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Abstract: Changes in requirements may have a severe impact on development processes. For
example, if requirements change during the course of a software development activity, it may be
necessary to reschedule development activities so that the new requirements can be addressed in a
timely manner. Unfortunately, current software development methods do not provide explicit
means to adapt development processes with respect to changes in requirements. The paper proposes
a method based on Markov decision theory, which determines the estimated optimal development
schedule with respect to probabilistic product demands and resource constraints. This method is
supported by a tool and applied to an industrial case.

1 Introduction

In general, requirements hardly remain constant during the
lifetime of a software system. Software systems should,
therefore, cope with changes in requirements in a cost
effective manner. Unfortunately, several case studies have
shown that more than 80% of the total cost of software
systems is devoted to software maintenance [1]. Adapting
software to changing requirements covers a major part of
these costs. Changes in requirements not only have an
impact on software systems, but also may cause reschedul-
ing of software development processes. For example, if
requirements change during the course of a software
development activity, it may be necessary to reschedule
development activities so that the new requirements can be
addressed in a timely manner.

To reduce the maintenance costs often the potential
changes in requirements are anticipated as much as possible.
Various languages and systems provide techniques to cope
with changes within a given context. Each technique
assumes that certain aspects of software should be
evolvable, while other aspects should be fixed. For example,
separation of interface and implementation techniques, such
as the model-view-controller pattern [2], assumes that
implementation should be evolvable but not the interface.
Meta programming techniques assume that base-level
should be evolvable but not the meta interface [3]. Of
course, to support a larger degree of evolution, multiple
techniques can be combined with each other. For example,

separation of interface and implementation techniques can
be combined with meta programming to make interfaces
more adaptable, meta programming languages can be made
adaptable by introducing meta meta languages, etc.

Changes in requirements not only have an impact on
software systems, but also may cause rescheduling of
software development processes. For example, it may be
necessary to redistribute human resources so that software
systems can be delivered in time. This paper proposes an
approach for optimum distribution of human resources
when facing nondeterministic changes in requirements. The
approach is based on the Markov decision model, which
constructs probabilistic state-transition diagrams that rep-
resent market change scenarios. By estimating changes in
market demands, available human resources can be
distributed optimally at certain points in time.

2 Unanticipated software evolution

Software evolution usually implies the adaptation of the
software system due to certain changes. These changes
could include both changes that were expected and those
that were not. Software evolution can be supported by
planning the expected changes as much as possible.
Unfortunately, not all changes can be planned for and
remain unanticipated. Nevertheless, unanticipated changes
form an important role in software evolution. To support
better software evolution it is therefore required that we also
provide techniques to cope with the unanticipated changes.

The required modifications that were unanticipated might
be caused by different factors such as insufficient infor-
mation, lack of diligence, lack of required skill, or simply
because it was humanly impossible to predict due to the
complex and dynamic nature of the problem being solved.
By definition, unanticipated software evolution (USE) is not
something for which we can prepare during the design of a
software system [1]. The adaptations might require
implementing the changed requirements in the application
or sometimes it could even include adaptation to the
changing environment so that the application keeps
satisfying the earlier requirements. Although the extent of
software evolution can be very broad, in this paper we
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primarily focus on software evolution due to unanticipated
changes in the requirements.

We categorise unanticipated requirements as follows.

2.1 Uncertainty in time of change

In this category, the actual change to the requirements is
known at the moment of system design. However, changes
in requirements can occur at a different moment in time than
was expected (all be it earlier or later). For example, major
legislative adaptations on insurance laws may have passed
the parliament but the actual enactment of this change in the
law can still be unclear. These changes will possibly have a
considerable impact on the software systems that the
insurance companies use.

2.2 Uncertainty in content of change

This kind of unanticipation means that the actual occurrence
of a certain change in requirements is not known, even
though the change itself is known. For example, a new
insurance law may have been proposed in the parliament
without any clarity on whether this law will come to pass or
not. In this case, a possible impact of this change on the
related software systems is known but it is not clear whether
this change will be finally implemented.

2.3 Uncertainty both in time and content of
change

In this category, there is no clarity on what will happen.
Every change is possible at any given time.

The above classification implies that unanticipation is
related both to the content as well as the occurrence of the
change to the requirements. As such even if requirements are
known in advance the time of occurrence for the requirement
change can be fully unanticipated. Including both types of
unanticipation will support the software evolution activities.
It should be noted that a practical evolution case might be
classified under several of these evolution categories.

A number of different approaches have already been
proposed that address specific issues related to unanticipated
software evolution. These approaches range from extensions
of programming languages [4, 5] to adaptable architectures
[6] and calculi for describing and reasoning about language
properties [7]. The main focus of these approaches is on
solving technical issues related to changes that could occur at
model, artefact and=or code level. As such, most of these
approaches provide solutions to unanticipated software
evolution in case of uncertainty in content of changes. To
cope with uncertainty in time of changes to requirements we
think that unanticipated software evolution must also be
considered at the process level. This is because changes in
requirements can invalidate process configurations, person
hour distributions, etc. As a complementary approach to the
existing software evolution techniques we will provide an
approach that is specifically targeted at uncertainty in
time of occurrence of the requirements.

3 Problem statement

In the following sub-section, first we will present an
industrial example case. Second, by using this example, we
will explain some problems that are caused by unanticipated
changes. These problems will be addressed in Section 4.

3.1 Example: application framework for
insurance systems

Consider a software company that produces and maintains
software systems to be used by insurance companies. It is

assumed that the software company delivers a dedicated
software system for each insurance product. In addition, the
software company aims to market the same software system
to multiple insurance companies worldwide. Insurance
companies can tailor these systems according to their
specific policies.

Generally, insurance companies have a large customer
base, with a variety of insurance products and policies. Of
course, the insurance product characteristics are not static
but they evolve in accordance with the needs of society. For
example, a growing trend in the insurance market is the
demand for tailored and personalised insurances.

For the software company, to a certain degree it is
possible to deal with the complexity of this evolution by
adopting application frameworks, object-oriented and
component-oriented techniques. Application frameworks
are programs that capture the generic parts of several
software systems and encapsulate them in reusable
components. Actual software systems can be produced by
composition of several of these components [Note 1]. The
components are identified by discovering the variabilities
and commonalities in the problem domain. For example,
Fig. 1 shows a feature diagram of insurance products
[Note 2]. A feature diagram represents both the common-
ality and variability of a product [8]. In this paper, to avoid
confusion, products that are sold by software and insurance
companies are referred to as insurance software systems and
products, respectively.

In Fig. 1, four different parts of insurance products are
shown: insured object, coverage, payment and payee. Each
of these parts can be represented by several entities. For
example, an insured object can be a person or a corporation.
The symbols that are depicted in the legend are used as
restrictions on the variability. For instance, an insured object
cannot be a corporation and a person at the same time. Using
this specification, a large variety of insurance products can
be defined, ranging from bicycle insurances to tailored
insurances for large corporations. In addition, new insurance
products may be introduced in the future, possibly using
advanced personal computing facilities and the Internet.

3.2 Resource-scheduling problems due to
unanticipated changes

Although framework based approaches provide means to
deal with problems that may occur when variability,
process-scheduling problems may still exist in the case of
unanticipated changes. In the following, we present two
problems when dealing with evolution of the insurance
software systems demands.

3.2.1 Difficulty in prioritising require-
ments: Assume that a large set of components have to
be implemented in a time span of 2 to 4 years. These
components will be used to create several different
insurance software systems whenever they are demanded.
The components and systems share dependency relations
among each other. Therefore, it is crucial to deliver the
essential components first, before the insurance companies
demand systems that incorporate these components. This

Note 1: Application frameworks differ from product–line architectures in
that frameworks are defined at programming language level whereas
product–line architectures are specified more abstractly. Application
frameworks can be implemented as reusable class hierarchies or as
pluggable components.

Note 2: This project has been carried out together with Utopics B.V.
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requires giving higher priorities to the components that are
demanded first.

A number of software development methods suggest
prioritisation of requirements [9]. However, these methods
do not provide explicit means for determining the priority
values with respect to the changes in demands.

Several publications and tools are proposed for support-
ing decision-making processes. Most of the approaches are
based on the analytic hierarchy process (AHP) method
[10–12]. In the AHP method, a pairwise comparison is
made between two entities that should be ranked with
respect to each other. Subsequently the pairwise ordering is
normalised. The AHP method is applied to various kinds of
problems such as resource allocation, risk assessment, etc.
However, the proposed approaches assume a fixed set of
requirements and therefore they are not directly suitable for
dealing with unanticipated software evolution.

3.2.2 Configuring software development pro-
cesses for delivering products in time: After
prioritising the components, the project managers should be
able to configure the implementation trajectory accordingly.
Since there may be many options for the implementation
effort, ideally the project managers should be able to compare
all the relevant options and select the best configuration that
fulfils the timing and resource constraints. For the example
case, this means that the expected optimal planning of
resources for a given time span should be determined to
maximise profit in selling insurance software systems.

Configuring software processes with respect to available
resources is not new [13]. However, in contrast to existing
methods, also the demands for future systems and changes
in requirements must be considered.

4 The approach

4.1 Possible approaches

The following sub-section gives a short description of a
number of alternatives for decision making optimisations.

4.1.1 Real options: In [14] the approach of real
options is described as a means of supporting decision
making in software design. In real options theory each
decision that can be made is considered an option and has its
own added value. With this added value the actual gain of
choosing this option is signified. In addition to the options
that are identified also scenarios are identified and their
change of occurrence. From these scenarios follows an
event tree with which it is possible to determine the

expected added value for choosing one of the available
options. The underlying mathematical theory for the real
options approach is based on dynamic programming, also
known as Markov decision theory.

4.1.2 Quality function deployment: Quality
function deployment [15] is a well known tool for analysis
of the importance of decisions in software design. One of
the particular uses for this approach can, for instance, be
found in resolving conflicting requirements. In quality
function deployment a distinction is made between the
requirements from the customer side (called the voice of the
customer) and the parameters of design (called the voice of
the engineer). The relationship between these two voices is
described in the relationship matrix. QFD can balance and
prioritise the customer needs and design parameters based
on the relationship matrix.

4.1.3 Markov decision theory: Markov decision
theory is a mathematical theory for determination of optimal
decisions at a given point in time. This is done by
determination of the decisions that can be made and the
definition of scenarios that can occur. For each of the
scenarios the probability of occurrence is also described.
These two inputs are then combined into a tree structure,
which is commonly termed a Markov decision problem. The
optimality of the decisions is then calculated based on
expectance values of rewards for each decision. Markov
decision theory is also known as dynamic programming.

In our approach we have elected Markov decision theory
as the underlying mathematical theory since it provides a
sound mathematical framework for solving the type of
problems described in Section 3. Real options theory is
related to our approach since the same mathematical basis is
used, and the globally the approaches share similarities.
However, our approach offers a more clear-cut solution for
resource allocation problems since our application of the
mathematical theory explicitly addresses the typical inputs
for these problems.

Quality function deployment has a less formal math-
ematical basis than dynamic programming and as such is
easier to understand in its application. However, with the
large amount of inputs and the probabilistic character of the
problem, QFD does not provide the proper tools for efficient
determination of optimal development trajectories.

4.2 Method

The options in scheduling software development processes
depend on the possible software system demands.

Fig. 1 Feature diagram of insurance products
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The following three steps are used to determine the most
profitable option:

1. Determine probabilistic estimations for market, cost and
profit changes.
2. Specify the possible market scenarios that can occur.
3. Evaluate all possible schedules with respect to the
scenarios and select the most cost effective schedule.

This method should be flexible enough to cope with changes
in the estimations at any given moment in time.

4.3 Markov decision model

To achieve the objectives stated in the preceding Section,
the problem needs to be formalised mathematically. In our
approach the optimisation problem is formalised using
Markov decision theory [16]. Below, the formalisation is
defined for this specific problem.

. Consider a time horizon of length I time intervals (steps).
Let i ð1 � i � IÞ be the index of the time interval with i
steps to go. That is, the time horizon starts at the beginning
of interval I and ends at the end of interval 1.
. Let J be the total number of artefact types that may be
produced to satisfy market demands during the entire time
horizon. Market orders for artefacts are placed at the
beginning of each time interval, and are lost if not satisfied
by the end of the same time interval. At the beginning of
interval i ð1 � i � IÞ; the demand for artefact j is a random
number Dji characterised by the (discrete) distribution Fji

with a finite mean given by dji: The price of one unit of
artefact j at the end of interval i is given by rji: Denote by di

and ri the demand and price vectors with elements dji and
rji ð1 � j � JÞ; respectively.
. At the beginning of interval i ð1 � i � IÞ; artefact
j ð1 � j � JÞ requires a total of wji person-hours to be
completed (i.e. to make it ready for marketing). Denote by
wi the remaining work vector with elements wji ð1 � j � JÞ:
Note that wji ¼ 0 if artefact j is completed at some interval
before the beginning of interval i.
. At the beginning of interval i ð1 � i � IÞ we have Mi

available person-hours that can be distributed arbitrarily
among the set of (uncompleted) artefacts. Let aji be the
fraction of available person-hours allocated to artefact j
during interval i, and denote by ai the allocation vector with
elements aji ð1 � j � JÞ: (Note that for any i,

PJ
j¼1 aji � 1:)

Then the amount of person-hours allocated to artefact j
during interval i is given by aji Mi; with aji � wji=Mi: Note
that if artefact j is completed at some interval before i, then
aji ¼ 0: It follows that the total work allocation (cost) during
interval i is given by Mia

T
i e � Mi; and that the remaining

work on artefact j at the end of interval i (or at the beginning
of interval i � 1) is given by

wj;i�1 ¼ wji � ajiMi ¼ wjI �
Xi

k¼I

ajkMk; 2 � i � I

where wjI is the total work required to complete artefact j at
the beginning of the time horizon.
. Let the vectors di and wi define the state of the Markov
decision process at the beginning of interval i. Then, the
expected immediate return Ri at the end of interval i depends
on the state vectors ðdi; wiÞ and the allocation vector ai;
specifically,

Riðdi; wi; aiÞ ¼
XJ

j¼1

=ðfwji � ajiMi ¼ 0gÞdjirji; 1 � i � I

where the indicator function =ð:Þ equals 1 if its argument is

true (i.e. artefact j is completed at or before interval i),
otherwise it is equal to 0.
. Let Yiðdi; wiÞ be the maximum total expected reward at
the end of interval i; then the optimality equations can be
written as follows:

Y1ðd1; w1Þ ¼ max
a1

R1ðd1; w1; a1Þ � M1 aT
1 e

� �� �

Yiðdi; wiÞ ¼ max
ai

Riðdi; wi; aiÞ � Mia
T
i eÞ

��

þ Yi�1ðdi�1; wi�1Þ
; 2 � i � I

The above recursion can be applied to determine the
optimum allocation vectors ai for i ¼ 1; 2; . . . ; I;
respectively.

4.4 Scheduling implementation of
framework

In this Section, we will apply our method to the example
case. To this end, first insurance software system demands
are estimated. Second, an insurance software system
demand scenario is presented. Finally, based on this
scenario, the optimal alternative in scheduling the
implementation of the framework is determined.

4.4.1 Step 1: Estimations: As explained in the
following Sections, at this stage, three kinds of data are
defined. First, expected products and sub-products are
specified. Second, the insurance software system demands
are estimated. Third, the available human resources and
costs are specified.

Specification of the product demands: Assume that,
according to the marketing study, there will be a substantial
demand for unemployment insurance systems, illness
insurance systems and illness insurance with own risk
systems. These should be assembled through the compo-
sition of the necessary framework parts. In Fig. 2, the
artefacts framework parts and systems are represented as
rectangles. The directed relations among the rectangles
indicate assembly dependence relations. For example,
unemployment insurance systems are assembled from the
framework parts insured person and unemployment cover-
age. The framework parts insured person and unemploy-
ment coverage are, in turn, assembled from insured object
and coverage, respectively.

As shown in Fig. 2, every artefact has the attribute
implementation time, which indicates the amount of time
necessary to implement that artefact. The products have an
additional attribute, selling price, which indicates the
estimated market price of the system.

Market demand scenarios: In general, market demand
scenarios cannot be determined with certainty. Therefore
probabilistic estimations need to be made. Typically,
standard normal distributions are used for this purpose.
Consider, for example, the following demand estimations.

In Fig. 3, curves represent from left to right the
estimations for market demand for unemployment insurance
systems, illness insurance with own risk systems and illness
insurance systems, respectively. The curve for unemploy-
ment insurance systems varies between ,16 and 24 units
and concentrates around 20 units. The second distribution,
which depicts the demand estimation for illness insurance
with own risk systems, varies in demand between ,30 and
40 units. For this software system, a demand of 35 units will
occur with the highest probability. Finally, the third
distribution varies between ,38 and 43 units and
concentrates around 40 units. For this example we will
take the mean values for ease of computation. However, the
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computations can be made more accurate by taking the
entire deviation interval.

Human resource definitions: Assume that two persons
will be available in every week for up to 50 person hours
each. It is also required that a person cannot be assigned to
multiple tasks in one week. The cost per person hour is fixed
to e100:

4.4.2 Step 2: Modelling the product demand
scenarios: To compute the optimum schedule, the
Markov decision model as described in Section 4.2 has to
be discretised. For the distributions this is done by taking the
mean values. The mean values of the distributions of three
insurance products are listed in the following:

. illness insurance systems 40 units

. unemployment insurance systems 20 units

. illness insurance with own risk system 35 units

In addition, for this example, we have discretised the
amount of person hours that can be allocated as per week
and per employee. Since a person can only work on one task
per week, the smallest amount of person hours that can be
assigned is 50.

4.4.3 Step 3: Selecting the most cost effective
schedule: Finally, all possible schedules are evaluated
for every single scenario. For this purpose, schedules are
modelled as a sequence of decisions, where each decision is
taken at the beginning of a week. For instance, in the first
week, it is possible to assign 100 person hours to any
possible artefact. When a system is completed and there is a
demand for it, it can be sold with a profit. Finding the best
schedule is an optimisation problem as defined below:

Given
. system demand scenarios with probabilistic change
dependencies
. a set of available person hours with a given cost price and
minimal contract duration
. a set of framework parts and=or systems with expected
implementation time
. estimated profit of a system when it is brought to the
market

find a schedule which delivers the maximum profit.
The method is supported by a tool, which is presented in

Section 5. Finding the optimal schedule is computed
automatically and is based on Markov decision theory,
which was presented in Section 4.2.

Fig. 2 Dependencies among insurance software systems and framework parts

Fig. 3 Market volume estimations for three kinds of insurance software systems
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Results: The result of the optimisation algorithm can be
displayed as a Table. In our example case, the tool provides
several equivalent schedules that will result in the same
expected profit. Table 1 shows one of the possible
schedules.

Each row in Table 1 corresponds to a week in the project
time span. The elements of a row contain the allocation of
person hours for that week. For instance, in the first week,
50 person hours are assigned to the coverage artefact and 50
person hours to the insured object artefact. In addition, the
model gives an indication of the maximal expected profit.
Based on the given product demand scenarios and
constraints, unemployment insurance system should be
delivered at the end of the fourth and fifth week. Therefore,
the relevant artefacts for these insurance software systems
should be implemented first.

4.5 A more accurate market model

The example presented in the preceding Section can be
extended in various ways. For example, in a more realistic
scenario, the probabilities and available resources may
change in time due to illness or holidays. In the following, as
an illustrative example we will assume time dependent
mean probability values and resource availability functions.

4.5.1 Market demand scenarios: The demands
for each insurance software system may change in time. To
simulate this, the market demand scenarios should include
changing mean demands for every relevant project time
step. For example, in Table 2, we make an assumption by
modelling changes per week.

4.5.2 Human resource definitions: It is also
possible to change the availability of human resources in
time. Consider, for example, Fig. 4, which assumes a
periodic change in the available human resources. This
graph is approximated in the actual calculations by the
following function [Note 3]:

50 þ 50RoundðAbsð2x cosðtÞÞÞ:
In this Figure, it is assumed that the availability of human
resources shows a periodic character. The presented
changes in product demands and human resources should
be considered as examples only. It is possible to use
different functions and=or any meaningful data obtained, for
example, from past experiences.

Table 1: Optimum allocation of resources for maximum profit

coverage

insured

object payment

illness

coverage

unemployment

coverage

insured

person

own

risk

illness

insurance

system

unemployment

insurance

system

illness

insurance/

w OR system

max.

expected

profit

Week 1 50 50 – – – – – – – – e14 000

Week 2 – – – – 100 – – – – –

Week 3 – – – – – 100 – – – –

Week 4 – – – – – – – – 100 –

Week 5 – – – – – – – – 100 –

Table 3: Optimum allocation of resources in changing system demands and resources

coverage

insured

object payment

illness

coverage

unemployment

coverage

insured

person

own

risk

illness

insurance

system

unemployment

insurance

system

illness

insurance/

w OR system

max.

expected

profit

Week 1 50 50 – – – – – – – – e25 000

Week 2 – – – – 100 – – – – –

Week 3 – – – – – 100 – – – –

Week 4 – – – – – – – – 150 –

Week 5 – – – – – – – – 100 –

Table 2: Mean values of system demands per week

Illness insurance

system

Illness insurance

with OR system

Unemployment

insurance system

Week 1 40 35 20

Week 2 30 42 31

Week 3 40 35 20

Week 4 30 42 31

Week 5 40 35 20

Fig. 4 Periodic changes in human resources

Note 3: Round represents the function that rounds real numbers to the
nearest natural number, and Abs the function that returns the absolute value
of a given number.
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4.5.3 Results: Based on the time varying data,
Table 3 displays one of the expected optimal schedules.
This Table shows that, based on the assumptions, unem-
ployment insurance product is expected to deliver most
profit. Therefore, based on the Table, the relevant artefacts
for this product should be implemented first. Note that in the
first step only 100 person hours of the available 150 are
distributed. Apparently within the current situation it is not
wise to distribute the additional 50 person hours as it will
lower the expected profit.

5 Tool support

The optimisation process is very labour intensive and
therefore automatic support is necessary. In addition, tool
support is necessary for modelling artefacts, market and
available resources. The architecture of our tool is shown in

Fig. 5. Here, the models and processes are represented as
rectangles and ellipses, respectively.

Artefacts (framework parts and software systems),
insurance software system demand scenarios and resources
are modelled by the software engineer, marketing analyst
and personnel manager, respectively. The personnel man-
ager also defines the goals of the optimisation problem, such
as minimisation of cost, maximisation of profit, etc.

The process decision space generator retrieves the
necessary information from the artefact repository and the
process scenario space generator retrieves the necessary
information from the market model repository. Together
they generate the data scheduling state space. The next step
is the determination of scheduling advice. The process
schedule optimiser takes scheduling state space as input and
generates the data ranked scheduling advice as output.
These data can be presented to the project manager in
various formats, for example, as a Table shown in Table 3.

Fig. 5 Tool architecture

Fig. 6 Modelling the insurance framework components
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In addition, the project manager can run simulations by
using the schedule simulator, which results in the data
scenario simulation data.

First of all the framework and product model can be
defined in the parameter modeller. In this tool all the parts
can be modelled, which the system engineer can directly
influence. In Fig. 6 the component definition of Section 4.3
is modelled using the parameter modeller.

As shown in Fig. 6, the sub-window on the left side shows
the modelling tools. It is possible to define different types of
parameters, corresponding to framework parts and actual
products.

During the course of a project, a number of different
situations may occur. To increase flexibility, if desired, the
scheduling advice can be given on a per situation basis. The
tool can simulate the situations that can occur for gaining a
better insight into these situations. In Fig. 7 the simulation
tool is displayed.

As shown in Fig. 7, the simulator tool consists of two sub-
windows. The left sub-window is the simulation inspector
and displays information on the current state of the
simulation, such as profit result, amount of work done, etc.

The right sub-window displays the states that can be
reached during the simulation. This graph is the scenario
graph that models all possible market situations. The graph
in Fig. 7 depicts a graph for which each state has only one
possible next state and therefore represents only one
scenario. While running the simulation the tool will colour
the visited nodes yellow, so in Fig. 7 two nodes have already
been visited.

The tool has been implemented on the Java Platform as a
part of the SP2OT Tool Suite, and is still under develop-
ment. More information on the tool suite and the tool itself
can be found at: http://janus.cs.utwente.nl/twiki/bin/view/
Spot/WebHome/.

6 Evaluation

In Section 3.2, prioritising changing requirements and
configuring the software development process accordingly
were identified as two important problems. Given probabil-
istic product demand scenarios and resources, we have

presented a method and a set of tools that can help project
managers in determining the estimated optimum process
development schedule that delivers the best profit. In the
following, we evaluate our approach with respect to the
following concerns:

. Support for unanticipated evolution: In general, unanti-
cipated software evolution focuses on changes in software
requirements that were not foreseen during the design of a
software system. In our specific case we assume that
changes in software requirements are known, but their
occurrence is not certain. That is to say, we do not deal
explicitly with uncertainty in both content and time of
change as described in Section 2. However, our approach
can be adopted for phenomenal potential evolution and
temporal potential evolution. Our stochastic model expli-
citly reasons about the occurrence of requirements over a
time span; as such, we can deal with uncertainty in time of
change. In addition, every requirement is tagged with a
probability and the model computes the occurrence and the
change of these probabilities, and therefore we can deal with
phenomenal potential evolution. Of course, more exper-
imentation is necessary to determine the practical use of our
approach.
. Support for planning the software development process:
The presented approach provides a valuable input to the
resource planning process in which the scarce resources
have to be planned in a time span. The tool can be used at
various levels of details. In addition, the tool provides
flexibility in considering new data, for example, which may
be available due to better market estimates. The tool will
recalculate the optimal schedule from the time that new data
are considered relevant. The probabilistic estimations
cannot always be guaranteed to be accurate. Nevertheless,
our tool may force the managers to explicitly consider
various scenarios and experiment with ‘what-if’ conditions
over the scenarios. This may help the managers to gain
better insight in planning the software development
processes.
. Tool support: Optimum resource allocation is a very
difficult task to carry out manually because (a) various
different input data are required; (b) it requires evaluation of
a large space of alternatives, and (c) input data may change

Fig. 7 Running a simulation
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continuously and therefore evaluation has to be repeated
frequently. We have developed a set of tools for: (a) defining
models, (b) specifying probabilistic estimations, (c) com-
puting optimal schedules at various levels of details, and
(d) displaying and inspecting the results in various formats.
We have already started experimenting with the tool in
different applications. By providing the tool for public use,
we hope to obtain the necessary feedback necessary for
improving the tool where necessary.
. Support for vague market characteristics: In general,
short-term market estimations can be made with reasonable
accuracy. For a time span longer than 2 years, simple
probabilistic estimations will be less reliable. This problem
can be partially addressed by using adaptive learning
techniques so that estimations can be improved continu-
ously and by defining more accurate market models, for
example, based on fuzzy logic techniques.
. Support for simulation and educational purposes: One
important perspective for our tool is to use it for simulation
and educational purposes. Because the tool essentially
generates all the possible and relevant situations during a
project, the state space can be used to examine specific
project situations. In addition, by fixing market expectations
at specific time points, scenarios can be simulated, for
instance for determining worst-case scenarios. We are
currently co-operating with a large software company in
adopting the tool for consulting activities and in manage-
ment courses, etc.
. Human resource model: Our approach is sensitive to the
accuracy of the human resource model. In addition, it is
assumed that every employee can perform any task, if the
time permits. A more realistic approach would be to
categorise human resources with respect to their skills. This
adds an extra level of dependency that needs to be
considered when scheduling human resources. We are
currently working on a more realistic human resource
model, which improves the model properties based on the
experiences obtained in the past.
. Artefact model: In the current approach, artefacts can only
be produced when all the required sub-artefacts have been
delivered. By introducing a more fine-grained model, we
would like to minimise the dependencies among the
artefacts and thereby improve parallel allocation of
resources.
. Scalability of approach through managing state
explosions: To calculate the optimal result, Markov decision
models require all relevant states. This can cause very large
state spaces and lengthy computations. This is known as the
curse of dimensionality [17]. To address this problem,
within the field of Markov decision theory, various research
activities have been carried out. Examples are state space
minimisation techniques by assessing the relevancy of states
and by making tradeoffs between accuracy of the result and
computation size, or optimisation for parallel computing
[18–20]. We are currently experimenting on various state-
space reduction mechanisms.

7 Background and related work

7.1 Software process configuration
management

To cope with the constantly changing customer require-
ments, software products and software process must be
re-configured frequently. Software configuration manage-
ment aims to manage the evolution of a product. Our
approach can be seen as complementary to software
configuration management techniques.

Software configuration management is a broad domain
and covers the entire life cycle. Further, software configur-
ation management processes can be defined for specific
domains as well. For example, in [13] an approach is
presented for resource management for distributed multi-
agent systems. This approach takes into account a wide
range of resource and entity types. By providing different
types of relations between entities and resources, the actual
situation can be described and optimised accurately. The
approach in [13], however, is not aimed to optimise with
respect to future changes that are uncertain. Our approach
aims to schedule the available resources while considering
probabilistic changes in requirements and project context.

In addition to software configuration management,
several researchers have focused on the configuration of
processes. The basic issues are to choose the right
development process and to align process configuration
whenever necessary. In [21, 22] it is argued that software
development processes should be developed in much the
same way as software. The common assumption is that
processes should be considered as products and be
configured with respect to product quality goals. Our
approach can be considered complementary to these
approaches. Our focus is, however, to cope with changes
in requirements and project context, which is generally
missing in the conventional software process configuration
approaches.

7.2 Requirements engineering

Prioritisation of requirements with respect to implemen-
tation is not new. There have been various research
activities on this topic. However, research activities
generally focus on fixed requirements; prioritisation is
realised after the requirements are determined.

The work described in [23] focuses on prioritisation of
software requirements with respect to the quality of
decision-making. The basic assumption here is that new
requirements should either be accepted or rejected. By
analysing and simulating the acceptance=rejectance rate, the
decision quality can be improved and only relevant
requirements are selected for further consideration.

The difference with our approach lies in the fact that the
approach in [23] acts as a filter and results in a set of
requirements that should be implemented. The remaining
relevant requirements are also considered equally import-
ant. However, these requirements still need to be prioritised
with respect to implementation and resources, since there
still might be dependencies among them. Also the approach
focuses on the best requirements set for the next release,
while our approach is more aimed at finding optimal
schedules for implementation with respect to changes along
the time span of a project.

In [10] a methodology is proposed, which prioritises
requirements based on a cost–value analysis. For each
requirement, the relative cost and value are determined
using the analytic hierarchy process. This model then allows
comparison of the requirements based on these properties,
so that one can be ranked over the other with respect to these
two aspects. By considering the requirements of engineers,
customers, users and software engineers an accurate
requirements model can be made.

The proposed methodology in [10] focuses on prioritisa-
tion with respect to value and cost, and with that it aims to
satisfy market demands in general. The methodology does
not explicitly address the delivery constraints that are
imposed during software development process. Also the
model does not support analysis of requirements that share
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dependencies. In our approach this is specifically addressed
by the framework dependencies.

7.3 Optimisation techniques

Many different optimisation techniques have been defined,
most of them having a mathematical origin. Generally
speaking an optimisation model consists of four parts: a
subject to be optimised, the options to be considered, a
comparison criterion and an ideal situation description (or
goal). The possible options are evaluated with respect
to their goal using the criterion. Dynamic programming
[16, 17] is one of these techniques but many others exist. For
instance, there are learning-based optimisation models such
as neural networks [24] or genetic algorithms.

Most optimisation techniques are based on evaluation of
the available options. Brute force approaches tend to
evaluate every single option and then select the optimal
one. However, this soon leads to incomputable problems.
Therefore most optimisation techniques aim at ‘smart’
evaluation of options, thus reducing computation complex-
ity. A vital step in the optimisation process is to map the
problem to a mathematical formalism. By choosing a smart
mapping, the complexity of the problem can be kept at an
acceptable level.

8 Conclusions

It should be noted that the management decision problem is
indeed a very challenging problem and it is difficult to claim
that we have provided the complete and final solution. To
fully prepare for unanticipated software evolution seems to
be impossible by definition.

Nevertheless we have shown that even unanticipated
software evolution can be managed to a certain degree. For
this, we have made an explicit distinction between
unanticipated software evolution due to uncertainty in
content and uncertainty in the time of occurrence of changes
to requirements. Conventional software evolution
approaches have basically focused on evolution in content
of the requirements and several useful techniques have been
proposed. As a complementary approach we have focused
on coping with evolution of changes to requirements in
time.

The presented approach represents the possible develop-
ment activities as a state space using Markov decision
theory. By applying dynamic programming techniques the
optimal schedules of software development activities are
determined. The required changes are modelled using
probabilistic estimations on product demands, profits and
available resources. Owing to the large state space it is very
hard to manually perform this approach. Therefore, we have
implemented a tool which supports the modelling, the
selection and the evaluation of the changes to requirements
and the allocation of human resources.

The approach and the related tool explicitly forces us to
think about priorities and risks of decision making with
respect to changes in requirements. To improve the
scalability of the approach our future work will include
the refinement of the human resources model and the
integration of more refined state-space reduction
techniques.
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