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It is well established that the superconductivity in the recently discovered superconducting compound
MgB2 resides in the quasi-two-dimensional band (� band) and three-dimensional band (� band). We
demonstrate that, due to such band structure, the anisotropic Ginzburg-Landau theory practically does
not have a region of applicability, because gradient expansion in the c direction breaks down. In the case
of a dirty � band, we derive the simplest equations, which describe properties of such superconductors
near Tc, and explore some consequences of these equations.
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Ginzburg-Landau (GL) theory is the most powerful
and widely used phenomenological theory of supercon-
ductivity (see, e.g., Refs. [1,2]). It describes practically all
known superconductors in the vicinity of transition tem-
perature. GL theory is fully microscopically justified and
all its parameters can be derived from the microscopic
BCS theory [3]. GL theory provides the basis for such
elaborated fields as vortex physics [4] and the theory of
fluctuation phenomena [2].

The recently discovered superconductor MgB2 [5]
gives an example of a superconductor which is not de-
scribed by the anisotropic GL theory. This very un-
usual feature is a consequence of a specific band structure
of this compound. It is reliably established that super-
conductivity in MgB2 resides in two families of bands:
strongly superconducting quasi-two-dimensional �
bands and weakly superconducting three-dimensional �
bands (see, e.g., Ref. [6]). Both bands are characterized by
their intrinsic coherence lengths, and the c axis coherence
length in the � band is much smaller than c axis coher-
ence length in the � band. Typically, the strong band
forces the order parameter in the weak band to change
in the c direction at distances smaller than the intrinsic c
axis coherence length in this band. This means that al-
most in the whole temperature range the effective coher-
ence length in the c direction, �z�T�, is smaller than the
intrinsic coherence length in the � band, ��;z. The cross-
over to the GL region takes place only when �z�T� ex-
ceeds ��;z, which occurs in the very close vicinity of Tc.
In this narrow region the � band strongly increases the c
axis coherence length. Beyond the narrow region, the
variations of the order parameter in the c directions are
not described by the anisotropic GL theory. Important
consequences of GL theory breakdown are the strong
temperature dependence of the Hc2 anisotropy [7–10]
and strong deviations of the Hc2 angular dependence
from the simple ‘‘effective mass’’ law [10,11].

Obviously, the breakdown of the anisotropic GL theory
has numerous consequences and it would be desirable
0031-9007=04=92(10)=107008(4)$22.50 
(i) to trace the reason of this breakdown and (ii) to derive
the simplest model, which replaces the GL model near Tc.
This Letter addresses these issues. For illustration, we use
the simplest microscopic model, multiband generaliza-
tion of the Usadel theory, describing a dirty two-band
superconductor with weak interband scattering [9,12].
However, the main conclusions are very general and do
not depend much on the intraband scattering strength. In
the model we use the GL expansion for the � band and
keep the microscopic description for the � band, i.e., only
‘‘dirtiness’’ of the � band is essential for a particular
form of equation.

We consider a dirty two-band superconductor with
weak interband scattering. Such a superconductor is de-
scribed by Usadel equations for the impurity averaged
normal and anomalous Green’s functions, G
 and F
,
G2

 � jF
j

2 � 1, and the pair potentials �
,

!F
 �
X
j

D
;j

2
�G
D2

jF
 � F
r2
jG
	 � �
G
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where 
 � 1; 2 is the band index, j � x; y; z is the coor-
dinate index, Dj 
 rj � �2�i=�0�Aj, D
;j are diffu-
sion constants, and ! � 2�T�s� 1=2� are Matsubara
frequencies. Bearing in mind the application to MgB2,
in our notations index 1 corresponds to � bands and
index 2 to � bands, D1;j 
 D�;j and D2;j 
 D�;j. All
bands are isotropic in the xy plane and anisotropic in the
xz plane with the anisotropy ratios �
 �

�����������������������
D
;x=D
;z

p
.

Self-consistency conditions can be written as [12]

W1�1 �W12�2 � 2�T
X
!>0

�
F1 �

�1

!

�
��1 ln

1

t
; (2a)

�W21�1 �W2�2 � 2�T
X
!>0

�
F2 �

�2

!

�
��2 ln

1

t
; (2b)

where t 
 T=Tc and the matrix W
� is related to the
matrix of coupling constants �
� as
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; W12 � �12=Det; W21 � �21=Det;
�� 
 ��11��22�=2, Det
�11�22��12�21, W1W2 �
W12W21. The supercurrent components are given by

jj � 4�eT
X
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N
D
;jIm�F�

DjF
	; (3)

where N
 are the partial densities of states.
We start with the derivation of the GL equations

from the Usadel equations in the close vicinity of Tc
following a standard route. In the lowest approximation
G�0�

 � 1 and F�0�


 � �
=!. When �
 are small and
change slowly in space (the exact criterion will be derived
below) one can keep only the leading nonlinear and
gradient corrections
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Substituting this expansion into the self-consistency con-
ditions (2), we obtain coupled GL equations for two gap
parameters [13]

W1�1 �W12�2 �
X
j

�21;jD
2
j�1 � b�3

1 � ��1; (5a)

�W21�1 �W2�2 �
X
j

�22;jD
2
j�2 � b�3

2 � ��2; (5b)

with �2
;j � ��=8T�D
;j, b � 7��3�=�8�2T2� and
� � ln�1=t� � �Tc � T�=Tc.

Near Tc the right-hand sides of Eqs. (5) are small. This
allows us to reduce Eqs. (5) to a single GL equation by
looking for a solution for �2 in the form

�2 �
W21

W2
�1 �  2: (6)

From Eqs. (5) we obtain

�W12 2 �
X
j

�21;jD
2
j�1 � b�3

1 � ��1; (7a)

W2 2 �
X
j

�22;jD
2
j�2 � b�3

2 � ��2: (7b)

The second equation indicates that  2 is a small correc-
tion,  2  �2, and one can use �2 � �W21=W2��1 in the
right-hand side of this equation. Excluding  2 and intro-
ducing the band-averaged order parameter

�2 �
W2�

2
1 �W1�

2
2

W2 �W1
�
W12W2

2 �W21W2
1

W12W2�W2 �W1�
�2

1;

we finally obtain the anisotropic GL equation for �

�
X
j

�2jD
2
j�� b�3 � �� � 0; (8)

with the average coherence lengths

�2j �
W2�

2
1;j �W1�

2
2;j

W2 �W1
:
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For the supercurrent, using relation W21=W12 �
�21=�12 � N1=N2, we derive

jj � 4eNP�2j Im���Dj�	; (9)

with N 
 N1 � N2 and

P 

N1N2�W2 �W1�

2

�N1 � N2��N2W2
2 � N1W2

1 �
:

From Eqs. (8) and (9) we derive the components of the
London penetration depth

"�2
j �

32�2eNP�2j�

c�0b
:

For the parameters of MgB2, W1  W2, �1;z  �2;z,
�1;x � �2;x, the dominating effect of the � band is the
renormalization of the c axis lengths

�2z � �21;z � S12�
2
2;z; (10)

"�2
z �

32�2e�N1

c�0b
��21;z � S12�22;z�; (11)

with S12 
 W1=W2  1. The influence of the � band on
properties not related with the variations of the order
parameter along the c axis are weak and can be treated
perturbatively.

We obtain now the applicability criterion for the GL
expansion. The gradient expansion is justified if
��2
;jr

2
j�
 <�
 for all 
 and i. Because a typical scale

of the spatial variations is the temperature-dependent GL
coherence length �j�T�, this condition simply means

�j�T� > �
;j: (12)

The most restraining inequality is the one for 
 � 2 and
i � z, which gives

�Tc � T�=Tc < �21;z=�
2
2;z � S12: (13)

Because �1;z  �2;z and S12  1, the applicability of the
GL approach is limited to an extremely narrow tempera-
ture range near Tc; i.e., the situation is very different from
conventional superconductors. For parameters of MgB2

this condition implies �Tc � T�=Tc  0:05. On the other
hand, near Tc the fluctuation effects become important.
This means that the mean-field GL theory practically
does not have a region of applicability.

We derive now the simplest theory which replaces the
GL theory in the conventional GL region �Tc�T�=Tc<1.
As the gradient expansion actually breaks down only for
the � band, in the vicinity of Tc we can proceed with the
expansion (4) for the � band, 
 � 1. Substituting this
expansion into the self-consistency conditions, we obtain
Eq. (5a). The � band only weakly renormalizes the non-
linear term and we can use the linear approximation in
this band,
107008-2
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FIG. 1 (color online). Temperature dependence of the c axis
coherence length, �z�T�, computed from Eq. (17) with parame-
ters S12 � 0:034 and �22;z � 300�21;z. The marked GL region
corresponds to condition �z�T� > ��;z 
 �2;z. The inset shows
dependence ��2

z �T� with the dashed line showing the linear GL
asymptotics at T ! Tc.
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!F2 �
X
j

D2;j

2
D2
jF2 � �2: (14)

The � band order parameter can again be represented
by Eq. (6) with  2 being a small correction. Finding
this correction from Eq. (2b) and substituting it into
Eq. (2a) together with the GL expansion for F1, we derive
coupled equations for �1 and reduced � band F function
fs, fs 
 �2�TW2=W21�F2�!s� [14]

��1� S12���1 � b�3
1�X

j

�21;jD
2
j�1 � S12

X1
s�0

�
fs �

�1

s� 1=2

�
� 0; (15a)

�s� 1=2�fs �
2

�2

X
j

�22;jD
2
jfs � �1; (15b)

and the expression for the supercurrent

jj� 4eN1�
2
1;jIm���

1Dj�1	�
8e

�2N1S12�
2
2;j

X1
s�0

Im�f�sDjfs	:

These equations replace the GL equations in the case
of a dirty � band. Note that the same equations are
also valid in the case of a clean � band but with a
different definition of the coherence length �1;j,
�21;j � 7��3�hv21;ji=�4�T�

2.
In the case of weak superconductivity in the � band,

S12  1, and for �1;z  �2;z, one can neglect the in-plane
gradients in Eq. (15b) and obtain an even simpler set of
equations which describe only the dominating strong
effects, related to inhomogeneities of the gap parameter
along the c axis, and neglect small renormalizations of
the coefficients by the weak � band

���1 � b�3
1 �

X
j

�21;jD
2
j�1�

S12
X1
s�0

�
fs �

�1

s� 1=2

�
� 0; (16a)

�s� 1=2�fs �
2

�2 �
2
2;zD

2
zfs � �1; (16b)

jj � 4eN1�
2
1;jIm���

1Dj�1	

� j;z
8e

�2N1S12�
2
2;z

X1
s�0

Im�f�sDzfs	: (16c)

We explore now some consequences of these equations.
To define an effective coherence length, we consider the
response of the order parameter to the weak z-dependent
variation of Tc, �! ��z� � ��  ��z�. In linear approxi-
mation with respect to  ��z� Eqs. (16a) and (16b) can be
solved by Fourier transform yielding �1 � ��0�

1 �  �1�z�

 �1�z� �
Z
G�z� z0� ��z0�dz0;

G�z� �
Z dk

2�
exp�ikz�

2�� �21;zk
2 � S12g��2=�

2��22;zk
2	
;

where g�u� 
  �1=2� u� �  �1=2� and  �u� is the di-
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gamma function. In contrast to the GL model, the decay
of the perturbation  �1�z� is not exponential. Using the
last equation, one can introduce the effective coherence
length �z, which determines the scale of spatial variations
of the order parameter in the z direction,

�21;z=�
2
z � S12g��2=�2��22;z=�

2
z	 � �: (17)

The dependence �z�T� computed from this equation using
parameters S12 � 0:034 [12] and �22;z � 300�21;z is shown
in Fig. 1.

Consider the relation between the supercurrent jz and
supermomentum pz � rz-� �2�=�0�Az, which deter-
mines the c axis London length and depairing current.
From Eqs. (16a) and (16b) we obtain

jz�pz� � 4eN1�
2
1�pz�pz

�

(
�21;z �

X1
s�0

�2=�2�S12�22;z
�s� 1=2� �2=�2���2;zpz�

2	2

)
;

�2
1�pz� � f�� �21;zp

2
z � S12g��2=�

2��22;zp
2
z	g=b: (18)

In the linear regime jz � �4e�N1=b���21;z � S12�22;z�pz.
This means that in the whole range �Tc � T�=Tc  1
the z component of the London length is given by the
GL formula (11). In conventional superconductors the
dependence jz�pz� is nonmonotonic and its maximum
gives the well-known GL result for depairing current,
jdp � c�0=�12

���
3

p
�2"2�� / �3=2 for �! 0 [2]. In our

case the situation is different. The amplitude of the order
parameter is suppressed at pz � 1=�z�T�. However, in the
region �z�T�  �2;z the dependence jz�pz� becomes non-
linear at much smaller pz, pz � 1=�2;z. The shape of this
dependence is determined by the parameter Sr �
S12�

2
2;z=�

2
1;z. The dependencies jz�pz� for Sr � 6 and dif-

ferent temperatures are plotted in the left panel in Fig. 2.
For large values of Sr the dependence jz�pz� has two max-
ima within some temperature range, where first (second)
107008-3



100 200 3005 10

500

1000

1500

2000

0
0

0

Sr = 6

2 2
2,z 1,z/τξ ξ

kink σ-peak

π-peakGL

ξ2,zpz

100
150

200

250

300

50

σ-peak

π-peak
jdp(τ)

FIG. 2 (color online). Left panel: Dependencies jz�pz� at
different temperatures for Sr � 6. The curves are marked by
the reduced temperatures ��22;z=�

2
1;z � 50; . . . ; 300. In the unit

of the vertical axis jdp1 � 4eN1�1;z=b is the depairing current
scale for the � band. Right panel: The temperature dependence
of the depairing current for the same value of Sr. The dashed
curve shows GL dependence.
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maximum corresponds to the suppression of supercurrent
in the � (�) band. At low temperatures the depairing
current jdp is given by the second maximum and is
determined mainly by the � band. At a certain tempera-
ture near Tc global maximum switches to the first maxi-
mum (see Fig. 2). The temperature dependence of jdp has
a kink at this temperature (see the right panel in Fig. 2).
For Sr > 6 the local maximum of jz�pz� at pz � 1=�2;z
exists even in the limit �z�T�  �2;z.

As another example, we compute from Eqs. (16) the in-
plane upper critical field near Tc, Hc2;a�T�. Experiment
[7] shows strong upward curvature ofHc2;a�T�, leading to
the temperature-dependent anisotropy factor. Micro-
scopic calculations reproduce this feature, in both clean
[8] and dirty [10] cases, but require rather heavy numeri-
cal computations. Our model allows one to trace the ori-
gin of the upward curvature in a simple way. Selecting the
gauge Az � Hx and introducing reduced variables h �

H=H�1�
c2 withH�1�

c2 
 �0=�2��1;x�1;z�, x!
���
h

p
x=�1;x, rz �

D2;z=D1;z, we write the linear equation for determination
of the upper critical field, h � Hc2=H

�1�
c2 , as

�
S12
h

X1
s�0

�
�1

s� 1=2
� fs

�
�r2

x�1 � x2�1 �
�
h
�1; (19a)

�s� 1=2�fs �
2

�2 rzhx
2fs � �1: (19b)

Excluding fs, we obtain the Schrödinger equation for �1

with nonparabolic potential

�r2
x�1 �

�
x2 �

S12
h
g
	
2rzhx

2

�2


�
�1 �

�
h
�1: (20)

Only in the limit h
��������������������
1� S12rz

p
=rz  1 this equation

reduces to the usual oscillator equation. In this limit,
using expansion g�u� � ��2=2�u, we reproduce the GL
result, hc2 � �=

��������������������
1� S12rz

p
. The inequality hc2 ��������������������

1� S12rz
p

=rz reproduces criterion (13) for the validity
of the GL theory. In the opposite limit,

��������������������
1� S12rz

p
=rz 
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h 1, one can use the asymptotics g�u� � ln�4u� � �E
for u� 1, with �E � 0:577 being the Euler constant, and
obtain

�r2
x�1 �

	
x2 �

S12
h

ln�x2�


�1 � 
�h��1;

� �
�h�h� S12

�
ln

	
8hrz
�2



��E

�
:

This gives the following equation for the upper criti-
cal field:

hc2 � S12 ln�Chc2rz	 � �;

with C� 1 {C � �8=�2� exp�hln�x2�i � �E	 � 2=�2 for
h� S12g. In this limit the � band gives only small
logarithmic correction to the upper critical field. As we
can see, the upper critical field has a strong upward
curvature in a narrow region near Tc: the slope dhc2=d�
changes from 1=

��������������������
1� S12rz

p
to 1 near � � S12 � 1=rz, in

agreement with microscopic calculations and experiment.
In conclusion, we demonstrated that the properties of

magnesium diboride are not described by the anisotropic
GL theory. We derived a simple model, which replaces
this theory in the vicinity of Tc, and explored some
consequences of this model.
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