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Many multi-project organizations are capacity driven, which means that their operations are constrained by various scarce resources.
An important planning aspect in a capacity driven multi-project organization is capacity planning. By capacity planning, we mean
the problem of matching demand for resources and availability of resources for the medium term. Capacity planning is a very useful
method to support important tactical decisions such as due date quotation and price quotation for new projects, and to gain an insight
into capacity requirements for the medium term. We present a capacity planning model in which aspects such as capacity flexibility,
precedence relations between work packages, and maximum work content per period can be taken into account. For this model, we
discuss several linear-programming-based heuristics. Using a large set of test instances, we compare these heuristics with some results
from the literature. It turns out that some of these heuristics are very powerful for solving capacity planning problems.

1. Introduction

Many organizations use project management to manage
their activities. Most of these organizations manage mul-
tiple projects simultaneously. Since the projects often use
common resources, a multi-project organization is usually
capacity driven. Good management of the scarce resources
is of crucial importance, e.g., for reliable due date and price
quotation and a good delivery performance. Time is more
and more a competitive edge, and a good control over, e.g.,
lead times requires adequate capacity management.

Platje et al. (1994) stress that capacity in a multi-project
organization cannot be managed in a traditional single
project-oriented approach. They describe an organizational
structure to manage a portfolio of projects in a multi-
project organization, and call this project-based manage-
ment. Management, project leaders, and resource managers
together form the portfolio management team. They must
make important resource allocation decisions. The portfo-
lio management team plays a central role in project-based
management. De Waard (1999) evaluates this portfolio-
based management approach using a number of case stud-
ies. Most companies in these case studies indicate that
this organizational structure would benefit the company
performance.

∗Corresponding author

De Boer (1998) has developed a prototype decision sup-
port tool to support the decisions of the portfolio man-
agement team quantitatively. He also tested this tool at the
Royal Netherlands Navy Dockyard, which is one of the in-
volved companies of the case studies of De Waard (1999).
De Boer distinguishes two planning levels for portfolio
management. The first level is known as Rough-Cut Ca-
pacity Planning (RCCP); the second level addresses the so-
called Resource-Constrained Project Scheduling Problem
(RCPSP). RCCP addresses medium-term capacity plan-
ning problems. At this level, projects are split up into rel-
atively large work packages, which are planned over time
taking into account the availability of scarce resources. The
RCPSP addresses the operational, short term, scheduling.
To that extent, work packages are split up into smaller
activities which are scheduled over time. The usual objec-
tive is makespan minimization, constrained by the finite re-
source availability. Currently, commercial software is avail-
able that is based on the prototype decision support system
of De Boer. This commercial software includes the mod-
els described in this paper. The Royal Netherlands Navy
Dockyard uses this software to support their business pro-
cesses.

It is important to understand the difference between the
two levels RCCP and RCPSP. In RCCP the planning hori-
zon is split up into time buckets (e.g., weeks) unlike a con-
tinuous time horizon in the RCPSP, and the work pack-
ages are defined in terms of aggregated work content per
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154 Gademann and Schutten

required resource (e.g., a total of 200 hours of work content
for electricians) unlike a specific execution mode with cor-
responding duration in the RCPSP (e.g., the work must be
performed by two electricians each for 100 hours). RCCP
is a tactical planning level which is concerned with allo-
cating portions of the work content to time buckets (e.g.,
50 hours in week 3, 150 hours in week 4) in order to de-
termine the required resource availability levels and reli-
able due dates. To that extent nonregular capacity may be
used (e.g., outsourcing, working overtime, or hiring addi-
tional personnel), which will involve additional costs. The
planning objective will be a combination of time-related
(e.g., minimizing project lateness) and cost-related (mini-
mizing costs for deploying nonregular capacity or for late-
ness penalties) factors. The RCCP is used to determine the
constraints for the operational scheduling, the RCPSP, in
terms of, e.g., project milestones and available resources. In
the RCPSP the smaller activities are scheduled over time
according to available execution modes (e.g., two electri-
cians start on Thursday in week 3 at 2:00 PM), and there is
often very little or even no capacity flexibility. The objective
is therefore often time related (e.g., minimizing makespan
or minimizing maximum lateness). Note that the schedul-
ing of activities belonging to a certain job is not restricted
to the planned time frame of this job.

RCCP and RCPSP play a significant role in the portfolio
management of multi-project organizations. They support
medium-term and short-term resource management in a
multi-project environment. Moreover, using the concept of
larger work packages for RCCP, a top-down planning is
facilitated. It is not necessary to make a detailed project
breakdown and process planning to gain insights into the
capacity requirements and capacity availability. RCCP sup-
ports important aspects such as capacity requirements, the
use of nonregular capacity (sub-contracting, working over-
time, hiring), and order acceptance (due date and price
quotation). Only for short-term planning is a detailed pro-
cess planning required. The goal of the RCCP is to roughly
match available and required capacity.

There is a close relationship between a project life cycle
and planning issues at the RCCP and RCPSP level. In a
project life cycle, in general five project phases can be dis-
tinguished: (i) order acceptance; (ii) process planning; (iii)
scheduling; (iv) execution; and (v) evaluation and service.
In the order acceptance phase, prices and delivery times
must be quoted to the customers. After a project has been
accepted, the project activities are specified in the process
planning phase. Using the specified activities, a detailed
project schedule can be made, after which the execution
of the activities takes place. Finally, a project is evaluated
and serviced. During the order acceptance phase and dur-
ing the project scheduling phase, capacity management is
important.

A vast amount of literature has been dedicated to project
scheduling (see, for example, Demeulemeester and Herroe-
len, 1992; Özdamar and Ulusoy, 1995; Kolisch and Drexl,

1996). The standard problem that is being studied is the
RCPSP. The literature dealing with the order acceptance
phase is very limited. The decisions that are made in this
phase, however, are very important, because the quoted
project price and delivery time determine whether the orga-
nization will be the order winner and whether a project will
be profitable. To quote a realistic price and a realizable deliv-
ery time requires a good insight into the available capacity in
the forthcoming months and in the required capacity for a
new project. This means capacity planning using aggregate
data on available and required capacity. Moreover, details
about activities to be performed and resource requirements
of these activities, may only become available during the
process planning phase. This process planning phase can
take up to a few months in time, whereas the customer does
not want to wait that long. This also suggests the use of
aggregate data on available and required capacity.

We assume that a project is broken down into a number
of rather large work packages, which we call jobs. A job can
be seen as an aggregation of possibly yet unknown activi-
ties that are related. In the process planning phase, the jobs
are divided into activities. We assume that for each job esti-
mations of the required resource capacity are available and
precedence relations may exist between the jobs. We refer to
this problem as the RCCP problem. We model, without loss
of generality, the multiple-project capacity planning prob-
lem as a single-project capacity planning problem. This sin-
gle project contains all jobs from all projects. As a result,
the corresponding network need not be connected. Each
job may have its own release and due date. In this way, we
can account for the project release and due dates. Analo-
gously to the variants that Möhring (1984) distinguishes
for the RCPSP, we distinguish two variants of the RCCP
problem:

Time-driven RCCP. In the time-driven variant, a desired
project delivery time must be met, i.e., it is considered a
deadline. This may imply that nonregular capacity must
be used, for example by temporarily hiring extra per-
sonnel, subcontracting jobs, and working overtime. The
objective is to minimize the cost of using nonregular
capacity.

Resource-driven RCCP. In this variant, we can only use the
capacity that is regularly available to the organization.
We will refer to this capacity as regular capacity. The
objective is to minimize the maximum job lateness.

In this paper, we will focus on time-driven RCCP.

2. Problem description

The problem that we consider can be formally described as
follows (De Boer, 1998; De Boer and Schutten, 1999). We
are given a set of n jobs J1, J2, . . . , Jn that must be planned
on K resources R1, R2, . . . , RK . The jobs J1, J2, . . . , Jn
may belong to different projects. We assume that the time
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Linear-programming-based heuristics for project capacity planning 155

horizon is divided in T buckets of say one week. The regular
capacity of resource Rk (k = 1, 2, . . . , K) in week t is equal
to Qkt hours. Job Jj requires qjk hours of resource Rk. In
general, the jobs have a work content of several weeks and
will be subdivided into a number of activities for schedul-
ing (at the RCPSP level). Therefore, we will allow that the
fraction of a job that is planned in a certain week may vary
over time.

Let xjkt denote the fraction of job Jj that is performed
on resource Rk in week t . This means that xjkt qjk hours are
spent on job Jj in week t on resource Rk. We assume that
xjkt = xjlt (k, l = 1, 2, . . . , K), i.e., that an equal fraction is
spent on job Jj in week t on all resources. This assumption
is realistic for capacity planning, since the underlying ac-
tivities of a job are in general multi-resource activities. In
the RCPSP, it is necessary that the required resources for
each activity are available at the same time. Note that if
spending equal fractions for a specific job is not realistic at
the planning level, then this job can be split at the planning
level into two or more smaller jobs (one for each required
resource). In the remainder of this paper, we therefore de-
note the fraction of a job Jj that is performed in week t
by xjt. We will allow the fractions to differ from week to
week, implying that in a certain week no work is done on
a job. We also assume that for each job Jj we are given a
maximum fraction 1/pj that can be done per week. This
means that a job Jj has a minimum duration of pj weeks.
A job Jj is completely performed in time interval [t1, t2] if∑t2

t=t1
xjt = 1.

Job Jj must be performed in time window [rj, dj], which
results in xjt = 0 for t < rj and for t > dj. Precedence re-
lations may exist between jobs. Suppose that a precedence
relation exists between jobs Ji and Jj, which we denote by
Ji → Jj. This means that job Ji must be completely per-
formed before we can start performing job Jj, i.e., xjτ >

0 =⇒ ∑τ−1
t=1 xit = 1 for 1 ≤ τ ≤ T . We assume that the time

windows respect the precedence relations, i.e., rj ≥ ri + pi
and di ≤ dj − pj if Ji → Jj. If this is not the case, then we
can alter the time windows to respect this via a simple
forward-backward algorithm. Moreover, we assume that
the (resulting) time windows are large enough to perform
the jobs (rj + pj − 1 ≤ dj for each job Jj). If this is not the
case for a job, then no solution exists in which this job is
completely performed within its time window.

A solution [x11, x12, . . . , x1T , x21, x22, . . . , x2T , . . . , xn1,
xn2, . . . , xnT ] is feasible if each job is completely performed
within its time window, respecting the precedence relations,
and respecting the maximum fraction that can be done per
week. A solution may imply that the required capacity of a
resource Rk in a week t exceeds the regular availability Qkt.
In that case, we need Ukt = max{0,

∑n
j=1 qjk xjt − Qkt} hours

nonregular capacity of resource Rk in week t . The cost of
using Ukt hours of nonregular capacity of resource Rk in
week t is equal to cktUkt. We assume that the availability of
nonregular capacity is infinite and that ckt ≥ 0, ∀k, t . Our

Table 1. Data for example instance

Jj rj dj pj qj1 qj2

J1 1 4 1 60 120
J2 3 6 2 80 120
J3 3 6 1 70 105
J4 4 8 1 60 150

objective is to minimize the total cost of required nonregu-
lar capacity. The assumption on unlimited availability of the
resources is not restrictive for the model and the approach.
Additional constraints on maximum resource availability
can be added.

Figure 1 shows a feasible solution of the instance of the
RCCP problem of which data can be found in Table 1. Jobs
J2 and J3 can only start when job J1 is completed and job
J4 can only start when both job J2 and job J3 are com-
pleted. In this example, there are two resources. The reg-
ular availability of resource R1 is 35 hours in every week,
whereas the regular availability of resource R2 is 60 hours
in every week. In the solution in Fig. 1, we use 5 hours of
nonregular capacity on resource R1 in weeks 3, 4 and 5,
and 15 hours on resource R2 in weeks 7 and 8. Note that
some kind of preemption is allowed: 50% of job J2 is done
in weeks 3 and 5, whereas no work is done on this job in
week 4. Also note that this solution is not an optimal so-
lution (if c14 > 0), because a fraction of 5/70 of job J3 can
be moved from week 4 to week 6. In the resulting solu-
tion, we would use less nonregular capacity on resource R1
and the same amount of nonregular capacity on resource
R2.

If we ignore the precedence relations and assume that all
costs ckt are non-negative, then the problem can be formu-
lated as the following linear programming problem (P):

(P) : min
T∑

t=1

K∑
k=1

ckt Ukt ,

subject to

dj∑
t=rj

xjt = 1 ∀j, (1)

xjt ≤ 1
pj

∀j, t, (2)

Ukt ≥
n∑

j=1

qjk xjt − Qkt ∀k, t, (3)

xjt , Ukt ≥ 0 ∀j, k, t, (4)

Constraints (1) ensure that each job is performed com-
pletely within its time window and constraints (2) express
that no more than the maximum fraction can be done in
a week. Constraints (3) guarantee the required amount of
nonregular capacity.
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156 Gademann and Schutten

Fig. 1. A feasible solution for the example instance.

If we solve this linear programming problem, then in gen-
eral one or more precedence relations are violated, and thus
the solution is not feasible. To control feasibility, we intro-
duce an Allowed To Work (ATW) window for every job. An
ATW window [Sj, Cj] for job Jj specifies the weeks in which
we allow work on job Jj. This means that we do not allow
work on job Jj before week Sj and also not later than week
Cj. Associated with each set S of ATW windows, we con-
sider the linear programming problem (PS). Problem (PS )
is obtained from the linear programming problem (P) by
replacing constraints (2) with:

xjt ≤ sjt

pj
∀j, t, (5)

where parameter sjt indicates whether processing of job Jj
is allowed in week t :

sjt =
{

1 if Sj ≤ t ≤ Cj,

0 otherwise.

We call an ATW window [Sj, Cj] for job Jj feasible, if:

1. Sj ≥ rj and Cj ≤ dj;
2. Cj − Sj ≥ pj − 1.

Let S be a set of ATW windows, with one ATW window
[Sj, Cj] for every job Jj. We call S feasible, if every ATW
window in S is feasible and moreover:

3. Sj > Ci if Ji → Jj (∀i, j).

The last condition ensures that the precedence relations are
met. Clearly, if S is feasible, then any feasible solution to
problem (PS) is feasible for the RCCP problem.

In the remainder of this paper, we investigate heuristics
based on problem (PS). Note that a feasible solution of any
heuristic implies a starting time Sj for all jobs Jj. Based on
these job starting times and the precedence relations be-
tween the jobs, we can compute a maximum allowed com-
pletion time Cj for job Jj. These starting times and maxi-
mum allowed completion times induce a feasible set S of
ATW windows. By solving the associated linear program-
ming problem, (PS), we obtain a feasible solution which
is at least as good as the heuristic solution. This way an
improvement step can easily be added to any heuristic.

3. Related work

De Boer and Schutten (1999) propose several heuristic al-
gorithms for the RCCP problem in which they try to mini-
mize the total number of hours of nonregular capacity that
is used, i.e., ckt = 1 (∀k, t). Their heuristic ICPA (Incremen-
tal Capacity Planning Algorithm) is a constructive heuristic
that plans jobs one by one in two phases. First, a maxi-
mum part of a job is planned in its time window, without
using nonregular capacity for this job. If the job cannot
be planned completely, capacity is increased in the second
phase such that the remainder of the job fits into its time
window. De Boer and Schutten test two variants of ICPA,
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Linear-programming-based heuristics for project capacity planning 157

which result from different criteria for the order in which
the jobs are planned. De Boer and Schutten measure the
performance of ICPA by the deviation of the solution value
to a specific lower bound. If we apply the improvement step
mentioned at the end of Section 2 to ICPA, on average the
reduction in the deviation from that lower bound is about
15%.

Another type of heuristics proposed by De Boer and
Schutten is based on problem (P). After solving problem
(P), it appears in general that one or more precedence rela-
tions are violated. Suppose that relation Ji → Jj is violated.
Hence, intervals [ri, di] and [rj, dj] overlap. The precedence
relation between job Ji and job Jj is “repaired” by specify-
ing a week Tij (ri + pi ≤ Tij ≤ dj − pj + 1) before which job
Ji must be finished and before which job Jj cannot start.
The variants of this heuristic arise from different rules for
specifying week Tij. It appears that the rule in which the ra-
tio (Tij − ri)/(dj − Tij + 1) is as close as possible to the ratio
Wi/Wj results in the best heuristic, in which Wi is the total
work content of job Ji. After specifying a week Tij, di is set
to Tij − 1, rj is set to Tij, and the time windows of the other
jobs are updated. A successor Jk of job Jj, for example, can-
not start before rj + pj, and since rj is updated, rk may also
have to be updated. For more details on this heuristic, we
refer to Section 4.2.

Hans (2001) and Hans et al. (2002a) consider the so-
called resource loading problem. The resource loading
problem can be seen as an RCCP problem with simple
precedence constraints, where the project network is a
chain. They present a hybrid model of the resource-driven
and the capacity-driven variants. In this model, the total
cost of both nonregular capacity usage (subcontracting,
hiring, working overtime) and tardiness penalties is min-
imized. They formulate this problem as a mixed-integer
programming problem with an exponentional number of
variables and present an exact branch-and-price algorithm
for its solution. They also suggest several primal and im-
provement heuristics for the problem. Test results show that
small to moderate sized instances can be solved to optimal-
ity in a practical time. In combination with some of the
heuristics, a truncated branch-and-price method also gives
good results for larger instances.

In Hans et al. (2002b) this model is extended, by al-
lowing generalized precedence relations as in our RCCP
problem description. This in particular affects the pricing
problem for the branch-and-price algorithm. Whereas the
pricing problem for the resource loading problem can be
solved by a polynomial-time dynamic programming algo-
rithm, the pricing problem for the RCCP problem becomes
hard. This is in particular due to a multi-dimensional state
space in the case of generalized precedence relations. Com-
putational experiments show that the RCCP problem can
be solved to optimality for smaller instances, but for larger
instances in particular the pricing problems become too
large. Several other approaches are suggested and tested,
such as pricing heuristics and an integer programming for-

mulation of the pricing problem that is solved directly using
CPLEX.

4. Heuristics

In this paper we focus on heuristics for the RCCP problem.
We distinguish three categories of solution approaches:

1. constructive heuristics;
2. heuristics that start with infeasible solutions and convert

these to feasible solutions;
3. heuristics that improve feasible solutions.

De Boer and Schutten (1999) propose heuristics such as
ICPA that belong to the first two categories. We propose a
heuristic that belongs to the second category and a number
of heuristics that belong to the third category. The latter
use dual information about solutions for problem (PS) to
find better solutions. Since heuristics in the third category
must start with a feasible solution, we also describe two
basic primal heuristics (category 1). All heuristics that we
present proceed as follows. Iteratively, an ATW window is
set for every job and the associated Linear Programming
(LP) problem of Section 2 is solved. The differences in the
heuristics are the way the ATW windows are set and how
they are updated as a result of solving the LP. Schematically,
the heuristics proceed as follows:

Category 1 heuristics:

Step 1. Construct a feasible set S of ATW windows.
Step 2. Solve problem (PS).

Category 2 heuristics:

Step 1. Initialize with some set S of ATW windows.
Step 2. Solve problem (PS).
Step 3. If no violated precedence relation exists, then stop

(solution is feasible).
Step 4. Choose a violated precedence relation and repair it

by changing set S.
Step 5. Go to Step 2.

Category 3 heuristics:

Step 1. Initialize with a feasible set S of ATW windows.
Step 2. Solve problem (PS).
Step 3. If some termination criterion is met, then stop.
Step 4. Change set S by using dual LP information, but

maintain the feasibility of S.
Step 5. Go to Step 2.

4.1. Category 1 heuristics

A feasible set of ATW windows S can easily be con-
structed (Step 1) by setting Sj equal to rj and setting Cj as
large as possible: Cj = min{dj, mink|Jj→Jk rk − 1}. A feasible
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158 Gademann and Schutten

solution is then found by solving problem (PS) (Step 2). We
will refer to this basic primal heuristic as HBASIC.

Another constructive heuristic is obtained by dividing
the slack of jobs equally on the critical path. Define the
slack Lj of job Jj as Lj = Cj − (Sj + pj). An ordered set
of jobs {Ji1, Ji2, . . . , Jik } is called a path if Ji1 → Ji2 , Ji2 →
Ji3, . . . , Jik−1 → Jik . A critical path {Jj1, Jj2, . . . , JjR } is a path
for which it holds that:

� Lj1 = Lj2 = · · · = LjR = min1≤j≤n Lj;
� Sji = Sji−1 + pji−1 for 2 ≤ i ≤ R;
� Cji = Cji+1 − pji+1 for 1 ≤ i ≤ R − 1.

A critical path {Jj1, Jj2, . . . , JjR } is a maximal critical path
if there is no job Jk such that either {Jk, Jj1, Jj2, . . . , JjR }
or {Jj1, Jj2, . . . , JjR , Jk} is a critical path. We initialize the
heuristic by setting Sj = rj and Cj = dj for every job Jj.
Note that this does not necessarily result in a feasible
set of ATW windows. Next, we find a maximal critical
path, say {Jj1, Jj2, . . . , JjR }. The total slack L̄ of this path
is defined as CjR − (Sj1 + ∑R

i=1 pji ). The total slack is dis-
tributed over the maximal path by changing the ATW win-
dows for these jobs by first setting Sji = Sj1 + ∑i−1

k=1 pjk +
|L̄ ∑i−1

k=1 pjk /
∑R

k=1 pjk | for 1 < i ≤ R and then Cji = Sji+1 −
1 for 1 ≤ i < R, where |x| denotes the integer value we get
by rounding x. The ATW windows of the jobs that do not
belong to the maximal critical path are changed (if neces-
sary) so that they meet the precedence relations with jobs
that belong to the maximal critical path, i.e., Si + pi ≤ Sj
and Ci ≤ Cj − pj if Ji → Jj. The jobs of the maximal critical
path are then removed from the network and a new maxi-
mal critical path is found in the resulting network. The total
slack of this path is distributed and so on, until we have no
more jobs left. Note that the resulting set of ATW windows
is a feasible set of ATW windows (Step 1). We will refer to
this heuristic (including Step 2) as HCPM.

4.2. Category 2 heuristics

De Boer and Schutten (1999) suggest a number of heuris-
tics based on problem (P), i.e., based on problem (PS) with
set S such that Sj = rj and Cj = dj (Step 1). A solution to
problem (P) (Step 2) may violate one or more precedence
relations. The suggested heuristics are based on repairing
violated precedence relations one by one (Step 4). If the
precedence relation Ji → Jj is violated, then a week Tij is
specified to repair the relation as follows. Ji must complete
before time period Tij; Jj cannot start before Tij. De Boer
and Schutten suggest several rules to determine Tij. They
first find the job Ji with lowest index i for which a prece-
dence relation has been violated. Next, they find job Jj with
the lowest index j for which precedence relation Ji → Jj
has been violated. Then, they repair Ji → Jj by setting Tij.
They use several rules to set Tij, of which a rule based on
work content was the most successful. We suggest a similar
approach. The main differences are the criterion to select

a violated precedence relation Ji → Jj and the rule to de-
termine Tij (Step 4). We first find the precedence relation
Jk → Jl that is violated and has the minimum slack Skl . Skl
is defined as dl − rk − (pl + pk). The idea is that we have
little freedom in specifying a Tkl to repair the precedence
relation Jk → Jl and we should use this little freedom we
have as well as possible. Therefore, instead of using a simple
rule to determine Tkl, we suggest the evaluation of all pos-
sible values of Tkl , that is, rl ≤ Tkl ≤ dk + 1, and keep the
best one. Moreover, by decreasing dk for job Jk, it may be
possible to decrease rm for successors Jm of job Jk without
violating more precedence constraints. If this is possible,
then it will be done. Analogously, we investigate whether
we can increase dm for predecessors of job Jl . It appears
that this strategy outperforms the heuristics of De Boer
and Schutten, both in solution quality and required com-
putation time (see Section 5). We denote this heuristic by
HENUM.

In order to validate our idea that the precedence relation
with minimum slack should be repaired first, we also tested
a variant of this heuristic that first repairs the precedence
constraint which has the maximum slack. This heuristic
appears to find slightly worse solutions and requires more
computation time.

4.3. Category 3 heuristics

4.3.1. Local search to improve a feasible solution
The LP-based heuristics that we have considered so far,
start with a solution in which precedence relations may be
violated. The precedence relations are then repaired, until
a feasible solution results in which no precedence relation
is violated.

Once a feasible solution is available, we may apply a local
search heuristic that tries to improve the current feasible so-
lution. Suppose that we have a feasible set of ATW windows
S and want to improve the corresponding solution, which
is optimal for problem (PS). This can only be achieved by
changing the ATW windows for the jobs. The basis for a
local search heuristic is the neighborhood structure. Sup-
pose that we want to change the ATW window [Sj, Cj] for
job Jj. We define a neighborhood based on increasing or
decreasing either Sj or Cj for a job Jj by one. For a job Jj,
this gives four possible changes. As an example, we discuss
the case in which we want to enlarge ATW window [Sj, Cj]
by decreasing Sj by one time period. The first condition
that must hold is that Sj > rj, since otherwise the resulting
ATW window would not be feasible. Let job Jk be a prede-
cessor of job Jj and suppose that Ck = Sj − 1. This means
that the ATW windows of Jj and Jk are adjacent. So, if we
decrease Sj, then, to maintain feasibility of S, we also have
to decrease Ck. This is only possible if the ATW window
[Sk, Ck − 1] consists of at least pk time periods. Therefore,
the second condition that must hold is that Ck − Sk ≥ pk
for all predecessors Jk of job Jj with Ck = Sj − 1.
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Linear-programming-based heuristics for project capacity planning 159

If the two conditions hold, then it is possible to decrease
Sj by one time period. Let S

′
j represent the new value of Sj,

i.e., S
′
j = Sj − 1. To represent the new ATW window [S

′
j, Cj]

for job Jj in problem (PS), the right-hand side of constraint
(5) for t = S

′
j must be changed from 0 to 1/pj. If we also

have to decrease Ck for a predecessor of job Jj it may be
possible to enlarge the time windows for successors Jl of
job Jk without losing feasibility of the ATW windows by
decreasing Sl . If this is possible it will be done. Denote the
resulting set of ATW windows by S ′.

Similar conditions and changes in problem (PS) can be
derived for the other possible changes of the ATW window
[Sj, Cj].

For a feasible set S, we define the neighbors of S as all
feasible sets S ′ that can be obtained from one of the four
possible changes to an ATW window [Sj, Cj] inS. Note that
the resulting search space is connected.

Starting from any feasible setS, we can apply local search
using this neighborhood to look for improvements to the
corresponding solution. We will discuss several local search
heuristics, in which we vary:

1. The initial feasible set S; (Step 1).
2. The acceptance criterion; (Step 3).
3. The neighbors of the current feasible set S that are eval-

uated (Step 4).

In particular with respect to the selection of the neighbors
to be evaluated, we use information from LP theory.

4.3.2. LP theory
Every feasible solution is characterized by a feasible set S
of ATW windows. The corresponding solution is found by
solving the associated LP problem, problem (PS). As de-
scribed in Section 4.3.1, a neighbor S ′ of S is obtained
by changing the upper bound or lower bound of one
of the ATW windows by one, and making the necessary
changes to related ATW bounds. The corresponding LP
problem, problem (PS ′) differs only slightly from problem
(PS ), namely for the ATW bounds that are changed, the
right-hand sides for the corresponding constraints in the
LP problem also change. From standard sensitivity analy-
sis in LP theory, it is known that a change to the right-hand
sides has no consequences for the optimality of the current
basis, provided that the current basis remains feasible. If BS
denotes the basis matrix and bS the right-hand side for the
LP problem (PS) then the same basis remains feasible (and
thus optimal) for S ′ if:

B−1
S bS ′ ≥ 0.

For the moment, we assume that the same basis remains
optimal for a neighbor S ′ of S. Let �S denote the optimal
dual solution and zS the optimal objective function value
for problem (PS), then:

zS ′ = �SbS ′ .

Let πj(t) be the value of the dual variable associated with
constraint (5) for job Jj in week t in the optimal solution
for problem (PS). Furthermore, let �(S,S ′) denote the set
of indices of the constraints for which the right-hand sides
for S and S ′ differ, and, for i ∈ �(S,S ′) let �bi denote the
corresponding difference in the right-hand side, then:

zS ′ = zS + �z(S,S ′),

with

�z(S,S ′) =
∑

i∈�(S,S ′)

πi�bi.

Thus, under the assumption that the same basis remains
optimal, we can use the optimal dual solution �S for prob-
lem (PS) to compute the change in objective function if we
move from S to S ′.

Moving to a neighbor S ′ of S will often bring about
changes in more than one right-hand side. This makes it
hard to predict whether the same basis will remain opti-
mal. On the other hand, �z(S,S ′) may give a good indica-
tion of the impact on the optimal objective function. Since
�z(S,S ′) can be easily computed, we may use it to decide
which neighbors to evaluate in the local search.

In the example above, where we changed Sj to Sj − 1, to
obtain a feasible set of ATW windows we have to change
skCk from one to zero for predecessors Jk of job Jj for which
holds that Ck = Sj − 1 = S

′
j. Therefore, in this example the

(expected) total change is given by:

�z(S,S ′) = πj(Sj) −
∑

Jk∈P ′
j

πk(Sj),

in which P ′
j is the set of predecessors Jk of job Jj with Ck =

Sj − 1.
The other three options for changing an ATW window

(increasing Sj, increasing Cj, or decreasing Cj) are evaluated
analogously.

4.4. HFEAS(·)

Empirically, it has been shown that a steepest-descent step
in the Simplex method for LP works very well. We adopt
this result in evaluating the neighbors of a setS. In heuristic
HFEAS(BASIC), we generate an initial feasible set S by heuris-
tic HBASIC. Next, we order all neighbors of S by increasing
value of �z(S,S ′). We try the neighbors in this order and
accept the first neighbor that leads to an improved schedule.
Then the local search is continued for the neighbors of S′.
The heuristic stops when no more improvement is found.

Since we accept only improvements, we limit our search
space significantly. We may expect that the final solution in
that case is sensitive on the initial feasible solution. To test
the influence of the starting solution on the final solution,
we also implemented heuristic HCPM to find a starting solu-
tion. Apart from the starting solution, heuristic HFEAS(CPM)
is identical to heuristic HFEAS(BASIC).
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160 Gademann and Schutten

In the heuristics HFEAS(BASIC) and HFEAS(CPM), we use
the dual values of constraint (5) to obtain an insight into
whether enlarging or shrinking the ATW window for a job
may be advantageous. If, for example, we want to enlarge
the ATW window for job Jj by allowing processing at time
Cj + 1, then we expect a change in the optimal solution
value equal to πj(Cj + 1). We know, however, that xj,Cj+1 ≤
1/pj, due to constraint (2). We also used (1/pj)πj(Cj + 1)
as the expected change in the optimal solution value by
allowing processing of job Jj at time Cj + 1. In the same way,
we use −(1/pj)πj(T) as the expected change in the optimal
solution value for disallowing processing of job Jj at time T .
If we use this method for the expected change, then we will
refer to it by saying that we use “detailed shadow prices.”

5. Computational experiments

5.1. Instance generation

To test the quality of our heuristics, we used the set of 450
test instances of De Boer and Schutten (1999). An instance
in this set is characterized by the three parameters n (the
number of jobs), K (the number of resources), and φ (aver-
age float). The average float is defined as φ = (

∑n
j=1 fj)/n,

where fj = dj − (rj + pj) + 1 is the float of job Jj. The used
values for parameter n were n = 10, 20 and 50; for param-
eter K, K = 3, 10, and 20; and for parameter φ, φ = 2, 5,
10, 15 and 20. For all possible combinations of n, K and φ,
10 instances were generated, which results in a total of 450
instances.

To generate precedence relations between the jobs, the
network generation procedure of Kolisch et al. (1995) has
been used. Assume that we already have a set of n jobs
J1, J2, . . . , Jn. The first step of the network generation pro-
cedure is to determine start jobs (jobs without predecessors)
and end jobs (jobs without successors). The second step as-
signs to each job that is not a start job a predecessor; the
third step assigns a successor to each job that is not an end
job and has as yet no successor. In the last step, the pro-
cedure randomly assigns predecessors to jobs until a given
average number of precedence relations per job is reached.
Each instance in our test set has three start jobs, three end
jobs, and the average number of precedence relations per
job is equal to two.

The minimum duration pj of job Jj is a randomly drawn
integer from the interval [1, 5]. De Boer and Schutten de-
veloped a procedure to set rj and dj in such a way that
0 ≤ fj ≤ 2φ and that φ is equal to a specified value. For fur-
ther details about this procedure, we refer to De Boer and
Schutten (1999). The time horizon T is set to the maximum
possible completion time, i.e., T = max1≤j≤n dj.

The available capacity Qkt for resource Rk in week t has
been randomly drawn between zero and 20. Each job re-
quires at least one and at most five resources (randomly
drawn). The values for the resource requirements qjk are

randomly drawn such that the expected workload of a re-
source is about 80%.

De Boer and Schutten try to minimize the total number
of hours of nonregular capacity. Therefore, ckt = 1 for every
resource Rk in every week t .

5.2. Lower bounds

To obtain an impression on how good the heuristics per-
form, we can compare them with one another and also
to a lower bound to the optimal solution value. De Boer
and Schutten (1999) use the solution value for problem (P)
in which all precedence relations are ignored. We denote
this lower bound as lb1. We improve this lower bound in
the following way. Suppose that there is a precedence rela-
tion Ji → Jj and that the intervals [ri, di] and [rj, dj] over-
lap. Let zij(Tij) be the optimal solution value of problem
(P) in which we replace di by Tij − 1 and rj by Tij. In ev-
ery feasible solution (including optimal solutions), we can
identify a week Tij (ri + pi ≤ Tij ≤ dj − pj + 1) before which
job Ji is completely performed and before which no work
is done on job Jj. Therefore, LBij = min{zij(Tij)|ri + pi ≤
Tij ≤ dj − pj + 1} is a lower bound to the optimal solution
value. We obtain a lower bound lb2 = max{LBij|(i, j) ∈ P},
with (i, j) ∈ P if and only if there is a precedence relation
Ji → Jj between job Ji and job Jj. Note that, by definition,
lb2 ≥ lb1.

Problem (P) ignores the precedence constraints. By
adding the following constraints, we can model the prece-
dence relations explicitly in the model:

t−1∑
τ=rj

xiτ ≥ yjt ∀(i, j) ∈ P, rj ≤ t ≤ di, (6)

t∑
τ=rj

xjτ ≤ yjt ∀j, t, (7)

yjt ∈ {0, 1}. (8)

The binary variable yjt indicates whether all predecessors
of job Jj have been completely performed before week t .
This means that we can only work on job Jj in week t if
the variable yjt is equal to one. Constraints (6) ensure that
yjt is equal to zero if at least one of the predecessors of
job Jj has not been completely performed before week t .
Constraints (7) guarantee that we do not work on job Jj
in week t (and before) unless all its predecessors have been
completely performed, i.e., variable yjt is equal to one. We
will refer to the problem that we get from adding constraints
(6)–(8) to problem (P) as problem (PE). The solution value
of the LP relaxation of problem (PE) gives another lower
bound (lb3). It holds that lb3 ≥ lb1.

5.3. Computational results

Most of the computational experiments were performed
on a computer with a Pentium II processor running at
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Table 2. Computational results for test instances

HENUM HFEAS(BASIC) HFEAS(CPM)

HWC Min slack Max slack No detail Detail No detail Detail

Value 1470.4 1307.3 1314.4 1408.2 1410.9 1324.2 1325.0
Dev. (%) 8.80 5.24 5.39 7.88 7.91 5.84 5.90
Max dev (%) 27.63 15.71 16.13 25.80 25.80 24.93 24.93
Time (s) 20 13 21 4 4 6 6
Max time (s) 193 237 459 113 219 200 130
Number best 6 215 143 56 56 133 137
Number unique best 0 151 92 3 1 23 30

500 MHz. The exception being the experiments for heuris-
tic HWC which were performed on a slower computer, us-
ing older versions of both the source code compiler and
the CPLEX optimizer than the other heuristics. The com-
putation time of HWC in Table 2 is therefore not directly
comparable with the computation times of the other heuris-
tics. The average value of the lower bound lb1 used by De
Boer and Schutten (1999) is 939.7. The lower bound lb2
that we developed has an average value of 984.1. The lower
bound lb3 has an average value of 948.5. In 400 cases (out
of 450), lb2 is strictly larger than lb3, whereas in 34 cases
lb3 is strictly larger than lb2. Table 2 shows the results of
the different heuristics for the 450 test instances. The row
“Value” denotes the average value of the objective function.
Analogously to De Boer and Schutten, we use:

Dev =
∑T

t=1

∑K
k=1 Ukt + ∑T

t=1

∑K
k=1 Qkt − LB

LB
,

as an indication of the quality of a heuristic. It measures
the deviation of the total capacity used (

∑T
t=1

∑K
k=1 Ukt +∑T

t=1

∑K
k=1 Qkt ) from a lower bound LB to the total ca-

pacity required. For lower bound LB, we use LB = lb2 +∑T
t=1

∑K
k=1 Qkt (recall that lb2 is a lower bound to the to-

tal number of hours of nonregular capacity that must be
used;

∑T
t=1

∑K
k=1 Qkt is the total number of hours of regu-

larly available capacity). The row “Dev” shows the average
deviation, whereas row “Max dev” shows the maximum de-
viation. In the same way, “Time” and “Max time” indicate
the average and the maximum required computation time
(in seconds). The row “Number best” shows the number of
instances for which a heuristic found the best solution value.
The row “Number unique best” indicates the number of in-
stances for which a heuristic found a better solution than
all other heuristics. The column “HWC” shows the results
for the best heuristic of De Boer and Schutten (1999). In
this heuristic, the precedence relations are repaired using
the work content ratio (see Section 4). The columns “Min
slack” and “Max slack” indicate the order in which the
precedence relations are repaired in heuristic HENUM. The
columns “Detail” and “No detail” refer to whether or not
detailed shadow prices are used.

In terms of solution values, all new heuristics appear to
perform better than HWC. Heuristic HENUM using the mini-
mum slack repairing rule results in the best average solution
value using on average 13 seconds of computation time. We
conclude that the order in which precedence relations are
repaired influences the solution value for HENUM. First re-
pairing the precedence relation that has the minimum slack
results in better results than first repairing the precedence
relation that has the maximum slack. Moreover, using the
maximum slack order instead of the minimum slack order
results in larger computation times (both on average and
in the maximum). We also see that, when HENUM results in
the best solution value found, it is in about 70% of the cases
the only algorithm that finds this solution value.

The results indicate that the starting solution for heuris-
tic HFEAS(·) strongly affects the quality of the final solution.
In general, heuristic HFEAS(CPM) produces solutions that
are slightly worse than HENUM does. The average solution
value for heuristic HFEAS(BASIC), however, is substantially
larger. The influence of using detailed shadow prices is only
marginal on the average solution value and on the average
computation time. The maximum of the required computa-
tion times, however, differs significantly as a result of using
detailed shadow prices. The average values of the starting
solutions are 1645.5 for heuristic HBASIC and 1479.4 for
heuristic HCPM.

Note that all heuristics are local search heuristics. The
number of solutions in the search space is exponential and
the number of iterations may therefore be large. The exper-
iments show, however, that convergence to a local optimum
is quite fast on the average, with some extreme exceptions
(for the instances with a large number of jobs).

Since Table 2 suggests that the starting solution affects
the quality of heuristic HFEAS(·), we tried HENUM (with the
minimum slack ordering) as a starting solution for HFEAS(·),
where we did not use detailed shadow prices. The average
solution value of this combination is 1293.3, requiring on
average a computation time of 16 seconds. In 308 (out of
450) instances, the solution of HENUM was improved by the
combination. In 313 instances, the combination resulted
in a solution which was at least as good as the best found
solution so far, of which in 194 cases the best found solution
value was improved.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
e
i
t
 
T
w
e
n
t
e
]
 
A
t
:
 
1
3
:
5
7
 
1
2
 
M
a
y
 
2
0
1
1



162 Gademann and Schutten

To further increase the quality of the solutions found by
heuristic HFEAS(·), we explored two more options. The first
option is by randomly disturbing the starting solution. The
second option we tried is randomly disturbing the end so-
lution found by HFEAS(·) and using that disturbed solution
as a starting solution for the next iteration. To randomly
disturb a (start or end) solution, we used the following pro-
cedure. First, we enumerate all possibilities to change the
ATW window of one job Jj by increasing or decreasing Sj or
Cj by one time unit. Of all those possibilities, we randomly
pick one. The next question is how many of these distur-
bances should be applied to a solution? On the one hand,
the number of disturbances should not be that large, since
the quality of the solution generally decreases as a result of
disturbing the ATW windows and the quality of HFEAS(·)
appears to depend on the quality of the starting solution.
On the other hand, the number of disturbances should be
large enough to be able to escape from the current local
optimum. Experimentally, we found that a number of such
disturbances equal to n/4 where n is the number of jobs
produces good solutions.

Figure 2 displays the results we found for randomly dis-
turbing either the initial solution from HFEAS(·) or the final
solution of the improvement heuristics. Figure 2 compares
the quality and the required computational effort of four
heuristics. The line for “CPM(30,1)” gives the results for the
30 experiments we did by randomly disturbing HCPM. Ex-
periment 1 uses HCPM without disturbing it. Experiments
2–30 use randomly disturbed versions of HCPM as a start-
ing solution. The ith data point on the line displays the
total computation time for the first i experiments and the
best solution value found in these experiments. The line for
“CPM(30,5)” displays results for the experiments in which
we additionally disturb the end solution of an experiment

Fig. 2. Solution value as a function of computation time.

four times (resulting in five solutions per experiment). The
lines for “Enum(30,1)” and “Enum(30,5)” display the re-
sults for analogous experiments using HENUM as a start-
ing solution. We see that this approach considerably im-
proves the solution quality and that disturbing an end solu-
tion is more effective than disturbing the starting solution:
one experiment for “CPM(30,5)” and “Enum(30,5)” re-
quires less computation time and produces better solutions
than five experiments for “CPM(30,1)” and “Enum(30,1)”,
respectively. We see that “Enum(30,5)” after 1 minute of
computation time (i.e., after three experiments out of 30)
outperforms the best results of the other heuristics after 30
experiments. Both the solution quality and the required
computation time suggest that this heuristic is the best
choice. In practice, the computation times are important,
e.g., when the model is used for scenario analysis in a meet-
ing of the portfolio management team (see Section 1). The
available computation time determines the number of ex-
periments that should be performed.

Hans et al. (2002b) test their exact algorithms on the same
450 instances. By using exact methods, they were able to
find optimal solutions for a subset of the instances. Table 3
shows detailed results on the number of times a solution was
proven optimal, depending on n (the number of jobs), K (the
number of resources), and φ (the average float). The rows
labeled as “Best HGVZ” contain the number of times that
at least one of the algorithms of Hans et al. (2002b) found
an optimal solution. Rows with the label “MIP” contain
the results for optimizing problem (PE). For each instance,
we stopped the calculations after 30 minutes of compu-
tation time. Note, however, that problem (PE) was solved
using CPLEX 8.1 on a computer with a Pentium 4 proces-
sor running at 2.5 GHz. Experimentally, we found that this
computer is more than four times faster than the computer
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Table 3. Number of found optimal solutions

n

10 20 50

Algorithm K/φ 3 10 20 3 10 20 3 10 20 Total

CPM(30,5) 2 10 9 10 10 10 10 8 8 9 84
Enum(30,5) 10 9 9 10 10 10 8 8 10 84
Best GS 10 10 10 10 10 10 10 10 10 90
Best HGVZ 10 10 10 10 10 10 9 9 7 85
MIP 10 10 10 10 10 10 10 10 10 90
CPM(30,5) 5 8 9 8 6 7 5 2 3 2 50
Enum(30,5) 9 8 7 9 8 6 8 5 2 62
Best GS 10 10 9 9 9 8 8 6 3 72
Best HGVZ 10 10 10 9 3 3 0 0 0 45
MIP 10 10 10 10 10 10 10 10 5 85
CPM(30,5) 10 6 7 5 2 4 7 0 0 0 31
Enum(30,5) 8 10 5 6 8 3 2 0 0 42
Best GS 10 10 7 6 9 7 3 0 0 52
Best HGVZ 10 10 7 0 1 0 0 0 0 28
MIP 10 10 10 10 10 10 10 1 0 71
CPM(30,5) 15 4 8 4 5 0 1 0 0 0 22
Enum(30,5) 6 7 6 7 1 2 0 0 0 29
Best GS 6 9 8 8 1 2 0 0 0 34
Best HGVZ 1 3 3 0 1 0 0 0 0 8
MIP 10 10 10 10 8 5 2 0 0 55
CPM(30,5) 20 1 5 5 1 0 0 0 0 0 12
Enum(30,5) 7 9 6 5 0 2 0 0 0 29
Best GS 9 9 7 5 0 2 0 0 0 32
Best HGVZ 3 4 3 0 0 0 0 0 0 10
MIP 10 10 10 10 4 2 0 0 0 46

Table 4. Detailed comparison of the results

n

10 20 50

Algorithm K/φ 3 10 20 3 10 20 3 10 20

CPM(30,5) 2 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.2 0.0
Enum(30,5) 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0
Best HGVZ 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1
MIP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CPM(30,5) 5 0.2 0.0 0.0 0.6 0.5 0.2 0.8 0.7 0.2
Enum(30,5) 0.0 0.1 0.2 0.0 0.1 0.0 0.0 0.0 0.1
Best HGVZ 0.0 0.0 −0.1 −0.5 0.7 0.0 5.7 4.2 0.8
MIP 0.0 0.0 −0.1 −0.9 −0.1 −0.2 −0.1 −0.1 −0.1
CPM(30,5) 10 6.9 0.3 0.1 6.7 0.5 0.0 9.0 1.8 0.7
Enum(30,5) 4.9 0.0 0.2 0.1 0.4 0.3 0.4 0.2 0.1
Best HGVZ 0.0 0.0 −0.1 29.6 3.8 1.5 38.5 7.0 3.6
MIP 0.0 0.0 −0.3 −1.8 0.0 −0.1 −2.2 0.4 1.5
CPM(30,5) 15 7.0 0.0 1.0 8.3 1.8 0.1 13.3 1.3 0.9
Enum(30,5) 0.0 0.1 0.7 0.0 0.4 0.3 0.0 0.5 0.3
Best HGVZ 13.9 1.7 1.1 158.2 6.7 2.3 68.4 12.8 6.5
MIP −0.2 0.0 0.0 −2.0 −0.5 −0.2 −0.6 1.7 2.8
CPM(30,5) 20 44.3 1.5 0.4 16.1 2.0 1.5 18.0 6.3 3.5
Enum(30,5) 0.2 0.0 0.6 0.0 0.5 0.2 0.2 0.0 0.0
Best HGVZ 13.1 1.2 0.6 49.2 9.5 3.5 109.9 42.4 36.9
MIP −0.2 −0.5 −0.6 −1.4 −0.6 0.8 2.9 5.1 5.7
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164 Gademann and Schutten

used for the other experiments. Solving problem (PE) had
more success than the approach of Hans et al. (2000b). Ev-
ery instance that was solved to optimality by Hans et al.,
was also solved to optimality using problem (PE). Rows
labeled as “CPM(30,5)” indicate how many times heuris-
tic HFEAS(CPM), starting 30 times with a randomly disturbed
version of HCPM and disturbing the end solution four times,
finds the known optimum solution. Clearly, the number pre-
sented in those rows cannot be larger than those in “MIP,”
since we do not know the optimal solution for those in-
stances that were not solved exactly using problem (PE). In
the same way, rows labeled as “Enum(30,5)” present results
for the same heuristic that only uses HENUM as a starting
solution. The rows labeled as “Best GS” present the num-
bers for the best of the latter two heuristics. We see that
all instances with 10 jobs and almost all instances with 20
jobs are solved to optimality by using problem (PE). For
problems with a large average float and a large number of
resources, this approach becomes less successful. In total,
347 cases are solved to optimality (using problem (PE)).
Hans et al. (2002b) were particularly able to solve instances
with a small number of jobs and with a small average float.
In total, they were able to solve 176 case optimally. The
heuristic based on HENUM also found an optimal solution
in 246 cases, whereas the best algorithm found an optimal
solution in 280 cases.

Table 4 shows detailed results on the average solution val-
ues, depending on n, K and φ. In this table, we compare the
heuristics in a relative form with “Best GS.” For example,
the objective function value of “CPM(30,5)” is on average
44.3% worse than the objective function value of “Best GS”
for instances with n = 10, K = 3 and φ = 20. We see that
our solutions are comparable to the solutions obtained by
solving problem (PE) for instances with a small number of
jobs or a small average float. For instances with a large
number of jobs and with a large average float, our solutions
are on average often better. Moreover, the required CPU
time for solving problem (PE) is comparable to the required
CPU time for our best heuristic. However, problem (PE)
was solved on a computer that was more than four times
faster than the computer used for the experiments with our
heuristics. Thus, our heuristics are expected to be at least
four times faster.

6. Conclusions

We have presented several heuristic methods to solve capac-
ity planning problems in which important practical issues
such as capacity flexibility, precedence relations, and max-
imum work content per period can be taken into account.
Such problems arise for instance in capacity driven multi-
project organizations. In particular the precedence relations
make the problems hard to solve. The main idea of our so-
lution approach is to reduce the problem to a simple LP
problem by introducing ATW windows. These ATW win-

dows guarantee that precedence relations are met. The LP-
based heuristics try to find good ATW windows such that
the solution for the corresponding LP is a good solution for
the original capacity planning problem. We have discussed
three categories of heuristics. The first category contains
constructive heuristics. A constructive heuristic constructs
only one feasible set of ATW windows. We presented the
straightforward heuristics HBASIC and HCPM. These are not
really good heuristics, but they serve merely to provide an
initial solution for other heuristics. The second category
contains heuristics that start from an infeasible solution and
convert this to a feasible solution. We presented the heuris-
tic HENUM that repairs violated precedence constraints one
by one. Using a given criterion, the next precedence rela-
tion to be repaired is selected. For this relation, we evaluate
all possibilities to repair its violation and then select the
best one. The third category contains heuristics that start
from a feasible solution and try to improve that solution
by changing the ATW windows. Which ATW window will
be changed is based on information about the dual solu-
tion to the corresponding LP. These heuristics are denoted
by HFEAS(BASIC) and HFEAS(CPM), where BASIC and CPM
refer to the constructive heuristics HBASIC and HCPM that
were used to obtain an initial feasible solution.

Computational results show that HFEAS(CPM) and HENUM
clearly outperform our constructive heuristics and con-
structive heuristics previously reported in the literature.
Moreover, it turns out that the solutions still significantly
improve if the starting solution and in particular the final so-
lution is randomly disturbed and the improvement heuristic
is restarted. The dual information gives good directions on
which ATW should be changed. The combination of these
ideas results in the best heuristic, in which HFEAS(ENUM) is
used as an initial solution for the improvement heuristic
HFEAS(·) and in which we randomly disturb both the ini-
tial solution and the final solution. In the best heuristic we
tested, the initial solution is disturbed 29 times giving 30 ini-
tial solutions, and for each of these initial solutions the final
solution is disturbed four times, giving five final solutions.

We compared our results to the solutions from Hans et al.
(2002b) and to solutions obtained by solving problem (PE).
Optimality could be proven for 347 instances. For 280 out
of those 347 instances, we also found the optimal solution
with one of our heuristics and for 246 instances the optimal
solution was found by the best heuristic (“Enum(30,5)”).
For small instances, our heuristics produce solutions com-
parable to those produced by solving problem (PE). For
large instances, our heuristics are generally better and much
faster than solving problem (PE). Therefore, we may con-
clude that our heuristics are very good heuristics for these
type of capacity planning problems.

Both from the theoretical and the practical point of view,
it would be very interesting to extend the model in several
aspects. In particular, we mention the following. First of
all, in the current model, preemption is allowed. For ca-
pacity planning, this is often not a problem, but from the
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practical point of view it may be desirable to limit the pos-
sibilities for preemption. For example, there should be a
minimum work content in every time period in which a job
is performed. Second, it is interesting to distinguish several
types of nonregular capacity, such as working overtime,
hiring, and subcontracting. Each of these types has its own
availability and cost structure. Third, new personnel leads
to additional costs, for example for training. Therefore, it
is profitable to hire labor for a longer time period. Also,
the management of the additional work force is easier for
smaller groups. Therefore, besides minimizing the costs for
nonregular capacity, a practical objective is to balance the
demand for, e.g., temporary labor. Fourth, other types of
resources may require extensions to the current approach.
Examples are spatial resources, such as docks and quays at
a shipyard, and a hangar for aircraft maintenance. These
aspects are subject to further research.
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