Selective Removal of ²²⁶Ra²⁺ from Gas-Field-Produced Waters

FIJS W. B. VAN LEEUWEN,[†] CORNELIS J. H. MIERMANS,[‡] HANS BEIJLEVELD,[†] TANJA TOMASBERGER,[§] JEFFERY T. DAVIS,^{II} WILLEM VERBOOM,^{*,†} AND DAVID N. REINHOUDT[†]

Laboratory of Supramolecular Chemistry and Technology, MESA⁺ Research Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands, Information and Measurement Technology Laboratory for Inorganic Analysis, Institute for Inland Water Management and Waste Water Treatment (RIZA), P.O. Box 17, 8200 AA Lelystad, The Netherlands, Fuels, Actinides and Isotopes, Nuclear Research and Consultancy Group (NRG), P.O. Box 25, 1755 ZG Petten, The Netherlands, and Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742

The ²²⁶Ra²⁺ selectivity of both the self-assembled (iso)quanosine-based systems and ionizable thiacalix[4]crown dicarboxylic acids was determined in gas-field-produced water and a metal ion-containing model solution (simulant). Seven gas-field-produced water samples have been analyzed. From a sample (K5D) with average metal ion concentrations ($[metal_{tot}] = 0.14 \text{ M}$), thiacalix[4]crown-5 dicarboxylic acid (10⁻⁴ M) extracts 60% of the ²²⁶Ra²⁺ content. Extractions performed with the model solution (^MK5D) indicate that in K5D there is significant competition in ²²⁶Ra²⁺ extraction due to the organic constituents of K5D, in particular with self-assembled extractants guanosine and isoquanosine. Nevertheless, all four extractants extract ²²⁶Ra²⁺ both from the produced water K5D and the model solution ^MK5D, even with a 100-fold excess of [metal_{tot}] to [extractant]. The extracted ²²⁶Ra²⁺ cations could effectively be stripped from the extractants by washing with pH 2 water. The results obtained with the extractants used, especially thiacalix[4]crown-5 dicarboxylic acid 3, clearly demonstrate the way to selectively remove Ra²⁺ from gas-field-produced waters.

Introduction

Sedimentary rocks containing oil and gas deposits may contain the naturally occurring (1) nuclides ²³⁸U and ²³²Th (2) and Ra²⁺ holding formation water (3, 4). This Ra²⁺ containing formation water is transported to the surface together with, for example, sulfate-rich injected (sea) water (5, 6). At the surface, a part of the Ra²⁺ precipitates in sulfate-rich scales and sludges, while the rest is introduced into the

10.1021/es050231b CCC: \$30.25 © 2005 American Chemical Society Published on Web 06/16/2005

environment with the produced water (7). According to the OSPAR convention's recommendations (2001), the oil and gas industries have to reduce the emission of naturally occurring materials to near background levels by 2020 (8), while the Ra²⁺ concentration of produced water is currently about 3 times higher than in normal seawater (9). Furthermore, Ra²⁺ and its daughter nuclides Rn, Po, and Pb can be ingested, for example, via seafood consumption (7), and consequently can induce cancer (10). In The Netherlands, a release of 10 GBq/yr of 226 Ra2+ into the environment is allowed (11) since only a low dose is obtained from this nuclide (7). However, the most important contribution to the annual dose of the world's population is caused by the direct daughter nuclide of ²²⁶Ra²⁺, namely, the radioactive ²²²Rn gas (12), which is assumed to cause around 20 000 lung cancer deaths per year in the United States (13). Therefore, we feel that selective extraction of Ra²⁺ from produced water effluents such as those of the (oil and) gas industry is of utmost importance.

The highly toxic nature of Ra²⁺ isotopes renders effective separation of these radionuclides from other nontoxic substances highly desirable. A commonly used technique to analyze the Ra²⁺ content of water streams is the nonspecific binding of alkaline earth cations on manganese/titanium oxide (14, 15). Furthermore, the properties of Ra^{2+} cations can also be used to immobilize them in synthetic clay such as Na-4-mican (16). However, none of these techniques have shown to be Ra²⁺ selective in the presence of an excess of chemically identical alkaline earth cations as compared to the amount of extractant used. In previous studies we have shown that both the non-covalent self-assembly of guanosine (1) and isoguanosine (2) subunits (17) and the covalent selfneutralizing thiacalix[4]crown-5 dicarboxylic acid (3) and thiacalix[4] crown-6 dicarboxylic acid (4) (18) provide excellent ²²⁶Ra²⁺ selective extractants in the presence of up to a 35×10^6 fold excess of the most abundant alkali(ne earth) cations (19).

A significant challenge is the selective extraction of Ra^{2+} (average concentration 5.9–9.0 Bq/L) (7) from, for example, gas-field-produced waters containing a large excess of other, mainly alkali(ne earth), cations (19) and anions (e.g., SO_4^{2-} , Cl^- , and HCO_3^-) (20). Literature studies suggest that these waters also contain a wide variety of organic species, such as oil, monocyclic aromatic hydrocarbons, and fatty acids (19–21). In addition, commonly used water-soluble scale inhibitors such as different types of phosph(on)ates, carboxylates, and sulfonates can be present (20). In this paper we focus on the influence of metal ions on the ²²⁶Ra²⁺ extraction.

In this paper we show the potential use of extractants (1-4; Figure 1) with a high $^{226}Ra^{2+}$ selectivity, under laboratory conditions, for the extraction of Ra^{2+} from industrial-produced water. To the best of our knowledge, this is the first time that this problem has been addressed with selective extractants.

Experimental Section

Materials. The preparation of guanosine (1) (*22*), isoguanosine (2) (*23*), thiacalix[4]crown-5 dicarboxylic acid (3) (*17*) and thiacalix[4]crown-6 dicarboxylic acid (4) (*17*) was according to literature procedures. Tris(hydroxymethyl)aminoethane (tris) 99.8+% was ordered from Aldrich. The acids (concentrated HCl and HNO₃) and CH₂Cl₂ were of pro analysis (p.a.) grade and used as received. The nitrate salts of K⁺ (\geq 99.5%), Rb⁺ (p.a.), and Mn²⁺ (\geq 97.0%) were purchased from Fluka Chemie and Na⁺ (p.a.), Cs⁺ (99%), Mg²⁺(p.a.),

VOL. 39, NO. 14, 2005 / ENVIRONMENTAL SCIENCE & TECHNOLOGY = 5455

^{*} Corresponding author phone: +31 53 4892977; fax: +31 53 4894645; e-mail: w.verboom@utwente.nl.

[†] University of Twente.

[‡] RIZA.

[§] NRG.

[&]quot; University of Maryland.

FIGURE 1. Selective Ra²⁺ extractants and their expected Ra²⁺ complexation. Both G 1 and isoG 2 form selective Ra²⁺ extractants by way of (in situ) self-assembly, while the thiacalix[4]crown dicarboxylic acids 3 and 4 provide "custom-made" extractants with an optimized Ra²⁺ coordination cage.

Ca²⁺ (p.a.), Sr²⁺ (p.a.), Ba²⁺ (p.a.), Cd²⁺ (98%), Zn²⁺ (98+%), Pb²⁺ (p.a.), and Fe³⁺ (>99%) were purchased from Acrôs Organics. ²²⁶Ra²⁺ stock solutions were purchased from AEA Technology QSA GmbH; ²²⁶Ra was used due to its long half-life ($t_{1/2} = 1.6 \times 10^3$ yr). (Note: ²²⁶Ra has a very high radiotoxicity and should be handled with care and under radionuclear supervision).

Solutions. All basic experiments were performed using an organic phase containing 10^{-4} M extractant in CH₂Cl₂. The extractant concentrations of the organic solutions were based on the amount of "free" extractant needed to complex one alkaline earth cation $[(1)_8, (2)_{10}, 3, and 4]$. Produced water samples were used as obtained from the gas well. To directly compare the extraction data with previous results (17, 18), the K5D metal ion-based model solution was made using metal nitrate salts, Na⁺ (5.7 \times 10⁻¹ M), K⁺ (2.3 \times 10⁻³ M), Mg^{2+} (1.5 \times 10 $^{-2}$ M), Ca $^{2+}$ (1.1 \times 10 $^{-1}$ M), Sr $^{2+}$ (1.5 \times 10 $^{-3}$ M), Ba^{2+} (1.8 \times 10^{-5} M), Fe^{3+} (1.5 \times 10^{-3} M), Mn^{2+} (1.2 \times 10^{-4} M), Zn^{2+} (3.9 \times 10^{-4} M), and Pb^{2+} (1.3 \times 10^{-5} M), in demineralized water. Produced water (model solution) dilutes (5, 20, 50, 70, and 100 times) were made in a pH 8.9 Tris-HCl buffer since previous work has shown that the extractants used only show quantitative ²²⁶Ra²⁺ extraction above pH 8 (17, 18). From stock solution of ²²⁶Ra²⁺ in 0.5 M HCl, containing no carrier (e.g., Ba2+), a dilution of 12 kBq/g $(1.4 \times 10^{-6} \text{ M})$ in 0.1 M HNO₃ was made.

Determination of the Metal Ion Contents of Produced Water Samples (Table 1). The produced water samples were diluted 10 times in Milli-Q water, after which 0.5 mL of concentrated nitric acid and 0.1 mL of internal standard were added. The determination of the Mg, Ca, Ba, Sr, Fe, Mn, Zn, Pb, U, Tl, Te, Cd, Ag, Mo, Cu, Ni, Co, Ti, and Be metal ion content was performed using a Perkin-Elmer Sciex Instruments Elan 6000 inductively coupled plasma mass spectrometer (ICP-MS) equipped with a cross-flow nebulizer, a platinum sampler, and a skimmer cone. Analysis was performed with the following: Ge and Re as internal standards, a power of 900 W, a nebulizer gas flow of 0.87 L/min, a plasma gas flow of 15 L/min, and a sample uptake of 1 mL/min. Interference corrections were made for ⁴⁰Ca¹⁶OH⁺ on ⁵⁷Fe⁺, ⁴³Ca¹⁶O⁺ on ⁵⁹Co⁺, ⁴³Ca¹⁶O⁺ on ⁶⁰Ni⁺, sulfur on $^{65}\mathrm{Cu}^+\!\!,$ and $^{66}\mathrm{Zn}^+$ and $^{88}\mathrm{Sr}^{2+}$ on $^{44}\mathrm{Ca}^+\!\!.$ Seven callibration standards were used, ranging from 0.1 to $50 \,\mu g/L$ (in the case of Mg, Fe, and Zn the concentrations used were

TABLE 1. Metal Ion Content of Seven Produced Water Samples^a

$\begin{array}{lll} {Ti}^b & 9.4\times 10^{-10} {-} 1.1\times 10^{-6} & 2.\\ {Mn}^b & 2.3\times 10^{-6} {-} 5.0\times 10^{-4} & 9.\\ {Fe}^b & 2.6\times 10^{-4} {-} 5.4\times 10^{-3} & 1.\\ {Co}^b & 1.4\times 10^{-7} {-} 5.6\times 10^{-7} & 3.\\ {Ni}^{2+} & (<1.7\times 10^{-8}) {-} 1.7\times 10^{-6} & 3.\\ {Cu}^b & 8.8\times 10^{-9} {-} 1.4\times 10^{-6} & 3.\\ {Zn}^{2+} & (<3.1\times 10^{-7}) {-} 2.3\times 10^{-3} & 3.\\ \end{array}$	verage [IVI]	K5D [M]
$\begin{array}{cccc} Cd^{2+} & 4.5 \times 10^{-11} - 3.3 \times 10^{-6} & 5.\\ Tl^{3+} & 3.6 \times 10^{-10} - 7.4 \times 10^{-7} & 1.\\ Pb^{b} & (<4.0 \times 10^{-8}) - 1.6 \times 10^{-4} & 2.\\ total transition metal cations & 1.\\ Mg^{2+} & (<2.1 \times 10^{-6}) - 5.0 \times 10^{-2} & 9.\\ Ca^{2+} & 2.1 \times 10^{-6} - 3.8 \times 10^{-1} & 7.\\ Sr^{2+} & 6.3 \times 10^{-8} - 6.2 \times 10^{-3} & 1.\\ Ba^{2+} & 3.5 \times 10^{-8} - 1.4 \times 10^{-4} & 2.\\ Na^{+} & 3.1 \times 10^{-4} - 2.1 & 4.\\ K^{+} & 6.1 \times 10^{-6} - 4.1 \times 10^{-3} & 1.\\ total alkali(ne earth) cations & 4.\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 3 \times 10^{-7} \\ 2 \times 10^{-4} \\ 5 \times 10^{-3} \\ 3 \times 10^{-7} \\ 1 \times 10^{-7} \\ 2 \times 10^{-7} \\ 9 \times 10^{-4} \\ 9 \times 10^{-7} \\ 7 \times 10^{-5} \\ 0 \times 10^{-3} \\ 5 \times 10^{-2} \\ 1 \times 10^{-1} \\ 5 \times 10^{-3} \\ 7 \times 10^{-1} \\ 3 \times 10^{-3} \\ 0 \times 10^{-1} \end{array}$
total 5.	0.0×10^{-1} 7.	0×10^{-1}

 a Range of concentrations, average concentration, and sample K5D determined with ICP-MS and in the case of Na⁺ and K⁺ with a flame photometer. Metal ions with an average concentration below 10⁻⁷ M are not reported. b These metal ions can be present in a number of valencies.

a factor 10 higher). The distribution of the found values is 10% with the exception of Cu, Zn, Co, and Ni, which give 15%, and Be, Ag, Fe, Te, and Mg, which give 20%.

The analysis of the Na and K metal ion content was performed using an Eppendorf ELEX 6361 flame photometer. Eight calibration standards were used, ranging from 50 to 2500 mg/L for Na and from 10 to 250 mg/L for K. The distribution of the found values is 5% for Na and 10% for K.

²²⁶**Ra**²⁺ **Extraction Procedures (Figure 2).** Equal volumes (2.0 mL) of the organic and aqueous solutions were transferred into a screw cap vial with a volume of 4 mL. To determine the ²²⁶Ra²⁺ extraction, 40 μ L of ²²⁶Ra²⁺ tracer (480 Bq) was added to the aqueous phase (2.8 × 10⁻⁸ M). Because experiments performed with half the amount of tracer still give the same extraction percentages, the [metal_{tot}]/ [extractant] ratio probably has a larger influence on the ²²⁶Ra²⁺ extraction than the concentration of ²²⁶Ra²⁺ tracer in

FIGURE 2. ²²⁶Ra²⁺ extraction percentages ($p_{Ra} = 100\% \times [^{226}Ra^{2+}]_{org}/[^{226}Ra^{2+}]_{tot}$) vs times of dilution: (a) produced water sample K5D and (b) metal ion-based model solution ^{MK5D} (expected errors between 10 and 15%). Markers depict experimentally obtained points, while the trend lines merely provide a guideline for the eye.

FIGURE 3. Average ${}^{226}Ra^{2+}$ recovery (r_{Ra}) from the extractants 1–4. Stripping of a 1 mL organic phase occurred with a 1 mL pH 2 aqueous phase (HCI).

the aqueous phase. In the case of the guanosine (1) extraction experiments two equivalents, compared to $[(1)_8]$, of lithium picrate were added to allow for full extraction (17). The samples were shaken (1500 rpm) at ambient temperatures (22-24 °C) for 1 h to ensure complete settling of the twophase equilibration. After extraction, the solutions were disengaged by centrifugation (1600 rpm for 5 min), and aliquots (0.5 mL) of the organic and aqueous phases were pipetted out for the determination of the ²²⁶Ra²⁺ extraction percentages. The γ -activity (186 keV) was determined with a HPGe detector using a counting time of 2 h and a counting error of 10%. The obtained extraction percentages are defined as 100% times the ratio of activity in the organic phase (A_0) and the total activity $(A_0 + A_{aq})$ (eq 1), with an estimated error between 10 and 15% (combination of the 10% error of the HPGe detector and a 10% human error) (17, 18):

$$p_{\rm Ra}\% = 100\%(A_{\rm o}/(A_{\rm o} + A_{\rm aq})) \tag{1}$$

²²⁶Ra²⁺ Stripping Procedures (Figure 3). From the remaining 1.5 mL organic phase, a 1.0 mL sample was removed and transferred into a new screw-cap vial with a volume of 4 mL. Subsequently, 1.0 mL of pH 2 adjusted water (HCl) was added, and the samples were shaken (1500 rpm) at ambient temperatures (22–24 °C) for 1 h to ensure complete settling of the two-phase equilibration. After extraction, the solutions were disengaged by centrifugation (1600 rpm for 5 min), and an aliquot (0.5 mL) of the aqueous phases was pipetted out for the determination of the ²²⁶Ra²⁺ stripping percentages. The obtained extraction percentages are defined as 100% times the ratio of activity in the aqueous stripping phase (A_{strip}) and the original activity in the organic phase (A_{org}) (eq 2), with an estimated error of 10–15% (17, 18):

$$r_{\rm Ra}\% = 100\% (A_{\rm strip}/A_{\rm org})$$
 (2)

Produced Water Sampling. The produced water samples were taken downstream of the secundary water-treatment equipment and supplied in polythene sampling bottles of 1 L. The samples were not treated in anyway.

Results and Discussion

Metal Ion Constituents of Gas-Field-Produced Water. Since the content of produced waters can vary greatly around the world, we limited our study to gas wells at the Dutch continental shelf, which have been studied extensively for their organic substituents (19). Instead of measuring a lot of different samples, seven different gas-field-produced waters were analyzed using ICP-MS and a flame photometer.

Table 1 clearly shows the wide variety of cations present in the produced waters. Apart from traces of transition and other heavy metals (total 2×10^{-3} M) significant quantities of alkali(ne earth) cations are present (total 7×10^{-1} M). Of the latter the alkali cation Na⁺ is by far the most abundant. Of the alkaline earth cations Ca²⁺ is the most abundant, followed by Mg²⁺, Sr²⁺, and Ba²⁺. On the basis of the average metal ion concentrations, one produced water sample (K5D), which had metal ion concentrations closest to the average values was selected for further extraction experiments. For data of the separate samples see the Supporting Information.

²²⁶Ra²⁺ Extraction from a Produced Water Sample. Although liquid-liquid extraction would not provide a commercially effective procedure for actual ²²⁶Ra²⁺ extraction, it is an effective method to assess the ²²⁶Ra²⁺/M_{tot} separation from gas-field-produced waters. From literature it is known that related extractants give highly identical selectivities in both liquid-liquid extraction systems and in commercially more effective separation systems such as supported membranes or functionalized solid supports (24-26). Although the Ra²⁺ extraction efficiency will improve with extractant concentrations that are equal to those of the total metal ion content, liquid-liquid extractions were performed with 10^{-4} M extractant [(1)₈, (2)₁₀, 3, and 4]. This extractant concentration allows for a direct comparison of the obtained extraction percentages with previous results, dealing with the ²²⁶Ra²⁺/metal_{single} selectivity in the alkali(ne earth) cation series (17, 18). However, as a consequence a number of dilution steps are required (5–100 times; samples $K5D_{1/5}$ – K5D_{1/100}), in a Tris buffer ([Cl⁻] = 0.7×10^{-3} M), to determine the ²²⁶Ra²⁺ extraction efficiency for [metal_{tot}]/[extractant] ratios ranging from 1400 to 70.

The extraction data (Figure 2a) show that with extractant **3**, about 70% of $^{226}Ra^{2+}$ can be extracted from K5D_{1/5}, whereas K5D_{1/70} allows for quantitative extraction of $^{226}Ra^{2+}$. However, the other three extractants, **1**, **2**, and **4**, only extract $^{226}Ra^{2+}$ from the samples K5D_{1/20} – K5D_{1/100}. In the case of K5D_{1/100}, these extractants only give $^{226}Ra^{2+}$ extraction percentages of 83%, 62%, and 43%, respectively. These results clearly show that the thiacalix[4]crown-5 dicarboxylic acid (**3**) is the best $^{226}Ra^{2+}$ extractant under these conditions, a result that is underlined by its effectivenes without any additives such as picrate anions.

To isolate the influence the metal ions in K5D have on the 226 Ra²⁺ extraction of the possible influence of anionic/organic substituents, extractions were performed with a metal ion-based model solution (^MK5D). This model solution contains the same concentration of the major metal ions present in produced water sample K5D, viz., Na⁺, K⁺, Mg²⁺, Ca²⁺, Sr²⁺, Ba²⁺, Fe³⁺, Mn²⁺, Zn²⁺, and Pb²⁺ (Table 1), resulting in a total metal ion concentration ([metal_{tot}]) of 0.70 M.

The highest ²²⁶Ra²⁺ extraction percentages were obtained with the extractants **1** and **3**, showing (near) quantitative ²²⁶Ra²⁺ extraction from ^MK5D_{1/5} (Figure 2b). This means that 10⁻⁴ M of extractant is able to extract 2.8 × 10⁻⁸ M ²²⁶Ra²⁺ from a total salt concentration of 0.11 M. Surprisingly, the extractants previously reported to have the highest *overall* ²²⁶Ra²⁺ selectivities in the alkali(ne earth) series, extractants **2** (*17*) and **4** (*18*), gave the poorest results with K5D and ^MK5D. Apparently, for these extractants there is more competition by the other cations present; competition by transition metal ions is not expected since the extractants only have hard donor atoms. Nevertheless, from ^MK5D_{1/70}, all four extractants quantitatively extracted ²²⁶Ra²⁺. This means that they can extract ²²⁶Ra²⁺ at a [metal_{tot}]/[extractant] ratio of 100.

The extractants with the highest ²²⁶Ra²⁺/Na⁺_{single} selectivity (1 and 3) show the highest ²²⁶Ra²⁺ extraction from ^MK5D (Figure 2b) (*17*, *18*). In ^MK5D_{1/5} the concentrations of the other alkali(ne earth) cations (Table 1), in particular that of the second most abundant cation Ca²⁺ (1.1 × 10⁻¹ M), are below the previously determined thresholds for ²²⁶Ra²⁺ extraction (*17*, *18*). Of the extractants used, the lowest ²²⁶Ra²⁺/Ca²⁺_{single} separation in the presence of only Ca²⁺ as single competing cation has been reported for extractant **2** (*17*); at 2.4 × 10⁻² M Ca²⁺_{single} still 30% of ²²⁶Ra²⁺ is extracted (*17*). Apparently, Na⁺ is the metal ion, which causes the competition in the ²²⁶Ra²⁺ extraction.

The extraction data of K5D (Figure 2a) clearly show a lower ²²⁶Ra²⁺ extraction efficiency than the ^MK5D model solution (Figure 2b). An increased competition in ²²⁶Ra²⁺ extraction is observed for all four extractants; however, it is most pronounced with extractant 1. It indicates that either anionic or organic constituents of K5D have a negative influence on the 226Ra2+ extraction. The anions are assumed to have no effect on the extraction behavior, since the extractants 1 (17), 3 (18), and 4 (18) provide their own anionic groups for neutralization; the extraction behavior of extractant 2 is even anion independent (27, 28). At $K5D_{1/100}$ and ^MK5D_{1/100} there still are distinct differences in the ²²⁶Ra²⁺ extraction behavior. Due to dilution in a Tris-HCl buffer, [Cl⁻] is equal to [metal_{tot}] in both samples (7 \times 10⁻³ M). Therefore, the organic pollutants, such as fatty acids, reported in ref 8 to be present in produced waters on the Dutch continental shelf are thought to cause competition in the ²²⁶Ra²⁺ extraction. A result that is in agreement with the formation of a "soapy" third phase, when the K5D sample is diluted less than 70 times, while the MK5D does not show such a behavior. It is important to note, that in a solid-support based extraction system, a soapy third phase will not be formed and will not influence the extraction equilibria. Consequently, the extractants 1, 2, and 4 might be much more effective in water streams, which do not contain competing organic constituents but have Na⁺, Mg²⁺, and Ca^{2+} as the main competing ions (29, 30).

Stripping of the Organic Phases. Efficient extraction of ²²⁶Ra²⁺ depends on effective stripping from the organic phases into another aqueous solution (pH 2). Previously, it has been shown that the ²²⁶Ra²⁺ extraction of all four extractants used cannot occur below pH 2 (*17*, *18*). Therefore, ²²⁶Ra²⁺-stripping experiments were performed at pH 2 with samples of the organic phases obtained after the ²²⁶Ra²⁺ extraction experiments (see above; Figure 2). Average stripping percentages are shown in Figure 3.

The stripping experiments show that while extractant 1 only gives ~50% recovery, the other three extractants (2–4) exhibit near quantitative $^{226}Ra^{2+}$ recoveries under the conditions used. This means that these extractants are not only able to selectively extract $^{226}Ra^{2+}$ cations but can also effectively be stripped of their radioactive radium content. The complete regeneration of the extractants 4 (and 3) has

been reported (18), indicating that after stripping these extractants can effectively be reused for the extraction of 226 Ra²⁺ from aqueous solutions with a pH above 8.

Acknowledgments

This research is supported by the Technology Foundation STW, applied science division of NWO and the technology program of the Ministry of Economic Affairs and by the U.S. Department of Energy (J.T.D.). We gratefully acknowledge the Fuels, Actinides and Isotopes (FAI) department at the Nuclear Research & Consultancy Group (NRG) in The Netherlands for providing the radionuclear facilities. Furthermore, we acknowledge Total E&P Nederland B.V. for providing us with the gas-field-produced water samples.

Supporting Information Available

The analysis results of the seven different gas-field-produced samples. This material is available free of charge via the Internet at http://pubs.acs.org.

Literature Cited

- (1) Kathren, R. L. NORM sources and their origins. *Appl. Radiat. Isot.* **1998**, *49*, 149–168.
- (2) UNSCEAR. Sources and Effects of Ionizing Radiation; United Nations: New York, 1977.
- (3) Shawky, S.; Amer, H.; Nada, A. A.; Abd El-Maksound, T. M.; Ibrahiem, N. M. Characteristics of NORM in the oil industry from eastern and western deserts of Egypt. *Appl. Radiat. Isot.* 2001, 55, 135–139.
- (4) Heaton, B.; Lambley, J. TENORM in the oil, gas and mineral mining industry. *Appl. Radiat. Isot.* 1995, 46, 577–581.
- (5) Sorbie, K. S.; Mackay, E. J. Mixing of injected, connate and aquifer brines in waterflooding and its reference to oilfield scaling. *J. Pet. Sci. Eng.* **2000**, *27*, 85–106.
- (6) Crabtree, M.; Eslinger, D.; Flecher, P.; Miller, M.; Johnson, A.; King, G. Fighting scale—removal and prevention. *Oilfield Rev.* 1999, 30–45.
- (7) Strålberg, E.; Smith Varskog, A. Th.; Raaum, A.; Varskog, P. Naturally occurring radionuclides in the marine environment and overview of current knowledge with emphasis the North Sea area; 2003; ND/E-19/03.
- (8) OSPAR Convention for the Protection of the Marine Environment of the North-East Atlantic. OSPAR recommendation 2001/1 for the management of produced water from offshore installations. 2001.
- (9) The European Commission Directorate-General XI Environment, Nuclear Safety and Civil Protection. Pilot study for the update of the MARINA project on the radiological exposure of the european community from radioactivity in north european marine waters; Final report, 1999.
- (10) United States Agency for Toxic Substances and Disease Registry. Toxicological profile for radium. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency: Washington, DC, 1990.
- (11) Thijssen, C.; Jonkergouw, P. *Jaaruitgave Stralingsbescherming*; Sdu Uitgevers: The Hague, 2004; p 273.
- (12) World Nuclear Association. Issue Brief: Naturally occurring radioactive materials (NORM). 2004.
- (13) United States Environmental Protection Agency. Assesment of Risks from Radon in Homes; EPA 402-R-03-003; U.S. Government Printing Office: Washington, DC, 2003.
- (14) Moon, D. S.; Burnett, W. C.; Nour, S.; Horwitz, P.; Bond A. Preconcentration of radium isotopes from natural waters using MnO₂ resin. *Appl. Radiat. Isot.* **2003**, 59, 255–262.
- (15) Andersen, T. C.; Black, R. A.; Blevis, I.; Boger, J.; Bonvin, E.; Chen, M.; Cleveland, B. T.; Dai, X.; Dalnoki-Veress, F.; Doucas, G.; Farine, J.; Fergani, H.; Fowler, M. M.; Hahn, R. L.; Hallman, E. D.; Hargrove, C. K.; Heron, H.; Hooper, E.; Howard, K. H.; Jagam, P.; Jelley, N. A.; Knox, A. B.; Lee, H. W.; Levine, I.; Locke, W.; Majerus, S.; McFarlane, K.; McGregor, G.; Miller, G. G.; Moorhead, M.; Noble, A. J.; Omori, M.; Rowley, J. K.; Shatkay, M.; Shewchuk, C.; Simpson, J. J.; Sinclair, D.; Tanner, N. W.; Taplin, R. K.; Trent, P. T.; Wang, J.-X.; Wilhelmy, J. B.; Yeh, M. A radium assay technique using hydrous titanium oxide adsorbent for the Sudbury neutrino observatory. *Nucl. Instrum. Methods Phys. Res., Sect. A* 2003, *501*, 386–398.
- (16) Komarneni, S.; Kozai, N.; Paulus, J. W. Superselective clay for radium uptake. *Nature* **2001**, *410*, 771.

- (17) Van Leeuwen, F. W. B.; Verboom, W.; Shi, X.; Davis, J. T.; Reinhoudt, D. N. Selective ²²⁶Ra²⁺ extractants provided by selfassembly of guanosine and isoguanosine derivatives. *J. Am. Chem. Soc.* **2004**, *126*, 16575–16581.
- (18) Van Leeuwen, F. W. B.; Beijleveld, H.; Miermans, C. J. H.; Huskens, J.; Verboom, W.; Reinhoudt, D. N. Ionizable (thia)calix[4]crowns as highly selective ²²⁶Ra²⁺ extractants. *Anal. Chem.*, in press.
- (19) He, S.; Kan, A. T.; Tomson, M. B. Inhibition of calcium carbonate precipitation in NaCl brines from 25 to 90 °C. *Appl. Geochem.* **1999**, *14*, 17–25.
- (20) Van Hattum, B.; Cofino, W. P.; Feenstra, J. F. Environmental aspects of produced water discharges from oil and gas production on the Dutch continental shelf. Institute for Environmental Studies: 1992.
- (21) Bostick, D. T.; Luo, H.; Hindmarsh, B. Characterization of Soluble Organics in Produced Water; ORNL/TM-2001/78; Oak Ridge National Laboratory: Oak Ridge, TN, 2001.
- (22) Forman, S. L.; Fettinger, J. C.; Pieraccini, S.; Gottarelli, G.; Davis, J. T. Toward artificial ion channels: A lipophilic G-quadruplex. J. Am. Chem. Soc. 2000, 122, 4060–4067.
- (23) Davis, J. T.; Tirumala, S.; Jenssen, J. R.; Radler, E.; Fabris, D. Self-assembled extractants from isoguanosine. J. Org. Chem. 1995, 60, 4167–4176.
- (24) Lee, S. C.; Lamb, J. D.; Cai, M. M.; Davis, J. T. Cs⁺ and Ba²⁺ selective transport by a novel self-assembled isoguanosine ionophore through polymer inclusion and bulk liquid membranes. *J. Inclusion Phenom.* **2001**, *40*, 51–57.
- (25) Casnati, A.; Pochini, A.; Ungaro, R.; Ugozzoli, F.; Arnaud, F.; Fanni, S.; Schwing, M.-J.; Egberink, R. J. M.; de Jong, F.;

Reinhoudt, D. N. Synthesis, complexation, and membrane transport studies of 1,3-alternate calix[4]arene-crown-6 conformers: A new class of cesium selective ionophores. *J. Am. Chem. Soc.* **1995**, *117*, 2767–2777.

- (26) Izatt, R. M.; Bradshaw, J. S.; Bruening, R. L. Solid-phase extraction of ions using molecular recognition technology. *Pure Appl. Chem.* 1996, 68, 1237–1241.
- (27) Cai, M. M.; Marlow, A. L.; Fettinger, J. C.; Fabris, D.; Haverlock, T. J.; Moyer, B. A.; Davis, J. T. Binding cesium ions with nucleosides: Templated self-assembly of isoguanosine pentamers. *Angew. Chem., Int. Ed.* **2000**, *39*, 1283–1288.
- (28) Shi, X.; Fettinger, J. C.; Cai, M. M.; Davis, J. T. Enantiomeric self-recognition: cation-templated formation of homochiral isoguanosine pentamers. *Angew. Chem., Int. Ed.* **2000**, *39*, 3124–3127.
- (29) Jiménez, A.; De La Montaña Rufo, M. Effect of water purification on its radioactive content. *Water Res.* **2002**, *36*, 1715–1724.
- (30) Rihs, S.; Condomines, M. An improved method for Ra isotope (²²⁶Ra, ²²⁸Ra, ²²⁴Ra) measurements by gamma spectrometry in natural waters: application to CO₂-rich thermal waters from the French massif central. *Chem. Geol.* **2002**, *182*, 409–421.

Received for review February 3, 2005. Revised manuscript received May 12, 2005. Accepted May 13, 2005.

ES050231B