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ABSTRACT: A flexible shaft with surface-mounted piezoceramic sheets and strain sensors is
considered which suffers from resonance and self-excited vibration. Frequency domain
models, time domain simulations, and control experiments are used to analyze active modal
damping and active modal balancing methods. The generation of electric power from cyclic
straining of rotor-fixed piezoelectric material is studied and several self-powering devices for
condition monitoring and vibration control are proposed.
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INTRODUCTION

AST rotating flexible shafts may exhibit severe

bending vibrations and may induce vibration,
wear, and noise in their support structures. These
problems can often be solved by improving the rotor
balance and support damping by passive means. In cases
where these means are exhausted, active control
methods for rotor balancing and damping provide a
solution. Such methods have been the topic of research
for a few decades (Sahinkaya and Burrows, 1985;
Knospe et al., 1995; Zhou and Shi, 2001).

In recent years, several authors investigated the
control of vibrations of flexible rotors by means of
rotor-fixed piezoelectric ceramics (Song et al., 2002;
Kunze et al., 2003; Kurnik and Przybylowicz, 2003;
Przybylowicz, 2003; Horst and Woélfel, 2004). Horst and
Wolfel (2004) demonstrated the effectiveness of this
approach for a high speed flexible rotor with a heavy
disk fixed at one end. They validated a finite element
rotor model containing damping, gyroscopic effects, and
actuation forces by experiments and used a modal
feedback control method to suppress rotor vibration.
Kunze et al. (2003) investigated vibration control of an
automotive shaft which vibrated in its first bending
mode due to excitation from the engine. They equipped
a shaft with piezoelectric fiber actuators and sensors and
reduced the vibration and resulting vehicle interior noise
by positive position feedback control. Slipring assem-
blies were employed in both experimental setups for
data and power transmission. Przybylowicz (2003)
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presented studies on nonlinear models of thin-walled
rotating shafts with piezoelectric sensing and actuation
layers. These shafts were destabilized by axial follower
forces or axial torques and by rotor damping. Certain
combinations of position and velocity feedback control
were found to be stabilizing. Song et al. (2002) studied
vibration and stability control of a composite shaft.
They focused on the relation between structural tailor-
ing and piezoelectric actuation and did not consider any
dissipation.

The present research focuses on ways to supply
flexible rotors with piezoelectric functionality by
taking full advantage of the distinctive properties of
piezoceramics: their high stiffness, power density and
efficiency, their capability to apply forces in the absence
of external supports, and their ability to generate electric
power from strain excitation. Emphasis is on the
suppression of unbalance induced vibration using
rotor-fixed actuators and sensors. Several active vibra-
tion control methods are analyzed by means of
frequency domain models, time domain simulations,
and experiments. In addition, it is studied whether useful
amounts of power can be obtained from the periodic
straining of rotor-fixed piezoceramics.

ROTOR APPLICATION AND MODEL

As an application, a down-scaled model of a
helicopter tail drive shaft is considered which features
problematic vibration in its first bending mode. The
model shaft is an aluminum tube with a hollow square
cross-section (length 1000 mm, width 810 mm, weight
100 g), which is connected by flexural couplings to short
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Figure 1. (a) Experimental setup with shaft (A), motor (B), slipring assembly (C), and laser distance sensors (D) and (b) finite element model
showing actuator induced bending deformation and actuators (E), sensors (F) and couplings (G).

shafts that rotate in ball bearings (Figure 1(a)). The ball
bearings are supported by stiff aluminum hole hinge
mechanisms which can be supplied with rigid or
viscoelastic material in order to modify their damping
and stiffness. A catcher bearing at midshaft limits the
deflection of the shaft to 1.9mm. The shaft is driven
by an electric motor and drives a slipring assembly.
Piezoceramic sheets (dimensions 74 x 8 x 0.5 mm°,
weight 36g, PXE-5 from Morgan Electro Ceramics)
are mounted to four sides of the shaft at three positions
along its length by means of thin layers of conductive
epoxy. The sheets are connected in parallel for each of
the two bending planes, such that the displacement
pattern shown in Figure 1(b) can be induced in these
planes by regulating two voltages. The midshaft deflec-
tion is 1.1 umpervolt. Two strain sensor bridges are
mounted to the shaft, which are wired so as to measure
strains due to symmetric bending modes. The experi-
mental setup is completed by voltage amplifiers,
an optical sensor for speed measurement, and a digital
control system. Two laser distance sensors are used for
direct measurements of the rotor midshaft position and
for calibration of the strain sensors.

Rotor Modal Model

The main classes of rotor models which are found in
the literature are continuous models (e.g., Przybylowicz,
2003), finite element or transfer matrix models (e.g.,
Genta, 1998) and lumped parameter models (e.g., Zhou
and Shi, 2001). In the present research, a finite element
model is employed.

Consistent mass and stiffness matrices for the rotor
are obtained by modeling it with modified Timoshenko
beam elements as defined in Genta (1998). From the loss
factors of the rotor materials, a structural damping
matrix is computed. The very small gyroscopic effects as
well as torsion and elongation of the rotor are neglected.
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Figure 2. Vector frames and modal parameters.

The properties of the bearings and supports are
described by lumped stiffness and damping coefficients
which give rise to stiffness and viscous damping matrices
for the stator. A vector with nodal unbalance loads is
assumed and a nodal force vector for unit actuation
voltage is computed from the piezoelectric actuator
distribution. The transformation method described in
Sawicki and Genta (1990) is used to obtain a reduced
modal model with viscous damping.

For the analysis, two vector frames are employed
which are orthogonal to the rotor rotation axis (see
Figure 2). The inertial frame s={s,s,} is fixed to the
stator, while the non-inertial frame r={r;,r,} has the
same orientation as all rotor cross-sections. Superscripts
s and r refer to these frames. For the considered flexible
rotor with symmetric supports, the properties of the
stator and the rotor can be considered axisymmetric.
Analysis is restricted to one bending mode with natural
frequency . The participation of this mode is denoted
by a vector x'=xjs;+ x3s,, which is rewritten as a
complex number x'=xj +ix3, with #=—1. A spatial
rotation r, = ¢s, (n=1,2) relates the two frames, where
¢” denotes the exponential function and 6 is the rotor
rotation angle. The influence of angular acceleration 6 is
neglected and a normalized semi-constant speed w =6/
is defined.
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Figure 3. Example case with °=6 x 10~° and ¢’ =3 x 1075. For Equations (2) (-), (2) & (5) (--) with °=0.15: (a) 1, (b) |X'/e|. For Equations
(2) & (3) with fac=1 (=), 1/4(--), 4 (~-): (C) An. Markers: w=0 (o), 0=1 (V), ©=2 (c), ©=3 (L), w=4 (%).

The modal forces acting at the geometric center x are
modal stiffness €7 times x, modal stator damping Z°
times x°, modal rotor damping Z" times x", modal weight
factor f, times gravitational acceleration g, speed wQ
squared times modal eccentricity e, and modal actuation
force factor f, (taking account of the indirect piezo-
electric effect) times actuation voltages v=v|+iv;.
The voltage v is assumed to be supplied by a powerful
amplifier, such that the actuator charging dynamics are
fast and need not be modeled. The modal damping is
expressed in terms of damping ratios ¢’ and ¢ as
78 =2Q¢° and Z"=2Q¢". The equation of motion for the
first bending mode in the inertial frame is similar to the
classical Jeffcott rotor model (see e.g., Genta, 1998):

X429 + X + QX(1 — 2iwg")x*
= fog + Q% e"e + fe"V. M

Kinematic transformation to the rotating frame
yields:
X429 + I 4 io)X + Q2(1 — 0* + 2iw*)X"
= fre g + o’ Q%+ fv. ()

In the absence of voltage regulation, the voltages
which are induced upon straining of the actuators
cannot be neglected, since electric currents will flow
and be dissipated if resistances R are connected to the

actuators having capacitances C. The following
equation can be written for the free voltage v, with
fre=(QRC)™" the normalized frequency of the electric
RC-circuit:

v+ QfrevV = Qf rcfiX'. (3)

The present model does not contain inductive effects,
because these are negligible for small capacitances.

Dynamics Uncontrolled Rotor

Substitution of x"=e™“'x in the homogeneous
Equation (2) yields eigenvalues A, (w)=Q(y(w)+
iwy(w)), (n=1,2). The imaginary parts iw, represent
circular motion with normalized whirl speed w,, in the
rotating frame, while the real parts y, represent time
decay if negative. An example case is defined with
damping ratios ¢*=0.006 and ¢"=0.003. For this case,
the eigenvalue trajectories of Equation (2) are shown as
solid lines in Figure 3(a).

The dependence of the system on w gives rise to
resonance and self-excited vibration. Resonance is said
to occur when x'(w)/e, the transfer from modal
unbalance to modal position at constant speed, attains
its maximum, which is the case at the critical speed
o=(1+4%)"?~1 (Figure 3(b)). Self-excited vibration
starts as soon as the destabilizing orthogonal stiffness
effect of rotor damping exceeds the stabilizing effect of
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both rotor and stator damping. Hence, at speeds
exceeding the onset speed of unstable vibration
wr=14+7¢/¢", a spiral motion with whirl speed
Q(1 —w) occurs. In the example case, w, is 3 (see
Figure 3(a)).

The influence of electric dissipation is determined by
considering Equations (2) & (3). Figure 3(c) shows the
eigenvalues of this system for fre=1/4, fre=1, and
frc=4. Maximum current dissipation occurs at
lw,(w) —w| ~fre. Two maxima are present if frco<1.
Note that, in general, electric current dissipation reduces
the onset speed of self-excited vibration. Circuits
connected to the actuator electrodes should have either
very low or very high impedances if significant dissipa-
tion is to be avoided.

VIBRATION CONTROL METHODS

For the suppression of resonant vibration or
unstable vibration, active modal damping in the
form of negative modal position derivative feedback
can often be used (Preumont, 1997). For the reduction
of unbalance induced vibration at arbitrary speed,
modal balancing methods are most suitable (Zhou and
Shi, 2001).

Active Modal Damping

Modal damping takes the following shape for a setup
in which sensors on the stator are used to measure the
distance to the rotor surface:

Y =qx (4a)

v=—k;Qe " d (4b)

s
ar¥
with ¢* the modal sensitivity of the distance sensors,
y' the distance measurement, k; a feedback gain
normalized to 2, d/dt an explicit time derivative, 0 the
measured rotor rotation angle, and ¢~ the transforma-
tion to the voltage v over the rotating actuators.

For a system with rotor-fixed strain sensors,
Equation (4) must be transformed to the rotating frame.

This yields:
Y =4¢'x (52)

v =—k,Q <((1jt Y + iny’) (5b)

with ¢" the modal sensitivity of the strain sensors, y” the
measurement signals, and » the measured rotor speed.
A gain k;=0.3 is selected in the example case, which
leads to an ‘active modal damping ratio’ ¢? of 0.15. The
eigenvalue trajectories of Equations (2) & (5) are shown
as dotted lines in Figure 3(a). Since £*>¢°, the apparent
support damping is significantly increased and self-
excited vibration is postponed from w> 3 to w> 53.
The response to unbalance at @ is reduced by 96%
(dotted line in Figure 3(b)). (Note that most self-exciting
mechanisms could be compensated with very little effort
using strain derivative feedback only if the feedback gain
were adapted to achieve stability).

In practice, the explicit time derivative in
Equation 5(b) amplifies high-frequency sensor noise.
This effect is reduced by adding low-pass filters with
corner frequencies f;Q2, such that low-pass filtered
measurements y; are obtained:

i
i

+y,=4¢x (6a)

v=—k;Q (%y; + ia)Qy}'). (6b)

The eigenvalue trajectories of Equations (2) & (6) for
the example case with f;=2.0 are shown in Figure 4(a)
(one trajectory of overdamped eigenvalues is not visible).
Comparison with Figure 3(a) learns that, due to low-pass
filtering, the effect of active damping reduces with
increasing whirl speed w,(w). Since at resonance, w,(w)
is near to zero, the only condition for effective
resonance suppression is that the f©2 are sufficiently
high with respect to the rate of change in the response to
unbalance.

In the case of rotors which accelerate only slowly and
have largely axisymmetric support properties, resonance
due to unbalance can be effectively suppressed even
if the time derivative in Equation 6(b) is neglected,
/7 in Equation 6(a) is made very small and w is replaced
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by wunity. The resulting constant gain feedback
law increases the orthogonal stiffness for slow motion
only:
yi
i

+y, =4¢% (7a)
v = —ik Q%yr. (7b)

Application of this law is referred to as orthogonal
position feedback. The eigenvalue trajectories of
Equations (2) & (7) with f;=0.2 are shown in
Figure 4(b). The response to unbalance is nearly equal
to that of Equations (2) & (5). The system of
Equations (2) & (7) is conditionally stable. For
k,=0.3, stability at w=0 1is guaranteed only for
17<0.24, hence the use of low pass filters is crucial.
This control law is effective near critical speeds only.

It is noted that Equations 6(b) and 7(b) can be used
for active damping in the presence of large support
stiffness anisotropy as long as the flexibility of the
symmetric rotor is dominant. In general, the effect of
stiffness anisotropy diminishes with increasing damping
(Genta, 1998).

Active Resonance Suppression

The use of rotor-fixed sensors has definite drawbacks.
First, note the cross-coupling (v~i) in Equations
(5)—(7), which may lead to phase inaccuracies in case
the gains of sensors or amplifiers are not equal for the
two principal directions. Second, note the dependency
on absolute modal position (v~ x") in Equations (5)—(7),
which may lead to problems with sensor offset drift.
This is particularly problematic with symmetric rotor
systems for which the response to unbalance at constant
speed is largely constant in the rotating frame. (Note
that offset drift does not complicate stability control
using rotor-fixed sensors, because self-excited vibration
leads to periodic straining of the rotor). A control
system which employs rotor-fixed sensors must
therefore in general cope with offset drift. To address
this problem, a slowly time-varying unknown offset o(7)
is introduced in the sensor equation:

yi
fi%2

The following offset estimation algorithm is defined:

+¥1 =4 (X +0(). ®)

Algorithm O: A gain §,(w) is changed from 0 to 1 at
speeds w for which x'(w)/e is small. While §,(w) =1, the
low-pass filtered measurement y; is simply attributed to
o by computing an offset estimate o as the recursive least
squares (RLS) estimate of y}:

while (8,(w) > 0) 0 = RLS{o.y}}. 9)

Initial sensor offsets are corrected by diminishing y;j
by o. Although drift occurring after offset estimation

limits the period during which this estimate can be used,
a sufficiently long period should be feasible in many
cases.

Algorithms for the suppression of resonance may be
scheduled with respect to the rotor speed as well. The
following algorithm is based on Equation 6(b):

Algorithm S: Orthogonal position feedback is applied
while w is near to @ by means of a gain §(w), 0 <§,<1:

v = —is()ksQ(y — 0). (10)

Application of this algorithm yields a low-frequency
control action which suppresses resonance.

Modal balancing methods are usually implemented
with low-frequency actuators and algorithms as well
(Zhou and Shi, 2001). The advantage of these is their
low power consumption and computational burden,
respectively. Two more low-frequency algorithms for
the suppression of resonance are defined in the
following lines (their performance is analyzed in the
next sections):

Algorithm I: Negative integral feedback with gain k; is
applied while @ < @. The integral is kept constant and
used for open loop control while @ > @. To achieve this,
gains Sy(w) and §{w) are defined. Both gains are made
nonzero while @ < @, but §(w) is made nonzero while
> & as well:

Y= f 5y (@)(¥) — 0)di (11a)
v = )Y, (11b)

Algorithm B: While w is not far from @, a gain §,(w) is
used to start the computation of an unbalance estimate e
from the measurement y; using the inverse transfer
function of the undamped system. While w is near to @,
gain §,(w) is again set to zero but a gain §,(w) is made
nonzero to apply a voltage which should balance the
rotor:

while (8.(w) > 0)e = RLS{e, %} (12a)
v= —Sb(w)%. (12b)

Equation 12(b) indicates that modal balancing of
flexible rotors using rotor-fixed piezoelectric actuators
is in fact achieved by rotor shape control. For a
targeted mode with worst case modal eccentricity €;,ax,
the actuators should at least be able to apply a modal
force o, =—%m.. Note that a high actuator-
to-rotor mass ratio can be required to balance a
lightweight rotor made of a stiff material by means
of shape control. On the other hand, a flexible rotor
with heavy attached components might often be
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Figure 5. Deflection amplitude of numerical model with: (a) 5=2.4x 1072, ¢ =0.9x 10" and (b) £=1.3x107° ¢ =1.7x1075.

balanced using a relatively small amount of piezo-
electric material.

SIMULATIONS OF VIBRATION CONTROL

For analysis in the time domain, a modal model
containing two pairs of modes is derived from the rotor
finite element model. The static response of the
remaining modes is taken into account in order to
obtain accurate results in non-resonance conditions.
On the basis of this modal model, a state space model is
defined which is integrated in time using a Runge-Kutta
4.5 integration scheme. To make the simulations more
realistic, slight deviations from axial symmetry are
introduced in the support stiffness and white noise is
added to the sensor signals. The frequency of the first
mode is 25.8 Hz. The first modal unbalance is equivalent
to a point unbalance of 5.7 x 10"°kgm at midshaft in
{r;,—r»} direction. The modal unbalance which is
introduced by actuation is  equivalent to
4.0 x 10" kgm per volt at midshaft. In all simulations,
the transient response is computed for a run-up from
0 to 3000 rpm in 30s.

Simulations of Uncontrolled Rotor

Two cases with different damping coefficients are
considered: (a) high support damping and low rotor
damping (£5=24x 1073, £'=0.9x107%) and (b) low
support damping and high rotor damping
(£'=13x107°, '=1.7 x 107°). The magnitude of the
rotor deflection at midshaft (after transformation to the
stationary frame) is shown in Figure 5(a) and (b). Note
that the rotor deflects 45 pm under gravity, that in both
cases a rather large resonant response is present due to
unbalance and that the rotor is stable until at least
3000 rpm in the first case while self-excited vibration
starts at 2730 rpm in the second case.

Simulations of Rotor Vibration Control
The suppression of resonance using four combina-

tions of algorithms S, I, and B is simulated for the
first case with *=24x10"> and ¢=0.9x10".
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£ o el o 1100 g
: i
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Figure 6. Results from control simulations with algorithms (a)—(d).
Midshaft deflection (bottom). Actuation voltages v; (---), Vo (—)
(top). Scheduling gains § (center).

Sensor drift is assumed to be absent and offset
estimation is not simulated (§,=0). In Figure 6, the
rotor deflection is shown at the lower part of the plot,
the two actuation voltages in the upper part of the plot,
and the scheduling gains in the center of the plot.

Algorithm S: Figure 6(a). Orthogonal position feed-
back near the critical speed is already quite effective.
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Note that the actuation voltages vary only slowly since
the response to unbalance changes slowly in the rotating
frame.

Algorithm I and S: Figure 6(b). A combination of
negative integral feedback below the critical speed and
open loop integral feedback with orthogonal position
feedback at the critical speed effectively suppresses
resonance.

Algorithm B: Figure 6(c). Scheduled unbalance
estimation and balancing leave a small residual
unbalance response at the critical speed. This is due to
the unbalance estimation algorithm neglecting support
damping and contributions of modes other than the first
mode.

Algorithm B and S: Figure 6(d). Scheduled balancing
near and after the critical speed and orthogonal position
feedback at the critical speed lead to nearly perfect
self-centering over the complete speed range.

EXPERIMENTS WITH VIBRATION CONTROL
Experiments with Uncontrolled Rotor

The properties and response of the rotor setup were
determined by modal analysis and transient analysis.
The frequency of the first bending mode was 25.4 Hz,
near the predicted value of 25.8Hz. Approximate
damping ratios were determined for different conditions
of the rotor and supports. An estimate of the
support damping in the ‘low damping’ condition
(£*~1.3x 107%) was obtained by combining the total
damping ratio for a rotor without actuators at zero
speed (£ + ¢ ~ 1.6 x 107°) with the fact that it allowed
stable rotation up to at least 8400 rpm. The supports
were supplied with viscoelastic material to obtain their
‘high damping’ condition (£~ 2.4 x 1073). The rotor in
the ‘low damping’ condition had its actuator electrodes
short-circuited (¢"~0.9 x 107%), while these were con-
nected to voltage amplifiers regulating 0V in the ‘high
damping’ condition (£'~1.7x107%). As no passive
balancing cycle was performed after assembly of the
rotor, rather much unbalance was present. The first
modal unbalance had the same direction and nearly
equal magnitude as mentioned for the numerical
simulations.

The transient response is again presented for two
cases: (a) high support damping with low rotor damping
and (b) low support damping with high rotor damping.
Figure 7 shows the magnitude of the midshaft deflec-
tions as estimated from the strain sensor measurements
during runs from 0 to 3000 rpm in 30s. (The influence of

(a) T T T T T
E 8
E .
5
g4
3 2r
@] 0 ‘ — ‘
0 500 1000 1500 2000 2500 3000
Speed (rpm)
(b) : : : :
E 8
Eg
g
g
S 2
(] —>
0 ‘ ‘ ‘ ‘
0 500 1000 1500 2000 2500 3000
Speed (rpm)

Figure 7. Deflection amplitude of experimental setup with
(a) &°~2.4x107°%, ~0.9x107%, (b) £~1.3x1073%,
U~1.7x 1073 Vertical line: &. Horizontal line: catcher bearing.

gravity was filtered out from the rotor strain measure-
ments, for clarity of the figure). In both cases, the
midshaft deflection was clearly limited by the catcher
bearing. In the second case, the rotor was only
marginally stable at high speeds.

Experiment with Stabilization

In a subsequent experiment, the support damping was
reduced to an even lower value (Z°~1.0x107%) by
modifying the support mounts. In this condition, the
rotor with short-circuited actuators was still stable up to
at least 4200 rpm, but the rotor with actuators connected
to the amplifiers at 0V exhibited unstable bending
vibration at speeds exceeding 2460 rpm. Since ideal
voltage amplifiers regulating 0V would behave like
short-circuits, the amplifiers are likely to be non-ideal
in the sense that they dissipate the charges which are
produced in the actuators upon straining, leading to
increased rotor damping (compare Figure 3(c)). The
unstable vibration was actively stabilized with low effort
using a controller implementation of Equation 6(b). For
vibration control of marginally stable rotors, it is
sensible to use charge amplifiers or voltage amplifiers
with very high impedance to avoid dissipation.

Experiments with Rotor Vibration Control

Experiments with the suppression of unbalance
induced vibration were performed for the case with
high stator damping, where the sensor offset was
estimated at speeds up to 60rpm. The magnitude of
the midshaft deflection, the scheduling gains, and the
actuation voltages are shown in Figure 8. Note that the
actuation voltages are quite similar to those obtained by
numerical simulation. The best result was achieved with
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Figure 8. Results from control experiments with algorithms (a) to (d).
Midshaft deflection (bottom). Actuation voltages v; (---), Vo (—)
(top). Scheduling gains § (center).

algorithm (d), which reduced the maximum midshaft
deflection from 3800 to 120 pm: a reduction of 97%.

EXTRACTION OF ELECTRIC POWER

Piezoelectric material which experiences periodic
strains can be used as a power source (Sodano et al.,
2004). Piezoceramic material which is mounted to the
surface of a flexible rotor experiences strains which vary
harmonically in time during rotation due to bending of
the rotor under its own weight. Piezoceramic material on
a rotor may hence function as a power source which,
in contrast to batteries or electromagnetic generators,
is both permanent and compact. A disadvantage is that
power extraction increases the rotor damping and hence
reduces the onset speed of self-excited vibration. Yet, in
most practical cases, the support damping is large
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Figure 9. (a) Circuit for power dissipation measurement and
(b) voltage and power as a function of load resistance R at 3600 rpm.

enough with respect to the introduced dissipation to
avoid instability.

Experiment with Power Extraction
The maximum amount of electric power Pp,,x which
can be generated by harmonic straining is approximately

equal to (see Roundy, 2005):

k2
Prax = Amaxszﬁan = B —31162 wE;gnax (13)
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with k3, =0.38 the piezoelectric coupling factor and
E% .= 15uWs the maximum strain energy in the piezo-
ceramic material in one bending plane due to bending
under gravity, which follows from the finite element
model. It follows that 0.45mW can be extracted at a
speed of 3600 rpm. For validation, experiments were
conduced with the circuit in Figure 9(a), which rectifies
the induced currents, charges two capacitors of 47 uF,
and discharges these through a resistance R. According
to Figure 9(b), a resistance of 70k maximized the
dissipated power at 0.48 mW, which corresponds quite
well to the prediction. The extraction of electric power
resulted in unstable vibration in the ‘low support
damping’ condition.

The amount of power which can be extracted from
the model shaft would enable for example, wireless
measurements of strain at a rate of a few Hertz for
condition monitoring purposes (Arms et al., 2005).
More demanding condition monitoring applications
might be realized in the case of larger flexible shafts,
especially if piezoelectric fiber composites with a higher
coupling constant would be employed (Chopra, 2000).
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(a) e

Figure 10. (a) Multiplier circuit which charges
the actuators to high voltages and (b) shaft with
(A) piezoelectric actuators, (B) strain sensors,
and (C) board with voltage multipliers.

Storing power in a modern double layer capacitor
during a longer period of rotation would for example
enable integrated devices for structural health testing to
be run periodically.

Experiment with High Voltage Generation

With locally generated power, limited vibration
control functions could be realized as well. From
Figure 8, the conclusion can be drawn that the different
algorithms for resonance suppression require only a
single actuator charge—discharge cycle. The actuators on
the shaft have a summed capacity of 270 nF and can all
be charged to for example 50V using only 0.34 mWs.
This amount of energy is small compared to the 0.48 mW
which can be extracted at 3600 rpm. The low harmonic
voltages induced by straining could be transformed
directly into the high voltages which are required for
actuation by means of voltage multiplier circuits.
An example circuit with two times three multiplier
stages is shown in Figure 10(a). This circuit continuously
charges the actuators to positive and negative constant
high voltages during rotation. A first experiment was
conducted with two six-stage voltage multipliers that
were assembled from standard diodes and multilayer
ceramic capacitors of 100nF (see Figure 10(b)). At a
speed of 3600 rpm, the actuators were charged to more
than 90V within 20s. A run-up to 1500rpm in 15s
resulted in actuator voltages of +40V. A second
experiment with four six-stage multipliers which were
connected independently to the actuators on the four
sides of the shaft produced similar results. The perfor-
mance of these circuits could be improved by using
components with lower capacities and losses.

SYSTEM LEVEL DEVICE CONCEPTS

The proven effectiveness of vibration control
and power generation with rotor-fixed piezoceramics

oA
Y4

justifies further research on practical devices that
extend the functionality of flexible rotors. Four
system level concepts of such devices are outlined
(see Figure 11):

1. Condition Monitoring Device. Charge is extracted
from rotor-fixed piezoceramics and is stored on a
double layer capacitor. Periodically, the rotor condi-
tion is examined and communicated wirelessly to a
stationary device for semi real time damage detection.

2. Resonance Suppression Device. Charge is extracted
from rotor-fixed piezoceramics and is restored at a
high voltage. The centripetal acceleration of a rotor-
fixed ring is measured with resistive pressure sensors.
The sensor resistances determine the voltages to
which the actuators are discharged in such a way that
resonance is suppressed.

3. Active Damping Device. A small induction generator
or light source powers a control system on the rotor
and supplies it with information on the rotor
orientation. Rotor bending is measured with
strain sensors and is suppressed by active modal
damping.

4. Wireless Balancing Device. Charge is extracted from
rotor-fixed piezoceramics and is restored at a high
voltage. The actuators are discharged by means of
switches that are wirelessly controlled by a device
which attempts to minimize accelerations measured
at the stator.

Further research on these devices should be
performed for carefully selected target applications.
Self-powering devices can be realized only if significant
periodic strains occur in rotor-fixed piezoceramics and
sufficient damping is provided by the supports. Modal
balancing by rotor shape control is attractive only for
sufficiently flexible rotors. Devices which use rotor-fixed
sensors must solve any problem with sensor offset drift.
In addition, piezoceramic fiber composites might often
be preferred over ceramic sheets, because they are more
easily mounted to curved surfaces with low diameter.
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Figure 11. (a) Condition monitoring device, (b) resonance suppres-
sion device, (c) active damping device, and (d) wireless balancing
device.

For all mentioned devices, a good balance should be
found between structurally integrated and modular
implementations (see also Chopra, 2000).

CONCLUSIONS

A flexible shaft with rotor-fixed piezoceramic
actuators and strain sensors was considered. The
effectiveness of several low-frequency control algorithms
for the suppression of resonance was demonstrated,
where good correspondence between simulations and
experiments was found. Experiments with the extraction
of electric power from the rotor-fixed piezoceramics
indicated that self-powering devices with limited
condition monitoring and vibration control functions

are feasible. On the basis of the results, four innovative
system level concepts of flexible rotors with piezoelectric
functionality are outlined.
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