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Spin-echo small-angle neutron scattering is able to characterize powders in terms of their density-density
correlation function. Here we present a microstructural study on a fine cohesive powder undergoing uniaxial
compression. As a function of compression, we measure the autocorrelation function of the density distribu-
tion. From these measurements we quantify the typical sizes of the heterogeneities as well as the fractal nature
of the powder packing. The fractal dimension increases with increasing stress, creating a more space-filling
structure with rougher phase boundaries. The microscopic stress-strain relation showed the same nonlinear
behavior as the macroscopic relation. In this way it was possible to link the macroscopic mechanical response
with the evolution of microstructure inside the bulk of the cohesive powder. The total macroscopic compres-
sive strain is in agreement with a corresponding decrease in microstructural length scales.

DOI: 10.1103/PhysRevE.77.051303 PACS number�s�: 81.05.Rm, 61.43.Gt, 61.43.Hv

I. INTRODUCTION

Rather than being driven by the hard-core exclusion be-
tween grains, the structure of cohesive powders is mainly
determined by the van der Waals attraction among small pri-
mary particles ��100 �m�. As a result of these adhesive
forces, and the irrelevancy of body forces, very loosely
packed and fluffy structures are seen to form in these mate-
rials. The structures lead to process-related issues relevant to
industry in a sense that mass flows become unstable �1�. An
increased demand for particulate materials on the nanoscale
makes the understanding of this type of granular material
important.

To precisely understand the macroscopic behavior of
powders, the computer modeling and theory buildup needs
the support of experiments on realistic samples. More spe-
cifically, there is a need for experiments that can quantify
powders in terms of their microstructure. Experiments are
needed that can look inside the “fluffy” structure of cohesive
powders so that more quantitative statements can be made.

Extracting information from the bulk of powders and
granular materials is difficult. The opacity and the wide
range of sizes present in real materials render most optical
and conventional wave diffraction techniques more or less
useless. The opacity can be overcome by using penetrating
radiation such as x rays in x-ray tomography �2–4� or radio
waves in magnetic resonance imaging �5,6�.

Understanding macroscopic mechanical behavior can be
obtained by investigating the changes in crystallographic mi-
croscopic parameters �7�. Following the microscopic evolu-
tion by using penetrating radiation makes it possible to un-
derstand the macroscopic development from the microscopic
point of view. Methods for studying the mechanical proper-
ties at the grain level of granular packings exist �8�, and it is
usually the buildup of force chains that is addressed. Neutron
diffraction has been used to study nonlinear stress-strain be-
havior in granular materials �9�.

In order to access the bulk of more realistic materials it
becomes necessary to use penetrating radiation and a tech-
nique that has enough resolution to analyze the small-angle
scattered radiation. Spin-echo small-angle neutron scattering
�SESANS� is a high-resolution technique which measures
the autocorrelation function of the sample density distribu-
tion in real space �10�. SESANS can be used to probe the
structure across three orders of magnitude ranging from 30
nm up to 20 �m, making it applicable to fine cohesive pow-
ders �11�, colloidal systems �12�, and dairy products �13�,
just to name a few.

The autocorrelation function of the density distribution
��r� can be used to characterize the microstructure of mate-
rials. This function is measured in a small-angle scattering
experiment as its Fourier transform �the so-called structure or
form factor�. SESANS measures ��r� via its projection along
the neutron beam path, making SESANS a real-space tech-
nique. The typical size, packing fraction, any anisotropy,
scale invariance, ordering, etc. of the sample heterogeneities
are examples of extractable sample properties.

A stress-strain measurement on a fine cohesive silica pow-
der together with consecutive SESANS measurements has
been performed and is reported in this paper. In the analysis,
the cohesive powder is considered as being a self-affine ran-
dom two-phase material. We use a model function for the
density-density correlation function containing a typical size
a of the structure and the so-called Hurst exponent H, related
to the fractal dimension of the structure �14,15�. The Hurst
exponent depends on the phase boundary roughness, and the
higher the degree of “surface roughness” the lower is the
Hurst exponent.

From the initial decay of the measured SESANS curve it
is possible to extract the unknown grain density and conse-
quently the grain packing fraction. We find that the typical
size of the inhomogeneities decays in a nonlinear way with
increasing compressive strain, and the microscopic stress-
strain relationship shows the same exponential behavior as
the macroscopic stress-strain curve. The Hurst exponent is
seen to decrease with increasing stress and strain, showing
that a more space-filling structure with rougher interfaces is*r.a.andersson@tudelft.nl
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being formed as a function of compression. Altogether, the
study links the nonlinear compressive stress-strain relation-
ship to the evolution of microstructural parameters.

II. MICROSTRUCTURE AND SESANS

A. Density distribution and its correlation function

The density distribution ��r� in a heterogeneous two-
phase sample is expected to fluctuate around its mean value.
These fluctuations might be characterized by a typical size,
anisotropy, being fractal or self-affine, regular �crystalline�,
random, and so on. Taken all together, this is what we call
the structure of a material. The structure of two-phase sys-
tems such as a powder material can be analyzed in terms of
the autocorrelation function of its density distribution:

C�r� = ����0����r�� , �1�

where the mean �̄ has been subtracted ����r�=��r�− �̄�. The
mean square fluctuation is

C�0� = ��0�1�2, �2�

where �1+�2=1 are the packing fractions of the two phases
and ��0=�1−�2 is the solid density difference between the
two phases. The normalized �dimensionless� correlation
function is

��r� =
C�r�
C�0�

. �3�

The correlation function can be expressed in terms of the pair
correlation function g2�r� �16�. g2�r� gives the probability of
finding a particle center of mass at a distance r away from
the origin, given that there is a particle at that origin. This
function is especially useful for the study of monodisperse
sphere packings. For spheres, the correlation function be-
comes

��r� = �0�r� + 2�
0

�

�D�r,c�g2�c�c2dc , �4�

where �D�r ,c� is the autocorrelation of a pair of spheres
separated by c �17� and �0�r� is the autocorrelation function
of a sphere.

The projection of ��r� is given by

G�z� =
2

�
�

z

� r��r�
�r2 − z2

dr �5�

and in Cartesian coordinates by

G�z� =
1

�
�

−�

�

��x,0,z�dx . �6�

The projection is made dimensionless with the correlation
length of the density distribution �18�,

� = �
−�

�

��r�dr , �7�

so that G�0�=1.

B. Spin-echo small-angle neutron scattering

Spin-echo small-angle neutron scattering is based on the
Larmor precession of neutrons in parallelogram-shaped mag-
netic field regions �19,20�. In SESANS, the polarization of a
neutron beam is measured, after transmission through a
sample, as a function of the so-called spin-echo length
�30 nm�z�20 �m, set by the instrument user�. The spin-
echo length is a real-space parameter representing the size at
which the correlations are measured �in the z direction of the
laboratory-coordinate system�. In SESANS, G�z� is mea-
sured through the transmission of polarization, normalized
by experimental effects, as a function of z,

P�z� = e	t�G�z�−1�, �8�

where

	t = t
2��0
2�1�2� . �9�

Here t is the sample thickness, 
 the neutron wavelength, and
��0 the neutron-scattering-length density difference in the
sample �i.e., the contrast between the two phases in the
sample�. Note that Eq. �8� takes into account the effects of
multiple scattering �21�.

The correlation length � is measured along the neutron
beam axis of a SESANS experiment, which is perpendicular
to the z direction. � is a measure of the width of the distri-
bution ��r�, which is in principle a measure of the size of the
inhomogeneities in the sample �for a sphere the correlation
length is 3/4 of the sphere diameter�. It can be interpreted as
the mean free path of a neutron in the sample.

At large z �above the largest size describing the heteroge-
neities� one expects no more correlations �G���=0�; this
gives the so-called saturation level of the polarization:

P��� = e−	t. �10�

Thus, the logarithm of the polarization at saturation is pro-
portional to the correlation length � of the sample inhomo-
geneities.

C. Correlation function of a random two-phase system

A cohesive powder is a particular case of a two-phase
system that is heterogeneous at �most likely� many scales.
The attractive forces between grains allow for the buildup of
connected networks and aggregates of low coordination
number, resulting in large voids of air pockets and, in es-
sence, low densities. In the end we have in mind a very
porous material carrying a low packing fraction of grains that
will be far from a random close packing of hard spheres, or
any other ordered density distribution.

For a perfectly random heterogeneous material made up
of three-dimensional �3D� solids bounded by smooth 2D sur-
faces, the density-density correlation function can be de-
scribed by the so-called Debye-Andersson-Bueche �DAB�
formalism �22–24�:

��r� = e−r/a, �11�

where a is a measure of the typical size of the heterogene-
ities. This function can be seen as a special case of the more
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general von Karman correlation function �14,25�

��r� =
2

��H�	 r

2a

H

KH	 r

a

 , �12�

where KH is the second-order modified Bessel function and �
is the Gamma function. For H=1 /2 this simplifies to the
DAB formula in Eq. �11�.

The so-called Hurst exponent 0�H�1 is related to the
dimensionality of the structure. The limits H=0 and 1 corre-
spond to a space-filling and a smooth Euclidian distribution,
respectively. In this context it is related to the interface
roughness between the two phases making up the material.
One usually discusses two domains, H�1 /2 where the dis-
tribution is persistent and characterized by a certain degree
of memory and longer-ranged correlations; and the domain
H�1 /2 describing an antipersistent distribution, governed
by shorter-ranged correlations �i.e., rougher�.

The Hurst exponent has been used to analyze the structure
of shear bands �26� as well as for the study of percolation in
porous materials �27� and in fracture profiles �28�.

A 1D reconstruction of density distributions for various
Hurst exponents can be seen in Fig. 1. This calculation is
done in the wave number domain where a uniform deviate
�white noise� is filtered with a spectral filter. The inverse
Fourier transformation of the filtered white noise yields a
real-space representation of the distribution. The spectral fil-

ter is the square root of the Fourier transformation of the
autocorrelation function, in this case Eq. �15� �see also �14��.

The projection of Eq. �12� is found by insertion in Eq. �5�,
which leads to

G�z� =
2

��H + 1/2�	 z

2a

H+1/2

KH+1/2	 z

a

 . �13�

The corresponding correlation length for this density distri-
bution will be

� =
2�a��H + 1/2�

��H�
. �14�

In conventional small-angle neutron scattering one measures
the Fourier transform of Eq. �12�, which yields the normal-
ized intensities as a function of wave number,

I�q� =
1

�1 + �qa�2�3/2+H . �15�

III. EXPERIMENTS AND SAMPLE PROPERTIES

A powder sample was kindly provided by Degussa �32�.
The product is called Sipernat-310; it is a synthetic precipi-
tated silica used in coatings, cosmetics, cements, rubbers, as
filler, etc. It is a typical cohesive powder containing fine
grains around 5 �m in diameter. The sample was used with-
out any further treatment, in ambient conditions.

We have used the SESANS setup at the Reactor Institute
Delft �Delft University of Technology in the Netherlands� to
perform the measurements. The instrument contains two
parallelogram-shaped magnetic field regions with opposite
magnetic induction directions �otherwise identical�. The
sample is positioned between the field regions. Any neutron
scattering between the two fields will break the symmetry of
the setup and cause the beam to depolarize. The strength of
the field defines the so-called spin-echo length z, which is
perpendicular to the beam direction and pointing in the di-
rection of gravity. The polarization of the neutron beam is
measured as a function of z. The beam is nearly monochro-
matic with a wavelength of 0.21 nm, having a cross section
at the sample position around 1 cm2.

A simple uniaxial load cell was used in order to measure
the stress versus strain function of the powder �see Fig. 2�.
Strain is here defined as being the relative decrease in thick-
ness of the sample,

�t = 1 −
t

t0
, �16�

where t is the thickness after compressive straining and t0 is
the initial sample thickness. The stress and strain tester con-
tains a cylindrical cavity with a movable hollow plunger that
achieves the compression inside the cavity. The plunger was
moved by a separate screwing action �without rotating the
plunger� until a desired incremental strain was reached. We
used nine increments of 0.25 mm with an initial powder
height of 6.5 mm. The cylindrical cavity and the plunger are
sealed off with aluminum windows �aluminum is virtually
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FIG. 1. Top: Examples of reconstructed 1D density distributions
��x� based on the correlation function Eq. �12�. Bottom: Corre-
sponding correlation functions. The characteristic size is here a=1.
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transparent to neutrons�. The absolute stress was measured
with Flexiforce load sensors provided by Tekscan �33�.

The initial powder packing is a very soft, low-density
material and easily compacted �weakly aggregated�. As seen
in the stress-strain curve, which shows an exponential varia-
tion of stress as a function of strain in the probed interval
�Fig. 3�. The goal of this study is to understand this nonlinear
stress-strain relationship through the bulk microstructure at
each point of the stress-strain curve.

IV. RESULTS

A. First interpretation

When analyzing the measurements it is often useful to
interpret what we simply see by eye. In Fig. 4 the polariza-

tion is plotted as a function of z. In total, ten measurements
at ten different strain levels were carried out. The figure
shows only four of the ten measurements for the sake of
clarity.

Increasing the strain moves the saturation polarization up-
ward; thus the upper curves correspond to higher stress and
strain than the lower ones. Increasing the strain makes the
powder packing denser ��� and thinner �t�, both contributing
to less scattering and higher polarization saturation levels.

The second microstructural parameter contributing to the
end level is the correlation length �. The rearrangement of
particles into a denser state must decrease the size of the
heterogeneities, giving rise to a lower correlation length with
increasing strain.

At saturation we are able to read off the largest correlating
size of the microstructure on the horizontal axis. The mea-
surement saturates around 5 �m, which is the size of grains
making up the powder. Thus, no correlations are seen beyond
the size of a grain.

The stress versus strain curve can be seen in Fig. 3. The
curve shows that when the logarithm of the stress versus
strain is plotted a linear relationship is obtained. The powder
in its native state is a very soft powder with low density
stabilized by adhesive forces in the form of capillary and van
der Waals forces. The hard-core exclusion between the silica
grains finally governs the interaction between grains, as can
be seen in the divergent behavior of the applied stress for
lower characteristic sizes �see the upper left plot in Fig. 6�.

B. Linear initial slopes

The powder is composed of grains having an unknown
solid density. The grain density will be lower as compared
with the solid density of pure silica ��SiO2

=2.2 g/cm3�. From
the grain density it is then possible to calculate the grain

Plunger with Al-window

Al-window

Neutron beam path

Load sensor

z

FIG. 2. Load cell used in the stress-strain measurements on the
cohesive powder. The initial height of the powder packing was 6.5
mm and it was subsequently strained by nine increments of 0.25
mm. The stress was measured using Flexiforce load sensors situated
at the first Al window.
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FIG. 3. Stress versus grain packing fraction
�grain relationship for the Sipernat-310 powder.
The inset shows a linear relationship between the
logarithm of the stress versus strain �. Note that
the first two points yielded no measurable stress
on the Flexiforce load sensors.
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packing fraction �grain rather than the skeleton packing frac-
tion �sk, which is calculated from the solid silica density. To
summarize,

�sk =
�sample

�SiO2

�17�

and

�grain =
�sample

�grain
, �18�

where �sample is the density of the powder packing and �SiO2
is the solid density of pure silica.

The grain density and the grain packing fraction can be
determined from the SESANS measurement by analyzing the

initial slope of the P�z� vs z curves. The final amplitude of
the polarization �saturation level� is given by Eq. �10� and is
read at a spin-echo length z related to �. Thus, the gradient of
the initial part of P�z� vs z yields a quantity that depends
only on the sample thickness, packing fraction �, and scat-
tering length density ��0. The slope is in a sense indepen-
dent of structural arrangement of the density,

−
d ln�P�

dz
� t
2��0

2��1 − �� . �19�

Thus, division of the values of the slopes by the sample
thickness and the primary particle packing fraction �grain
should yield a constant term for all experiments �see bottom
right figure in Fig. 5�, because straining the sample does not
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FIG. 4. Polarization plotted as a function of z.
From top to bottom these measurements corre-
spond to a uniaxial stress �strain� of 120 kPa
�35%�, 7.4 kPa �23%�, 1 kPa �15%�, and 0 kPa
�3.8%�. The full curves are fitted according to
Eqs. �13�, �14�, and �8�. Unless shown, the error
falls within the marker symbol.
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FIG. 5. Initial slopes of the polarization
d ln�P� /dz. The slopes are proportional to the
grain packing fraction and the sample thickness
multiplied by a constant �see Eq. �19��. Dividing
out the known thickness and the packing fraction
�C=�grain�1−�grain�t� should yield a constant
term for all measurements as seen in the lower
right figure. This analysis makes it possible to
determine the solid grain density, yielding about
1.1 g /cm3.
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change ��0 or 
. We find the grain packing fraction �grain by
fitting until a nearly constant term is found for all measure-
ments. The grain density can then be found by using Eq.
�18�.

This analysis gives a density of �grain=1.1 g /cm3 and
packing fractions ranging from �grain=0.34 up to 0.53 for the
highest strain.

C. Curve shapes and their amplitudes

For a more complete analysis of the SESANS experiment,
we apply a model that describes an autocorrelation function
of the density distribution. From that model we are able to
calculate the corresponding projection as well as the ex-
pected polarization shapes and amplitudes.

The thickness t, packing fraction �, and neutron wave-
length 
 are all known experimental parameters that contrib-
ute to the saturation level P���. The scattering length density
��0 is a constant parameter given by the chemical composi-
tion of the sample. Thus, in order for the model to be con-
sistent, it has to yield a constant scattering length density for
all ten measurements. In short, we have to find a model ca-
pable of describing ��r� as well as � in such a way that it
produces the saturation level and curve shapes observed in
the measurement.

To model the data we use the von Karman correlation
function introduced in Sec. II C, which describes a statistical
self-affine density distribution according to Eqs. �12�–�14�.
The model explains the microstructure with two parameters,
the Hurst exponent H and a characteristic size a of the den-
sity distribution. This yields, including experimental param-
eters, a scattering length density of about 1.1�1014 m−2 for
all samples.

The model parameters measured at each incremental
strain are plotted in Fig. 6. The characteristic size rapidly

decreases with increasing strain before it saturates for strains
larger than 20%–25%. In order for the powder to be com-
pressed the larger inhomogeneities, clusters and voids, have
to be broken and collapsed. This first stage occurs at the
lower stress amplitudes and produces relatively large
changes in a. When the larger and weaker heterogeneities
have collapsed and produced a denser structure, any further
densification is created by the rearrangement of primary
grains. This latter stage is governed by higher stresses and
smaller changes in the characteristic size of the heterogene-
ities. This “hard-core” behavior is illustrated when we plot
the stress versus the characteristic size a in Fig. 6. The stress
diverges at around 1400 nm and no significant change is seen
for higher stresses. The total microscopic strain for the ex-
periment is given by

�atot = 1 −
aend

a0
= 1 −

1290

1780
� 28% , �20�

where aend is the characteristic size reached at the maximum
applied strain and a0 is the size at the beginning. This value
is comparable with the final macroscopic strain, being about
35% �see Fig. 3�.

The Hurst exponent decreases with increasing strain, con-
sistent with the formation of a more space-filling structure as
well as with an increase in the phase boundary roughness.
The short-range structure becomes more irregular, creating
more sliding contacts, which contributes to the nonlinear
stress-strain behavior and in particular makes the structure
more resistant toward straining.

The two microscopic strains are

�a = 1 −
a

a0
�21�

and
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FIG. 6. Characteristic size a and Hurst expo-
nent H obtained when applying the model Eq.
�13� to the measurement. The model shows that
the characteristic size as well as the Hurst expo-
nent H decrease as a function of compression
�higher �grain�. The packing fractions are here ex-
pressed in terms of the grain packing fraction
�grain defined in Eq. �18�
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�� = 1 −
�

�0
. �22�

The microscopic strain is plotted versus the logarithm of the
stress in Fig. 7. This shows that the exponential stress-strain
relationship measured macroscopically has its origin in a
similar relationship at the microscopic level.

V. DISCUSSION AND CONCLUSIONS

A stress-strain measurement was conducted simulta-
neously with a bulk microstructural investigation by using
spin-echo small-angle neutron scattering on a cohesive silica
powder �Sipernat-310�. The microstructure was characterized
in terms of the autocorrelation function of the density distri-
bution, and the experimental result was modeled using a cor-
relation function describing a random density distribution.
The correlation function characterizes the density distribu-
tion in terms of its typical size a and a self-affine parameter
called the Hurst exponent H, related to the short-range cor-
relations, i.e., to the structure of the phase boundaries. The
proposed correlation function proved excellent at describing
our measured data.

The primary grain density was determined by analyzing
the initial slopes of the SESANS measurements. This yields
a density of about a factor of 2 smaller than the skeleton
density of pure silica. The grain density can be used to cal-
culate the packing fraction of grains contained in the sample.
A divergence of the stress is reported at a packing fraction
around 0.50.

The fractal nature of the powder can be quantified in
terms of the so-called Hurst exponent. When the powder is
compressed, decreasing Hurst exponents are evidenced as a
function of strain. A decreasing Hurst exponent implies that a
more “disordered” density distribution is being formed, and
we argue that such a structure can pack more efficiently, thus
facilitating the compression of the powder. The decrease in
the Hurst exponent also indicates the buildup of a rougher,
more disordered, interface. Similar observations have been

made in metals �29�, shear zones in granular materials �26�,
and fracture studies �28�. The increase in interface roughness
creates more sliding contacts and friction between grains, in
essence acting against the action of compression, and con-
tributes to the nonlinear stress-strain behavior observed in
the macro- as well as in the microscopic domain.

Compression of the powder using relatively small stress
levels breaks and collapses the larger voids and clusters that
are stabilized by weaker van der Walls forces. This phenom-
enology is supported by the measurement in the sense that
the microstructural length scale a decreases quickly for rela-
tively low stresses. Further densification can be achieved
through the movement and rearrangement of hard primary
grains. Such a structural rearrangement calls for larger stress
levels. The measurement shows a sharp diverging stress for
smaller characteristic sizes a, and we argue that a domain is
reached where the structural rearrangement is governed by
hard-core exclusions.

The total microscopic strain �atot �28%� observed in the
experiment is comparable to, but lower than, the value for
the total macroscopic strain of the sample �35%. When the
microscopic stress-strain relationship is further analyzed it is
evident that the macroscopic exponential behavior has its
origin in a similar microscopic relationship.

It is well established that force networks and chains play
an important role in the physics of granular matter �30�. In
the measurements conducted here and elsewhere �31�, no
density correlations were observed beyond the size of a
single grain. The measurements can lead to the conclusion
that �if present� such networks do not create correlations in
the density distribution.

As opposed to discussing the density distribution in terms
of a sphere and its diameter, or any other shape of a grain
and its size, we argue that parameters such as a �the width of
the autocorrelation function of the density distribution� and
also � �the correlation length of the distribution� represent
more general and even well-defined descriptors of the mate-
rial’s microstructural size, especially when realistic materials
are considered, materials that typically contain many differ-
ent shapes having many different sizes.

An important connection between microstructure and
macroscopic mechanical behavior of a powder has been
made. The study was made possible by a unique neutron
scattering investigation using SESANS. It was shown that
the random media model, given by the von Karman correla-
tion function, is excellent at describing the structure of a
cohesive powder in a wide range of packing fractions, and
the model parameters involved provide insight into the me-
chanics and microstructure of the compressed powder.
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