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Using mesoscale dissipative particle dynamics (DPD) simulations, which ignore all
atomistic details, we show the formation of lamella mesophases by cooling a fully dis-
ordered system composed of symmetric (A7B7) rod–coil diblock copolymers. Equili-
bration is achieved very rapidly using DPD, and isotropic, smectic A and crystalline
phases of the rod-like blocks can be observed either by heating or cooling. An inter-
esting pseudo-smectic phase can be characterized when the order–disorder transition
temperature is above the clearing temperature. This phase gradually fades into a
normal microphase-separated structure as the system is heated through the clearing
temperature. Simulations of pure rods, however, show the formation of isotropic,
nematic, smectic A and crystalline phases.

Keywords: rod–coil copolymer; liquid crystal; mesoscale simulation;
dissipative particle dynamics

1. Introduction

Microphase ordering in block copolymers and mesophase formation in thermotropic
liquid crystals are two examples of phenomena that manifest themselves primarily
on mesoscopic length- and time-scales. Both processes occur in a large class of liquid-
crystal molecules and polymers of practical interest where flexible tails are attached
to one or more rigid blocks (Kelker & Hatz 1980). There have been several recent
experimental (Chen et al. 1996; Jenekhe & Chen 1998, 1999; Lee et al. 2001) and
theoretical (Duchs & Sullivan 2000; Matsen & Barrett 1998; Reenders & ten Brinke
2002; Semenov 1991; Semenov & Vasilenko 1986) studies aimed at understanding the
interplay between microphase ordering and mesophase transitions.

Fifty years ago, Onsager (1949) showed that long rod-like particles, interacting
only through excluded-volume interactions, form a nematic phase upon increasing
the density. Since then, many computer simulations of liquid-crystal behaviour have
been performed using hard-core models, such as spherocylinders and the Gay–Berne
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potential. These simple models already display many of the interesting and compli-
cated properties of liquid crystals. More recently, simulations have been extended
to rod–coil systems (Affouard et al. 1996; McBride et al. 2001; Nicklas et al. 1994;
van Duijneveldt et al. 2000), again using hard-core potentials. Of particular interest
are studies of the effect of the coil–block structure on the stabilization of certain
liquid-crystalline phases. Affouard et al. (1996), for example, carried out molecu-
lar dynamics simulations for a system composed of multi-bead semi-flexible chains
where the beads are connected by anharmonic springs and the chains interact by the
Lennard-Jones potential. They only observed solid, smectic A and isotropic liquid
phases, while the nematic phase was not observed. van Duijneveldt et al. (2000) stud-
ied a model of hard spherocylinders with a length-to-width ratio of 5, attached to
a flexible tail of 5 units. In their NPT (constant pressure) Monte Carlo simulation,
they observed smectic A and crystal phases, in addition to the isotropic phase. Again,
their model does not appear to have a stable nematic phase. Similar observations of
the stabilization of the smectic phase and the suppression of the nematic phase due
to the attachment of a flexible tail were reported by McBride et al. (2001).

In this work, we study phase ordering of rods in lamellae formed by the microphase
separation of symmetric A7B7 rod–coil diblock copolymers. For this, we performed
mesoscale simulations of rod–coil block copolymers using dissipative particle dynam-
ics (DPD); this is a particle-based simulation technique in which particles interact
via soft potentials and is well suited to the study of mesoscale phenomena. It was
recently used by Groot & Madden (1998) to study mesophase formation of coil–
coil diblock copolymers in the NV T ensemble. They found that lamellar, perforated
lamellar, hexagonal and micellar phases were produced, depending on the length
ratio of both blocks. Their DPD gave a near-quantitative match with the theory
(Bates & Fredrickson 1990) for the locations of phase transitions.

Although we have studied the rod–coil copolymer for different values of rod-to-coil
ratios, this article will focus on the competition between microphase ordering and
liquid-crystalline transitions in symmetric (rod-to-coil volume fraction f = 0.5) rod–
coil diblock copolymers. More specifically, we would like to know how phase ordering
is affected by attaching a tail to a rigid rod. This study is different from some of
the previous theoretical models (Matsen & Barrett 1998; Semenov 1991; Semenov &
Vasilenko 1986) in the fact that the high-temperature phase is the isotropic phase and
not the nematic. Liquid-crystalline ordering occurs only after microphase separation,
which enables us to study the nature of the transitions in such systems. In addition,
we have made detailed comparisons with the related pure-rod system.

The organization of this paper is as follows: in the next section the DPD simulation
method and the models studies will be described. The results of our simulation for
the rod–coil copolymer, A7B7, and the pure rod, A7, models will be presented in § 3.
Finally, a conclusion is given in § 4.

2. Simulation method

The underlying idea behind DPD is that every particle represents a collection of
atoms, just like the beads in a bead–spring model of a polymer. Because of this
coarse-grained nature, the total force on particle i is a sum of three pairwise additive
forces:

fi =
∑
j �=i

fC
ij +

∑
j �=i

fD
ij +

∑
j �=i

fR
ij , (2.1)
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where the sums run over all neighbouring particles j within a cut-off distance rc.
The first force is a conservative force,

fC
ij = aijωC(rij)r̂ij , (2.2)

where aij sets the strength, ωC(rij) gives the shape of the potential, and rij r̂ij =
ri − rj , with the hat denoting a unit vector. Traditionally, DPD particles interact
via a soft repulsive potential of the form

ωC(rij) = 1 − |rij |/rc. (2.3)

Since a DPD particle represents a collection of many atoms, averaging over the
internal degrees of freedom gives rise to a dissipative (or friction) force

fD
ij = −γωD(rij)(r̂ij · vij)r̂ij , (2.4)

and a random (or stochastic) force

fR
ij = σωR(rij)θij(t)r̂ij . (2.5)

Here, γ is the friction coefficient, σ controls the magnitude of the random force and
ωD and ωR give the distance dependence of these two contributions. The random
number θij(t) has zero average, unit variance, differs for each particle pair, and varies
in time without memory, i.e. 〈θij(t)θkl(t′)〉 = (δikδjl + δilδjk)δ(t − t′). In numerical
simulations it is common practice to assume that the random force is constant over
the entire time-step δt, in which case the friction force takes the form

fR
ij = σωR(rij)ζij(t)δt−1/2r̂ij . (2.6)

The new random variable ζij(t) has zero mean, unit variance and is uncorrelated
for each particle pair and each time-step. The balance between the random and the
friction forces (which act, respectively, as heat source and heat sink) is provided by
the condition that

σ2ω2
R(r) = 2γωD(r)kBT, (2.7)

where kB is the Boltzmann constant. We follow the usual choice of ωD = ω2
R =

(1 − r/rc)2. From this equation it is evident that the friction and random forces
together act as a thermostat to the system.

Note that all forces, conservative as well as friction and random forces, are of
the form fij = −fji needed for proper hydrodynamics. For an overview of the
DPD method, concentrating on its applications to polymers, we refer the reader to
den Otter & Clarke (2004). It should be noted that these simulations of polymers,
as well as the simulations discussed here, differ from the original DPD method in
the interpretation of the particles. Rather than regarding a particle as a collection of
solvent molecules, a particle is considered as a section of a larger molecule. The former
approach can be applied to the current ordering phenomena only if the particles are
equipped with extra coordinates describing their state of internal ordering, with the
coupling between these coordinates and the overall flow field incorporated in their
equations of motion. Fine-grained models, like the one considered here, might help
establish such a model.

The dynamics of the DPD particles are followed by solving Newton’s equation of
motion, with the above forces, by means of the Verlet leapfrog algorithm (den Otter
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& Clarke 2001). In the simulation we choose the mass of the particles m = 1 as the
unit of mass and the cut-off radius rc = 1 as the unit of distance. The conservative
force constant, the temperature (henceforth we will use ‘temperature’ to refer to kBT )
and other energy-dependent quantities are expressed in units of energy. In particular,
the unit of time is given by t = r

1/2
c mT−1/2. We selected a time-step of δt = 0.04.

At this value of the time-step, the inaccuracies in the integration of the friction and
random forces lead to a kinetic temperature, Tkin = 3m〈v2

i 〉, only moderately higher
than the desired temperature (den Otter & Clarke 2001; Groot & Warren 1997).

In our simulations, the rods are modelled as seven fused spheres, each interacting
according to equations (2.2) and (2.3). The distance between consecutive spheres is
fixed at 2

3rc. From the location of the first peak in the radial distribution function
at about 0.65rc (in both ordered and disordered pure-rod systems), we deduce that
the actual length-to-width ratio of our rods is about 4. During the simulation, a
constraining routine is used to keep the spheres aligned and equidistant (Ciccotti et
al. 1982). In short, the forces on the seven particles of a rod are converted into a net
force on the two end particles, and the equations of motion for these two particles
are solved, using the standard shake routine to keep them at a fixed distance. The
positions of the five intermediate particles are then readily calculated by a linear
interpolation at the end of each time-step. The flexible coil is modelled as a chain
of seven particles. Adjacent spheres are connected by harmonic springs, fS

ij = Crij ,
with the spring constant C = 2 chosen such that the average bond length roughly
coincides with the first peak in the radial distribution function of a monomer liquid
(Groot & Warren 1997). This same criterion was also used to establish the distance
between the particles in the rod.

Groot & Warren (1997) have shown the existence of a relationship between the
repulsion parameter and the density in a polymeric system. In order to match the
compressibility of water, for instance,

aiiρ = 75T, (2.8)

where aii is the force constant between like particles. Since this study is done at a
density of ρ ≈ 4 to ensure a high number of neighbour interactions, the repulsion
parameter was set at the usual value of aii = 20 (Groot & Warren 1997). The
same authors also provided approximate relationships between the Flory–Huggins
parameter χ and the repulsion parameter aij between unlike particles. For ρ = 4, we
interpolated the equations provided for ρ = 3 and 5 to get

∆a = aij − aii ≈ 2.05χT. (2.9)

This result serves as a crude indication for the link between simulation results and
experimental data.

Our simulations were carried out at constant pressure and temperature (NPT
ensemble) using the Berendsen barostat (Allen & Tildesley 1987) and the DPD
thermostat. To obtain any desired temperature, we opted to keep the friction constant
at γ = 2.66, while varying σ. A constant-pressure routine allowed all box dimensions
to change independently, minimizing the effect of the box’s size and shape on the
final equilibrium structure. The diagonal elements of the pressure were fixed to 30,
while setting the non-diagonal elements to zero. The initial box had dimensions
22×22×22, with periodic boundary conditions applied in all directions. For the rod–
coil copolymer system, we simulated 3000 copolymers each with 14 DPD particles
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(a) (b) (c)

Figure 1. Snapshots of a rod–coil block A7B7 copolymer system equilibrated at (a) T = 0.3,
(b) T = 0.7 and (c) T = 0.9. For clarity, only one in ten copolymers is shown.

(7 in the coil and 7 in the rod) giving a sample size of 42 000 particles. Simulations
of a pure-rods system were carried out under identical conditions, with a total of
6000 rods (again, 42 000 particles). Although pressure scaling already reduces the
effects of the periodic box dimensions on the structures formed, additional runs with
larger systems are needed to ascertain and minimize these effects. Few runs with a
larger simulation box will be carried out in the future.

3. Results and discussion

We started the simulations by placing the diblocks at random in a cubic box, followed
by an equilibration at a high temperature with the coil–coil, coil–rod and rod–rod
repulsion parameters set to the same value, aCC = aRR = aRC = 20.

This resulted in a highly disordered, mixed system, which was then quenched
to a temperature of T = 0.7, simultaneously increasing the rod–coil repulsion to
aRC = 25.

Microphase separation set in immediately. At the early stages, the rods formed
blobs, which rapidly evolved into elongated stripes. The rods in these stripes were
ordered. The stripes then coalesced to form the final lamellar structure depicted in
figure 1b. Clearly visible is the interdigitation of the rods, as opposed to the formation
of bilayer lamellae. The entire process took less than 300 000 time-steps. Notice
that symmetric coil–coil block copolymers also form lamellae under the prevailing
condition of χN > 10.5 (Bates & Fredrickson 1990).

The above-described system was further cooled and heated in the temperature
range of 0.1 < T < 4.0, to see what other structures would arise. At the low tem-
perature of T = 0.3, a highly ordered system is obtained, as displayed in figure 1a.
The rods form smooth planes, and they are very well aligned, as in a smectic A
phase. Mean square displacements and the radial distribution function reveal that
the rods are in a two-dimensional liquid-like state. Lowering the temperature even
further resulted in a crystal phase. The smectic C phase predicted (Matsen & Barrett
1998) for high values of χN (remember that lowering the temperature at constant
∆a increases χ) has not been observed. At the higher temperature of T = 0.9 (see
figure 1c), the rods and coils are still microphase separated, but the orientational
ordering of the rods has largely been lost. Similar smectic to isotropic transitions,
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Figure 2. The orientational order parameter S2 as a function of temperature for an A7B7 rod–coil
and an A7 pure-rod system. The dotted lines indicate phase transitions of the pure-rod system.

omitting the nematic, have been reported by a number of authors (Affouard et al.
1996; Duchs & Sullivan 2000; van Duijneveldt et al. 2000). We will discuss these
structures in more detail below.

A quantitative way of looking at these phases is to calculate the matrix

Q = 1
2(3〈ûiûi〉 − 1), (3.1)

where ûi is the unit vector parallel to the ith rod. The order parameter S2 is the
largest (positive) eigenvalue of this matrix; the corresponding eigenvector n̂ is called
the director, as it points in the average direction of the rods. Order is measured here
as the width of the distribution of ûi around n̂, and runs from zero (isotropic) to one
(parallel rods). A plot of S2 for the rod–coil copolymer as a function of temperature
is shown in figure 2. At low temperatures the order is nearly one. As temperature
increases, a gradual decrease is observed. Beyond T ≈ 0.8 a rapid decay sets in,
reaching 0.2 at T ≈ 1.0. A jump in S2, characteristic of a phase transition, is not
observed. To rule out the possibility of hysteresis, we have heated and cooled the
system through this temperature range, obtaining exactly the same curve in both
instances. At higher temperatures the order parameter very slowly decays to zero.

These results are in sharp contrast to those of a pure system of rods. The latter
also shows a gradual decrease of S2 with increasing temperature, but there are also
a number of marked jumps: at T = 0.28 a crystal to smectic A, at 0.42 a smectic
to nematic, and at 0.89 a nematic to isotropic. Note that these liquid-crystalline
phases were not observed with rods of less than seven particles, because of their low
length-to-width ratio.

Up to T ≈ 0.4, the S2 of the pure-rod and rod–coil systems are in quantitative
agreement. But whereas the smectic gives way to a nematic in the pure-rod system,
the rods in the microphase-separated rod–coil system remain restrained to layers.
The propensity of rods to align at these temperatures then forces the system to form
a pseudo-smectic phase, with a higher S2 than the pure-rod system. This pseudo-
smectic phase gradually collapses in a temperature range surrounding the clearing
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Figure 3. The structural order parameter Q1 (see the text for
its relation to the structure factors) versus temperature.

temperature of the pure-rod system. But because the system is still microphase
separated, with the rod layers having a finite width, a small alignment order remains.
Of course, the distribution of the angles αi = arccos(ûi ·n̂) between rods and director
flattens as the temperature rises.

The microphase separation process was further investigated by calculating the
structure factors

SR(k) =
1

NR

〈{[ NR∑
i=1

sin(k · ri)
]2

+
[ NR∑

i=1

cos(k · ri)
]2}〉

, (3.2)

where the sums run over all NR rod particles. To condense the information contained
herein, we have calculated the three eigenvalues of the matrix of second moments of
SR(k), and sorted them by value, λ1 � λ2 � λ3. Symmetry breakdown accompanying
the order–disorder transition temperature (ODT) can then be characterized by two
invariants (Banaszak & Clarke 1999): Q1 = (λ2 +λ3)/λ1 −2 and Q2 = (λ3 −λ2)/λ1.
The latter remained close to zero at all temperatures, as expected for isotropic and
lamellar structures. On the other hand, Q1 varied with temperature, as can be seen
in figure 3. At high temperatures its value is zero and the system is completely
isotropic. Only below T ≈ 2.3 is ordering (lamellar) observed.

These order parameters help us understand the phase diagram of rod–coil diblock
copolymers. At temperatures between the ODT and the clearing point (the liquid-
crystalline ordering temperature), the rods are collected into layers because of
microphase separation, but entropy is not yet sufficiently strong to align the rods.
Near the clearing point the rods align within the existing layers; the nematic phase is
therefore suppressed and a pseudo-smectic phase is formed. This is a smooth transi-
tion, as evidenced by the gradual increase in the orientational order parameter with
decreasing temperature. Microphase separation even enhances the ordering process
with respect to the pure-rod system.
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Figure 4. Temperature dependence of the number density, for the rod–coil and the
pure-rod system. The dotted lines indicate phase transitions of the pure-rod system.

A curious aspect we have noticed is the variation of number density ρ with temper-
ature, as displayed in figure 4 for the rod–coil system and for a pure-rod system. For
the copolymer, the density is almost constant over a wide range of temperatures. At
T ≈ 0.2 the density drops, heralding the onset of crystallization. This onset is more
obvious for the pure-rod system, whose density makes a jump at every phase transi-
tion. The peculiarity here is that the density increases with increasing temperature,
a property it shares with water between 0 and 4 ◦C. We attribute this effect to the
softness of the potential, which has been reported before to give rise to anomalous
expansion (Jagla 1999; Stillinger & Weber 1978).

4. Conclusion

We have presented for the first time results for mesoscale simulations of the liquid-
crystalline behaviour of both pure-rod fluids and rod–coil copolymers using the dis-
sipative particle dynamics. In addition to its rapid equilibration, DPD with its ultra-
soft potential has proven to be a valuable tool for exploring ordering phenomena in
complex fluid systems.

For a symmetric rod–coil fluid the effective value of χ was chosen such that
the microphase ODT occurred at a temperature well above the mesophase liquid-
crystalline (LC) transitions. The significant differences between the LC ordering
behaviour of the rod–coil and pure-rod fluids can be rationalized in terms of the
imposed lamella structure below the ODT. The nature of the interplay between
microphase separation and LC ordering is likely to change significantly for smaller
values of χ or for different relative compositions of the rod and coil components of
the copolymer. Further simulations, varying among others the repulsion parameters
and the rod-to-coil fraction, are currently being pursued.
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