of aberrant behavior. For example, 
examinees who know some of the items prior to the test may answer them more quickly than 
generally required, while examinees running out of t ime will tend to show a series of unexpected 
short response times toward the end of the test. 

There are also two more technical advantages involved in the use response times to check 
examinee behavior for aberrances. First, a major obstacle in residual analysis of i tem responses 
is their discrete nature. Especial ly for statistics that transform residuals to an asymptotically 
normally distributed variable, application to single dichotomous responses can hardly be recom- 
mended. Response times are continuous and do not possess this disadvantage. Second, as already 
noted, response patterns in CAT are the result of a built-in tendency to probabilit ies of success 
close to .50 toward the end of the test. This tendency implies residuals with values - . 5 0  or .50, 
which are equally likely. Tendencies to such constrained distributions of residuals do not exist 
for response times. 

To detect aberrancies in response times, a model with separate parameters for the items and 
the examinee is needed. In this paper, response times are modeled as a variable with a lognormal 
distribution. At  the same time, the responses to the items are assumed to follow a 3-parameter 
logistic (3PL) response model. If  both models fit, responses and response times for a given ex- 
aminee are independent. Test statistics defined on these variables are thus also independent. 

Both classical and Bayesian (posterior predictive) checks are presented. As usual, the classi- 
cal statistics involve large-sample approximations that sometimes are not realistic. The Bayesian 
statistics involve the (mild) assumption of a prior distribution but produce exact distributions. 

IRT and Response-Time Model  

The item pool is indexed by i = 1 , . . . ,  I ,  whereas the items in the adaptive test are indexed 
by k = 1 , . . . ,  n. Thus, ik is the i-th item in the pool administered as the k-th item in the test. The 
double level of subscripting is introduced for the analyses below where we focus on one item in 
the test and use parameter estimates based on the responses and response times on the other items. 
Examinee j ' s  responses and response times on the items in the test are denoted as random vectors 

U j  = (Uil j . . . . .  Uinj)  and Tj  = ( ~ l J  . . . . .  Tin j )  , with realizations uj  = (bill j . . . . .  flirt j )  and 
t j  = (til j . . . . .  tin j ) ,  r e s p e c t i v e l y .  

In the empirical examples below, a 3PL model was fitted to the items i = 1, . . . ,  I :  

pi(O) = Pr(Ui = 1} ~ ci 4- (1 - ci) 
exp[a/(0 - hi)] 

1 4- exp[ai(O - hi)] '  
(1) 

where Ui is the response variable for i t em/ ,  with Ui = 1 for a correct and Ui = 0 for an incorrect 
response, 0 e R is the ability of the examinee, and ai c (0, oc) ,  bi c R ,  and ci e [0, 1) are the 
discrimination, difficulty, and guessing parameter for i t em/ ,  respectively. 

In addition, the following loglinear model  was fitted to the response times: 

in Tij = i~t + 3i + rj  + eij (2) 
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with 

eij ~ N(o,  ~2), (3) 

where 3i is a parameter for the response time required by item i, r j  is a parameter for the slowness 
of examinee j ,  # is a parameter indicating the general response time level for the population of 
examinees and pool of items, and eij a normally distributed residual or interaction term for i tem 
i and examinee j with mean 0 and variance cN. It follows that 

in Tij ~ N ( #  + 3i + rj, ~r2). (4) 

A loglinear model for response times has been used earlier by Thissen (1983), whereas the pa- 
rameterization in (4) is discussed Schnipke and Scrams (1997). 

Observe that the model  in (4) is formulated at the level of an individual examinee and item 
w i t h  8ij as the only random variable. Hence, in iqj and 8ij have the same variance. The variance 
is modeled to be a common quantity across items and examinees, that is, cN = cN. A more 
general model  is possible relaxing this assumption, but the current version is more parsimonious 
and showed excellent fit to the data set used in the empirical example below. Also, observe that, 
through the presence of the # parameter in the model, all other parameters are scaled to have 
expectations zero. In particular, it holds that 

E ( r )  = 0. (5) 

Alternative Models and Approaches 

The models in (1) and (4) are formulated for marginal distributions of responses and re- 
sponse times. The question can be raised if a model  for a joint  distribution would not be more 
realistic, because ability and slowness could very well be dependent on each other. However, 
it should be noted that, entirely in the tradition of test theory, either of the two models are at 
the level of a fixed examinee and a fixed item. If they fit, the distributions of the responses and 
response times are independent, and it is not necessary to model the joint  distribution. The 3PL 
model has a proven history of satisfactory fit in testing. The only thing the response-t ime model  
implies is that if we know the amount of time the item requires and the slowness of this examinee, 
we are able to predict the response time for the item and examinee up to a random error. If  an 
interaction term were added to (4), the model  would become fully saturated, and a check on the 
goodness of fit of the model  would amount only to a check on the assumption of the lognormal 
error distribution in (3). For the data set in the application below, the lognormal model was tested 
against models based the normal, Gamma, and Weibull distributions and showed excellent fit. 

It is also possible to model the slowness parameter as a function of the ability parameter. For 
a correctly specified function, we would have fewer parameters to estimate during the adaptive 
test and can therefore expect increased efficiency of estimation. However, it is easy to misspecify 
such a function, and then its presence would bias the estimates of these parameters. For example, 
we may expect a monotonically decreasing relation between slowness and ability ("more able 
students work faster"). This assumption was introduced in a response time model by Thissen 
(1983). On the other hand, the existence of the speed-accuracy paradox in the literature on re- 
sponse latencies seems to imply a monotonically increasing relation: When tested, examinees 
typically have the option to choose between speed and accuracy. If  they choose for accuracy, 
both the values for the ability parameter in (1) and the slowness parameter in (2) go up. Finally, 
there is also empirical information that the relation between ability and slowness depends on the 
level of speededness of the test (Swanson, in van der Linden, Scram & Schnipke, 1999). Given 
the fact that our insight in the mechanisms underlying response latencies is still incomplete, we 
have refrained from the option of modeling one examinee parameter as a function of the other. 

Another possibil i ty is a multilevel approach for a population of examinees, with the models 
in (1) and (4) as first-level models for the examinees and a second level model  for the (joint) 
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distribution of their parameters. This approach would allow us to capture the correlation between 
examinee parameters 0 and r in the population (van der Linden, 2002). If  an informative estimate 
of this correlation is available, estimation of 0 and r during the adaptive test can be made more 
efficient by using an empirical Bayes approach with a joint prior that reflects the correlation in 
the population. However, in our application, we found negligible empirical correlation between 0 
and r(.035). We therefore used a Bayesian approach with marginal priors for these parameters. 
(We did find a correlation of .65 between item difficulty and response time parameters bi and 
3i, though. But this information was useless because, as is usual in real-life adaptive testing, 
large-sample estimates of these parameters were treated as their true values.) 

Parameter Estimation 

The values of the parameters in (1) for the items in the pool are assumed to be estimated 
accurately enough to consider them as known during operational testing. The value of examinee 
j for 0 is estimated using the expected a posterior (EAP) estimator. Let f (0) be the prior density 
function of 0. For this prior the posterior distribution of 0 has density function 

n 

f (O I blilj . . . . .  blinj) O(f(O) I-I Pik(O)<kJ[1 --Pik(O)]l--<kJ" (6) 
k = l  

The EAP estimator of 0 is defined as 

Oj = f Of(O I bl i l j  . . . . .  b l in j )  dO. (7) 

The likelihood in (6) is not the full likelihood because it does not model the item-selection 
mechanism in the adaptive tests that selects the next item as a function of the observed responses 
on the previous items. However, ignoring the item-selection mechanism is correct if the interest 
is in Bayesian or direct likelihood inference about 0 (Mislevy & Chang, 2000; see also Mislevy 
& Wu, 1966). 

The response-time model in (4) has item parameters, 3i, i = 1 , . . . ,  I ,  and structural param- 
eters, p and o-2. The values of these parameters can be estimated along with those for the item 
parameters in the response model during item calibration. As the model involves a linear de- 
composition for the location of a normally distributed variable, these values are estimated easily 
following an analysis-of-variance approach. For more details on the estimation of the item and 
structural parameters, see van der Linden, Scrams, and Schnipke (1999). Again, it is assumed 
that the values of these parameters have been estimated with enough accuracy to consider them 
as known. 

In addition, the model has examinee parameters, r j,  with values that can be estimated 
from the actual response times by the examinees during the test. For a vector of response times 
(iqlj . . . . .  iqv, j), the maximum likelihood estimator (MLE) of rj is: 

"c*') = ~ P = l ( l n  T/pj  - 3 ip)  _ / b .  ( 8 )  

n 

Observe that the terms in (8) are independent and normally distributed with common variance 
o-2/n2 and expectation r j / n .  Therefore, this estimator has expectation 

and variance 

E ( 5 )  = rj (9) 

O-2 
Mar (~ )  -- . (10) 

n 
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A Bayesian approach to parameter estimation uses the posterior distribution of r j  given the 
actual response times ( t i l j , . . . ,  tin j ) .  The following development is based on van der Linden, 
Scrams, and Schnipke (1999). Assuming a normal prior for r j  in the model in (4), 

"Cj ~ N ( P O j ,  0-2j), ( 1 1 )  

the posterior distribution of r j  given (til j ,  • . . ,  tin j )  is also normal, with mean 

0-2po j + 0-2j ~ = l [ l n ( t i p j  _ p _ 3ip)] 

E('cj ] tilj . . . . .  tin j )  = 0-2 + n0-2j (12) 

and variance 

0-40- 2 
Var( ' c j  I t i l j  . . . . .  ti, j )  --  0-2 q_ n0-2j " (13) 

For a population of exchangeable examinees, the parameters in (11) can be chosen to be 
equal to the mean and variance of the empirical distribution of r .  From (5), it follows that for 
all j 

#Oj = 0,  ( 1 4 )  

2j 2 (15) 0- z o-r" 

where 

Consequently, (12) and (13) specialize to 

E(-cj I tilj . . . . .  tin j )  = 
°-2 X ~ = l [ l n ( t i , J J  - # - ~i , j ) ]  

0-2 + n0-2 
(16) 

2 2 
o-i: u 

Var ( ' c j  I t i l j  . . . . .  tin j )  --  0-2 q_ n0-2 

Cross-Validation Residuals 

(17) 

and 

All  residuals for item i in this paper are calculated with the values of the examinee pa- 
rameters 0 or r estimated only from the other items in the test. Such residuals are known as 
cross-validated residuals in the literature on regression models for binary data (e.g., Johnson & 
Albert, 1999, chap. 3). The correction prevents a possible bias in their size due the fact that the 
suspicious data are included in the estimation procedure. The same practice is recommended in 
the literature on residuals in linear models, where such the residuals are known as deleted residu- 
als (or studentized deleted residuals if  they are also studentized; see Neter, Wasserman, & Kutner, 
1985, sec. 11.5). The vector of responses for examinee j omitting the response to the k-th item 
in the test is denoted as U(ik) j ,  the vector of response times asT(ik) j . Likewise, the estimators of 
0 and r for examinee j without the k-th item are denoted a s  O(ik) j and ~((ik)j" 

Predicted Distribution o f  Response Times 

Let T/kj denote the predictor of the response time distribution for examinee j on the k-th 
item in the test based on the MLE of r(ik) j . From (8) it follows that 

in Tikj =- # q- 3ik q- ~((ik)j q- 8ikj.  (18) 
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From (9) and (10), for a known value of 0- 2, 

r~(ik)j ~ N ( r j ,  0-2/(n  - 1)), (19) 

whereas, from (3), 8ikj ~ N(O, 0-2). Because 

Cov(~(ik)j, ~ikj) = 0, (20) 

it thus holds for in ~kj that 

in Tikj ~ N ( #  + 3ik + r j ,  n0-2 / (n  - 1)). (21) 

A Bayesian prediction of the response time distribution for examinee j on the k-th item 
is provided by the posterior predictive density of in T/kj given t(ik) j .  For the model in (4), with 
the normal prior for r j  with the parameters in (14) and (15), the posterior predictive density is 
normal with mean 

~,np=l ,p# k (ln lipj - # - 3ip) (22) 
E(ln T/kj I t(ik)j) = # + 3ik + 0-2/0-2 + n -- 1 

and variance 

0-2 + n0-2 

Var(ln ~kj ] t(ik)j) = 1 + (n - 1)0-2/0- 2. (23) 

Class ical  and  Bayes ian  Checks  on  R e s p o n s e  Times  

The cross-validated residual of the response time of examinee j on item k in the test is the 
difference between the predicted and the actual response time. On the logarithmic scale in (2), 
the residual is defined as 

Eikj =-- in T/kj (24) 
tikj 

A classical check on the realization Eikj = eikj can be based on the predicted distribution 
of in ~kj in (21). For this choice the residual is distributed as 

Eikj  ~ N ( #  + 3ik + "cj - ln t i k j ,  n0 -2 / (n  - 1)). (25) 

Thus, an approximate Gaussian test on eikj is tO compare its actual value with critical values 
under the normal distribution in (25) with the  ~((ik)j substituted for r j .  From (19) it follows 
that  ~((ik)j is unbiased and converges in distribution to r j .  Because its variance decreases in n, 
satisfactory approximation is expected for application with adaptive tests which typically have a 
length of 30 items or more. 

A Bayesian posterior predictive check on eikj is based on the distribution of in T/kj with the 
parameters in (22) and (23) (for a general treatment of posterior predictive checks, see Gelman, 
Carlin, Stern, & Rubin, 1995). The distribution of Eikj given t(ik) j is normal with mean 

E ( E i k j  ] t(ik) j )  = # + 3ik -- ln t ik j  + 
~p=l,pg=k(ln tipj -- # -- 3ip) 

0-2/0-2 q_ n - 1 
(26) 

and variance 

a 2 + n a  2 

Var(Eikj  I t ( ik)j)  = 1 q- (n - 1 ) a 2 / a  2" (27) 
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Unlike (25), the uncertainty due to the fact that rj is estimated from the actual response 
times on the other items is absorbed in the parameters of the posterior predictive distribution of 
Eijk. This distribution gives us exact critical values. In a Bayesian residual check, the value of 
eijk is compared with critical values under the normal distribution with the mean and variance in 
(26) and (27). 

Classical and Bayesian Checks on Responses 

Analogously to (24), the cross-validated residual of the response of examinee j on item k 
in the test is defined as the difference between the predicted response U¢kj and actual response 
blikj : 

Eikj  =~ gikj  - -Uik j .  (28)  

The predicted r e sponse  gikj is a Bernoulli variable with probability of success  ~ikj which 
is a function of the examinee parameter 0 and the parameters of item ik. It follows that residual 
Eik j has probability function 

p(%j) = { 
eikj ~ .1-ei- j  i f  = 0 ~ikj ~,1 -- ~ ik j )  x Uikj 

ygilkTleikJ](1 -- Ygikj) ]eikj] i f  Uikj = 1. 
(29) 

A classical check on a realization eikj would be based on the response model in (1). That is, 
the Bernoulli parameter would be equated to 

7gikj = Pr{Uikj = 1} ~ Pik(Oj),  (30) 

wi th  ~(ik)j substituted for Oj. In the empirical examples below, 0"is chosen to be the EAP esti- 
mator in (7). This estimator is known to be consistent but has a small-sample bias toward the 
location of the prior distribution of 0 .  However, for the typical test length in large-scale adaptive 
testing programs, the approximation is believed to be satisfactory. 

A Bayesian check can be based on the posterior predictive distribution o f  gikj  given U(ik)j, 
which has probability function 

P(Uikj I U(ik)j) = f P(Uikj I O)p(O I U(ik)j) dO, (31) 

where p(uikj I 0) follows from the response model in (1) and posterior density p(O I u(ik)j) is 
defined in (6). The residual based on this prediction is distributed according to (29) with 

Ygikj =~ p(1 I U(ik)j)" (32) 

Observe that this distribution does not involve any point estimate of 0. The uncertainty on 
examinee j ' s  value of 0 is absorbed in the posterior predictive distribution. The probabilities 
calculated from (29) with (32) are thus exact. 

Any residual with probability close to zero is unlikely under the model (and the prior distri- 
bution of 0) and therefore suspicious. 

Applications 

The power of these checks on response times in adaptive testing is investigated for aberrant 
behavior caused by two of the potential problems inherent in adaptive testing that have been 
discussed earlier: 
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1. Preknowledge of some of the items in the pool. If  examinees share their knowledge of the 
items in the pool and an examinee knows some of the items prior to the test, a likely result 
for these items is the combination of unexpectedly correct responses with unexpectedly short 
response times. This result can happen for items at any position in the test 

2. Differential speededness of the test. If  items that require much time happen to be overrepre- 
sented in the tests for some of the examinees, a likely result is the combination of unexpect- 
edly incorrect responses and unexpectedly short response times for the items at the end of the 
test. 

Both cases involve one-sided checks on responses and response times. Because both vari- 
ables are independent if  the models in (1) and (4) fit the items for the population of examinees, 
the probabilit ies of Type I errors of these checks are also independent. 

Method 

Item Pool 

The item pool was a 186-item pool for the CAT version of the Arithmetic Reasoning Test 
in the Armed Services Vocational Apti tude Battery (ASVAB). The test is described in Segall, 
Moreno, and Hetter (1997). The items fitted the response model in (1). To estimate the item and 
structural parameters in the model in (4), the response times for a sample of 38,357 examinees 
were available. The examinees in this sample had estimates of the values for the slowness pa- 
rameter, r ,  with a mean equal to zero (see Equation 5) and a standard deviation equal to .375. 
A study of the goodness of fit of the model to these data yielded a excellent results. Figure 1 
shows a typical Q-Q plots of the observed and expected response times under a normal, lognor- 
mal, gamma, and Weibull distribution for the ASVAB items. For a full report on these and other 
results, see Schnipke and Scrams (1997) and van der Linden, Scrams and Schnipke (1999). 

CATAlgorithm 

Adaptive tests were simulated for examinees with 0 = - 2 . 0 ,  - 1 . 5 , . . . ,  2.0. The response 
times were simulated through random draws from the lognormal distribution in (4) with r = 
- . 6 ,  - . 3 , . . . ,  .6. The series of values for r was chosen in view of the above empirical standard 
deviation of~" for the ASVAB population of examinees. For each combination of values for (0, r )  
the number of simulated examinees was equal to 500. 

Two different i tem-selection criteria were used. For the conditions with the classical checks, 
the items were selected applying the maximum-information criterion at the updated estimate of 
O (van der Linden & Pashley, 2000, sec. 2.4.1). The estimator of O was the EAP estimator in (7) 
with an uninformative prior over [ - 4 ,  4]. For the conditions with the Bayesian check, the items 
were selected according to the Bayesian criterion of minimum expected posterior variance (van 
der Linden & Pashley, 2000, sec. 3.3). In all conditions, the initial estimate of (~ was set equal to 
zero. 

In the classical conditions, r was estimated use the MLE in (18). No estimates of r were 
needed for the Bayesian checks with the parameters in (22) and (23) because these are based on 
the normal posterior predictive density for the response times only. 

A fixed-length stopping rule was applied. To assess the effects of test length, the length was 
set equal to n = 21 and 31. 

Simulating Aberrant Responses and Response Times 

The condition of i tem preknowledge was simulated for every fifth item in the CAT, that is, 
for k = 1, 6, 1 1 , . . . .  It was assumed that when an item was compromised,  the correct response 
was known. Thus, for each compromised item, the response was selected to be correct with 
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FIGURE 1. 
Typical Q-Q plots of the observed and expected response times under (a) normal, (b) lognormal, (c) gamma, and (d) 
Weibull distribution for the ASVAB items. 

probability 1. The logresponse times for the compromised items were sampled from 

in Tij ~ N(I~ Jr- 3i Jr- rj Jr- L ,  ~r2), (33) 

where L was a shift introduced by the experimenter. Both the effects of L = - . 3 7 5  and - . 7 5 0  

(one and two times the empirical standard deviation of ?" in the sample of ASVAB examinees, 

respectively) were examined. 

The condition of differential speededness was simulated to have impact on the last five 

items in the test. For these examinees, the responses were simulated at 01 = 0 - r whereas their 

response times were drawn from (33). The combined effects of r = 1 and L = - . 3 7 5  as well as 

r = 2 and L = - . 7 5 0  were examined. 

Calculation o f  Checks 

One-s ided  checks with a level  o f  s ignif icance c~ = .05 were  executed.  The posterior pre- 
dictive density in the Bayes ian checks on the responses in (31) was  calculated using numerical  
quadrature with 30 points.  
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Evaluation Measures 

For each check the detection and false-alarm rates were estimated. Estimates of the detec- 
tion rates were calculated as the proportion of simulees with responses (and response times) on 
the item flagged correctly as aberrant. Estimates of the false-alarm rates were calculated as the 
proportion of simulees with responses (and response times) on the item flagged erroneously as 
aberrant. 

Results 

The results for the classical checks on the responses as well as the response times for the two 
cases of aberrances are presented in Figure 2 (n = 21) and 3 (n = 31). The detection rates for 
the checks on the responses associated with the normal case and the two levels of preknowledge 
(Panel a) and speededness (Panel c) did show no power whatsoever. Note that the detection rates 
for the normal case are actually false-alarm rates. Also, the length of the test did not have any 
impact on these results. 

The classical checks on the response times had results according to our expectations, both in 
the case of preknowledge (Panel b) and speededness (Panel d). The normal case showed a false- 
alarm close to .05. The two cases of aberrance had detection rates close to .  15 for responses with 
the lower level of aberrance and .30 for responses with a higher level. The checks thus nicely 
discriminated between the items on which the examinees showed aberrant and normal response 
times. Again, the length of test had hardly any impact on the results, except for a slight increase 
in detection rate at the higher level of speededness. 

The results for the Bayesian checks are in Figure 4 (n = 21) and 5 (n = 31). Though the 
general patterns in the detection rates resembles those in the two previous figures, a few idiosyn- 
crasies, which are all Bayesian by nature, should be noted. First, the checks on the responses had 
some power to detect preknowledge of the first i tem in the test (Panel a). This result is due to the 
impact of the prior for 0 on the predictive distribution for the responses. Because the prior was 
chosen to be uniform over [ - 4 ,  4], its only effect was to bound the estimator of O. Second, the 
detection rates for the aberrant response times almost doubled relative to the classical checks, but 
at the cost of a considerable increase in the false-alarm rate. This phenomenon is also typical of 
Bayesian analysis and due to the use of the informative prior for r in (11). 

The results in all figures were obtained pooling over the values of 0 and r simulated. How- 
ever, analyses were also done for the individual combinations of parameter values. Because these 
analyses revealed no systematic differences between detection rates and the number of combina- 
tions were large, the separate results are not presented. 

Discussion 

The results from these empirical examples generally confirmed our expectations. The only 
exception was that the results for the checks on the responses were more discouraging than an- 
ticipated. In fact, using these checks at the level of individual responses can not be recommended 
at all. 

Other types of aberrance than those studied here are possible. Examples are a warming-up 
effect for the examinee, misunderstanding of the instructions, or fatigue built up toward the end 
of the test. Each of these examples has another type of response pattern. Though not studied, it 
seems not too risky to assume that the results for these cases would have been comparable.  

An important distinction is between types of aberrant examinee behavior that are fraudulent 
or due to a bad design of the test. It seems prudent to consider checks on responses and response 
times only as support to an hypothesis of fraud by an individual examinee and not as decisive 
evidence. On the other hand, evidence of bad test design can be based on larger series of response 
times within a test and larger samples of examinees and is generally much stronger. 
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FIGURE 2. 
Detection rates for  the classical checks on responses and  response times for  the cases of p reknowledge  (Panels a and c) 
and speededness (Panels c and  d) (n = 21). 
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FIGURE 3. 
Detection rates for the classical checks on responses and response times for the cases of preknowledge (Panels a and c) 
and speededness (Panels c and d) (n = 31). 
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FIGURE 4. 
Detection rates for the Bayesian checks on responses and response times for the cases of preknowledge (Panels a and c) 
and speededness (Panels c and d) (n = 21). 
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Detection rates for  the Bayes ian  checks  on responses and response times for  the cases of  p reknowledge  (Panels a and  c) 
and speededness (Panels c and  d) (n = 31). 
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The distinction between these two types of aberrant behavior also provides a guideline for 
the choice between the types of checks on response times studied in this paper. If the goal is to 
detect a flaw in the design of the test, the high detection rates for the Bayesian checks with an in- 
formative prior are welcome. However, if fraudulent behavior among the examinees is surmised, 
control of the false-alarm rate should have a higher priority. In this case, the classical check or 
the Bayesian check with a less informative prior should be preferred. 
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