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Abstract
This paper presents results from a flow visualization study of the wake structures
behind solid spheres rising or falling freely in liquids, under the action of gravity.
These show remarkable differences to the wake structures observed behind
spheres held fixed. The two parameters controlling the rise or fall velocity
(i.e. the Reynolds number) are the density ratio between the sphere and liquid
and the Galileo number.

PACS numbers: 47.32.-y, 47.54.+r, 47.27.-i

1. Introduction

This year’s cover illustration shows the boundary layer separation from a light sphere rising in
quiescent water at high Reynolds number. The wake structure behind the sphere is visualized
with the Schlieren technique. The experiment is part of a project to study wake structures
behind falling and rising spherical particles in a large range of Reynolds numbers.

In the past years, extensive numerical investigations [1–5] have established how the wake
of a sphere held fixed in a uniform flow undergoes a series of transitions as the Reynolds
number Re = Ud/ν is increased. Here, U is the free stream velocity, d the diameter of
the sphere, and ν is the kinematic viscosity of the water. It was found that the wake is
axially symmetric up to Re = 212. Above this value, a planar-symmetric wake is found that
consists of two steady counter-rotating threads. At Re ≈ 270 there is a further transition
and the planar-symmetric flow becomes time-dependent: opposite-signed streamwise vortices
then form a series of loops that resemble hairpin vortices. As the Reynolds number is further
increased, the flow gradually becomes more irregular and finally turbulent. The digital particle
image velocimetry (DPIV) measurements by Brücker [6] and the flow visualization studies by
Schouveiler and Provansal [7] have confirmed most of these numerical results and have further
elucidated the sequence of transitions.
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Figure 1. Top view of the Schlieren set-up used to visualize the sphere wakes.

For freely moving spheres the Reynolds number is defined by the measured mean velocity
of the rise or fall of the sphere UT and the corresponding ‘Reynolds number’ becomes
ReT = 〈UT 〉d/ν. The mean velocity is the time-averaged velocity of the sphere, not including
the acceleration of the sphere from rest. The flow loses its axial symmetry at a critical
Reynolds number, which is not significantly affected by the density ratio, between solid and
liquid, ρs/ρ [8]: Recr = 211.9 for ρs/ρ → ∞ (i.e. sphere held fixed), Recr = 206.3 for
ρs/ρ = 0.5 and Recr = 205.8 for ρs/ρ = 0.0. This is in good agreement with, for example,
the experimental results on solid spheres [9], on surface-contaminated gas bubbles [10], and
on wake visualizations in experiments with drops of tetrachloride and chlorobenzene falling
in water [11–13]. As pointed out by Natarajan and Acrivos [14], these drops must have
effectively behaved as solid spheres due to the presence of surface-active impurities, and these
visualizations have, therefore, often served as a basis of comparison with numerical studies on
fixed spheres.

What happens for freely falling or rising spheres at higher Reynolds number, which is
more common in multiphase flow applications? How are the wake structures and transitions
observed for the fixed sphere case modified? Is there a (clear) difference in wake structure
between rising and falling spheres? In this article, we present flow visualizations of the wakes
behind freely moving solid spheres at large Reynolds numbers (Re = 450–4623) for which
the density ratio ρs/ρ is in the range 0.50–2.63.

2. Experimental details

The flow visualizations of the sphere wakes were carried out in a transparent tank (0.15×0.15×
0.5 m3) filled with decalcified water. Smooth plastic spheres with diameters between 1.5 and
10 mm and densities between 500 and 2781 kg m−3 were released from rest. By means of an
optical system consisting of two LED-lights, pinholes, lenses and mirrors, two perpendicular
images of the particle and its wake were created and recorded at 500 frames/s with a CCD-
camera (figure 1). Hence, each image consists of two perpendicular views of the same sphere.
The images are taken at a position in the transparent tank where the spheres do not accelerate
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Table 1. Parameter values in our visualizations; d in mm, ρs in kg m−3. G is defined by equation (1)
and ReT is the mean Reynolds number (ReT = 〈UT 〉d/〈ν〉).

Number d ρs ρs/〈ρ〉 G ReT Figure

Falling 1 3.2 1028 1.03 121 205 8
2 4.0 1058 1.06 239 325 8
3 1.5 2781 2.79 304 450 8
4 6.0 1035 1.04 359 546 2
5 6.0 1043 1.05 394 608 2
6 4.0 2629 2.63 1261 1970 8

Rising 7 3.2 965 0.97 121 210 6
8 5.0 950 0.95 297 450 3
9 5.0 947 0.95 306 475 3

10 4.0 873 0.88 334 565 6
11 10.0 988 0.99 350 576 4
12 8.0 982 0.99 331 602 6
13 6.0 958 0.96 355 647 2
14 6.0 950 0.95 390 656 2
15 6.4 925 0.93 534 920 6
16 6.4 864 0.87 728 1180 7
17 7.9 925 0.93 732 1350 7
18 6.4 650 0.65 1160 1965 7
19 9.5 500 0.50 2548 4623 7

anymore. The wake was visualized using the Schlieren technique, which visualizes density
differences due to changes in the refraction index of the fluid. To this end a small vertical
temperature gradient in the water was maintained (1 K cm−1). The mean water temperature
at the measurement section was 302 K, with corresponding values of the density (〈ρ〉) and
viscosity (〈ν〉) of 996 kg m−3 and 0.802 × 10−6 m2 s−1, respectively. Hence, the Reynolds
number is based on the mean viscosity and is defined as ReT = 〈UT 〉d/〈ν〉. It turned out to
be difficult to keep a constant temperature gradient. Therefore, the error in the mean water
temperature at the measurement section is about 3 K, leading to a relative error in the viscosity
of 10%. As opposed to the fixed-sphere problem, the Reynolds number for freely moving
spheres is not an independent parameter. Following Jenny et al [8] we choose as independent
dimensionless variables the ratio ρs/〈ρ〉 of the densities and the Galileo number

G = (|(ρs/〈ρ〉 − 1)|g)1/2d3/2

〈ν〉 . (1)

Since (|(ρs/〈ρ〉 − 1)|gd)1/2 can be considered as a velocity scale, G plays a similar dynamical
role as the free-stream Reynolds number in the case of a fixed sphere. The parameter values
for which we made the flow visualizations are summarized in table 1.

3. Observations

Figure 2 shows stereoscopic images of the wake structure behind falling spheres with densities
approximately 4% (figure 2(a)) and 5% (figure 2(b)) higher than that of the surrounding liquid,
and, for comparison, that behind rising spheres with densities that are approximately 4%
(figure 2(c)) and 5% (figure 2(d )) lower. In all these examples, the sphere diameter is 6 mm,
so that the parameter G is roughly identical in cases (a) and (c), and in cases (b) and (d ). The
lighter spheres have a slightly higher vertical velocity than the heavier spheres, as indicated
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Figure 2. Stereoscopic views of falling and rising spheres and their wakes. The left part of each
frame shows the xz-plane and the right part the yz-plane. In each case the sphere diameter is 6 mm.
The values of the parameters ρs/〈ρ〉, G and ReT are, respectively: (a) 1.04, 359, 546; (b) 1.05,
394, 608; (c) 0.96, 355, 647; (d ) 0.95, 390, 656.

(a) (b) (c)

Figure 3. Stereoscopic views of rising zigzagging spheres and their wakes. The left part of each
frame shows the xz-plane and the right part the yz-plane. The views illustrate the crossing at the
centre-line of the zigzag path of the two counter-rotating threads of the wake (‘1’), the occurrence
of kinks (‘2’) at the extremes of the path, and the formation of hairpin-like vortices (‘3’) as two
neighbouring kinks connect. Values of the parameters d, ρs/〈ρ〉, G and ReT are, respectively:
(a) 5 mm, 0.95, 297, 450; (b) 5 mm, 0.95, 306, 475. As shown in (c) the crossing of the vortex
threads results in a lift force L that is always directed towards the centre-line of the zigzag path.
D shows the direction of the drag force and B the one of the buoyancy.

by ReT in table 1. The wakes of the falling spheres appear to have a more ‘irregular’ structure,
and the path followed by these spheres shows much larger deviations from a straight vertical
line. These pictures illustrate that the density ratio ρs/〈ρ〉 matters, even at values close to 1.

Figures 3(a) and (b) give examples of a phenomenon that we believe to be characteristic
for spheres following a zigzag path, namely that the two counter-rotating threads in the wake
cross at the centreline of the zigzag (indicated by ‘1’ in figure 3(a)). The presence of these
threads of opposite-signed streamwise vorticity implies that the sphere experiences a lift force.
As a consequence of the periodic crossing of the threads this force is always directed towards
the zigzag centre-line (see the sketch in figure 3(c)). A similar observation was made by
De Vries et al [15] on the wake behind zigzagging gas bubbles.
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Figure 4. Sequence of stereoscopic views of a rising sphere and its wake. The left part of each
frame shows the xz-plane and the right part the yz-plane. The views illustrate the process of
formation of a hairpin-like vortex (d = 10 mm, ρs/〈ρ〉 = 0.99, G = 350 and ReT = 576).

Schouveiler and Provansal [7] remark that for a fixed sphere ‘the dynamics of the two
opposite-sign streamwise . . . vortices presents a striking similarity with the long-wavelength
(or Crow) instability of a pair of counter-rotating parallel vortices’ and further ‘such a vortex
pair instability could be responsible for the appearance of unsteadiness in the sphere wake’.
Figure 3 suggests that the situation is slightly different for freely moving spheres. Here, it
appears that close to the sphere each of the vortices first develop a ‘kink’ (indicated by ‘2’ in
figure 3(a)), a process in which the curvature of the vortices presumably plays an important
role [16]. As the kinks develop further downstream of the sphere they come near each other
and finally combine into what resembles a hairpin vortex (indicated by ‘3’). This sequence of
events can be seen in the flow visualizations presented in figure 4; see also figure 6 of [11].

As the kinks develop and hairpin-like vortices are formed further downstream, a pattern
results. Lunde and Perkins [17] interpreted this pattern as a series of hairpin vortices of
alternating sign, shed periodically by the spheres at the extremes of the zigzag path. Our
visualizations suggest instead that the streamwise vorticity produced at the surface of the
sphere does not change sign; the legs of the like-signed hairpin vortices cross at the centreline
of the zigzag.

Figure 2(b) is an example in which more than one kink develops in a half-period of the
zigzag. We have not yet been able to determine the conditions (in terms of the parameters
ρs/〈ρ〉, G or ReT ) that select the number of kinks that are formed. What is remarkable is
that the development of the kinks and the subsequent formation of the hairpin vortices do not
seem to affect the trajectory of the sphere. This corroborates the opinion that at high Reynolds
numbers the details of the vorticity distribution very close to a body basically determine the
forces that it experiences.
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Figure 5. Phase diagram: density ratio ρs/〈ρ〉 versus Galileo number. The grey box is the regime
analysed by Jenny et al [8]. They find in the leftmost region an axisymmetric wake. The symbols,
directly taken from [8], denote: + steady and oblique, ∗ oblique and oscillating regime with
low frequency (0.045 � f � 0.068), × oblique and oscillating regime with high frequencies
(f = 0.180), O zigzagging periodic regime (0.023 � f � 0.035) and � chaotic regime. The
numbers denote the number of our experiment in table 1. Experiments 6 and 19 fall outside the
diagram.

We will now turn to experiments with density ratios more different from one. Recently,
Jenny et al [18] reported on their numerical work on freely moving spheres in a Newtonian
fluid. They focused on the frequencies in the wake and the path of the sphere in the parameter
space spanned by the density ratio and the Galileo number. Figure 5 reproduces their phase
diagram. The numbers in the diagram refer to the numbers of the experiments given in table
1. A lot of our experiments are outside their investigated region and new experiments should
be done in the interesting regions around a Galileo number of 200. Further experiments
should focus more on the frequencies in the wake of the sphere and compare this to the
frequencies given by Jenny et al (see caption of figure 5). Furthermore, we must stress that
wake visualizations with the Schlieren method demand a temperature gradient in the water.
Hence the density and viscosity of the water are not constant through the entire flow field and the
local Galileo number will not be constant. The differences between the mean Galileo number
and the local Galileo number can reach 10% and must be taken into account when analysing
figure 5.

A striking difference between our experimental data and the numerical data of Jenny et al
is the behaviour of falling spheres with a density ratio close to one. From figures 2 and 8
it can be seen that these falling spheres can also fall in a non-vertical path. This contradicts
Jenny et al who claim that only rising spheres can take a zigzagging path (the circles in the
phase diagram figure 5).

From our experiments one concludes that for increasing Reynolds number the wake
becomes more irregular (figures 6–8). The two-threaded wake structure is also present for
higher Reynolds numbers. Is the double-threaded wake structure also present in the case of
the highest Reynolds numbers, where the wake structure has a turbulent structure? If so, do
instabilities in the wake cause kinking of the vortex threads, which leads to this turbulent wake
structure? Further research will address these questions in order to get a better understanding
of the boundary layer separation from spheres at high Reynolds numbers as shown on this
year’s cover.



Cover Illustration C7

(a) (b) (c) (d)

Figure 6. Stereoscopic views of rising spheres and their wake structures observed at several
Reynolds numbers (Reynolds number increases from (a) to (d ) and continues in figure 7). The left
part of each frame shows the xz-plane and the right part the yz-plane. Values of the parameters
d, ρs/〈ρ〉, G and ReT are, respectively: (a) 3.2 mm, 0.97, 121, 210; (b) 4.0 mm, 0.88, 334, 565;
(c) 8.0 mm, 0.99, 331, 602; (d ) 6.4 mm, 0.93, 534, 920.

(a) (b) (c) (d)

Figure 7. Stereoscopic views of rising spheres and their wake structures observed at several
Reynolds numbers (Reynolds number increases from (a) to (d )). The left part of each frame shows
the xz-plane and the right part the yz-plane. Values of the parameters d, ρs/〈ρ〉, G and ReT are,
respectively: (a) 6.4 mm, 0.87, 728, 1180; (b) 7.9 mm, 0.93, 732, 1350; (c) 6.4 mm, 0.65, 1160,
1965; (d ) 9.5 mm, 0.50, 2548, 4623.

(a) (b) (c) (d)

Figure 8. Stereoscopic views of falling spheres and their wake structures observed at several
Reynolds numbers (Reynolds number increases from (a) to (d )). The left part of each frame shows
the xz-plane and the right part the yz-plane. Values of the parameters d, ρs/〈ρ〉, G and ReT are,
respectively: (a) 3.2 mm, 1.03, 121, 205; (b) 4.0 mm, 1.06, 239, 325; (c) 1.5 mm, 2.79, 304, 450;
(d ) 4.0 mm, 2.63, 1261, 1970.
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4. Conclusions

Flow visualizations of the wakes behind solid spheres moving under the action of gravity reveal
remarkable differences when compared to the wakes behind spheres held fixed: the crossing of
threads of opposite-signed vorticity and the formation of kinks on these threads that develop
into hairpin vortices. The ratio between the densities of the sphere and that of the surrounding
fluid appears to be important. Our experiments clearly show the differences in path and wake
structure between rising and falling spheres with the same Galileo number. Furthermore, the
double-threaded wake structure seems to be a basic feature, even for large Reynolds numbers.
This should be investigated thoroughly in future research.
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