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Plastic incompatibility second-order stresses were determined for different

orientations of a polycrystalline grain, using X-ray diffraction data and results of

the self-consistent elasto-plastic model. The stresses in cold rolled ferritic steel

were determined both in as-received and under tensile loaded conditions. It has

been shown that the Reuss model and the self-consistent model applied to near

surface volume provide the best approaches to determine diffraction elastic

constants. For the first time, the elastic energy in an anisotropic material (arising

from plastic incompatibilities between grains having various lattice orientations)

has been determined. The second-order incompatibility stresses and stored

elastic energy are presented in Euler space.

1. Introduction

The diffraction method is a powerful tool for determining the

stress field in polycrystalline materials. The stresses acting in

polycrystalline grains cause an elastic deformation of the

crystal lattice, which will result in shifts in diffraction peak

positions as compared with those from the same material in

the stress-free condition. The measurement of peak shifts for

different orientations of the scattering vector with respect to

the sample enables the stress determination. The stresses

present in the near surface volume are usually determined

using the well known sin2 method (Noyan & Cohen, 1987). If

only the macrostresses (the first-order stresses) are present in

a quasi-isotropic material (with random orientations of the

grains lattice), the measured interplanar spacing hdð’; Þifhklg

will be a linear or elliptical function of sin2 [’ and  are

defined in Fig. 1(a)]. In such a case, the macrostress tensor can

be determined from measured hdð’; Þifhklg versus sin2 
curves (Noyan & Cohen, 1987; Welzel et al., 2005).

In the case of a textured material, the hdð’;  Þifhklg versus

sin2 curves are neither linear nor elliptical. These deviations

(called nonlinearities) of the measured sin2 plots are due to

the elastic anisotropy of the material. Such nonlinearities can

be well predicted by various methods that are used to deter-

mine the diffraction elastic constants (Welzel et al., 2005). The

calculations are based on the crystallographic texture and

single-crystal elastic constants, and they predict the character

of sin2 plots for a sample under applied (or residual)

macrostresses. However, in the case of plastically deformed

polycrystalline material, the interpretation of nonlinearities of

sin2 plots based on the elastic anisotropy alone is insufficient.

Another reason for the nonlinearities of the measured sin2 
plots is the effect of plastic incompatibility stresses (second-

order stresses), which develop during elasto-plastic deforma-

tions of the sample (Greenough, 1949; Marion & Cohen, 1977;

Hauk, 1986; Pintschovius et al., 1987). A number of authors

have attempted to explain the nonlinear character of sin2 
plots as being due to the incompatibilities of polycrystalline

grains arising from the differences in their plastic flow prop-

erties; these differences are caused by variations in the lattice

orientations of the grains with respect to the applied load

(Greenough, 1949; Shiraiwa & Sakamoto, 1970; Taira et al.,

1971). Later, the Taylor model and the self-consistent model of

elasto-plastic deformation were used to predict the non-

linearities of the sin2 plots (Van Acker et al., 1994; Krier,

1993). The experimental data were successfully compared with

theoretical results; however, the plastic incompatibility

stresses were not determined.

Independently of theoretical calculations, diffraction

experiments with multiple reflections were performed to

determine plastic incompatibility stresses directly from the

lattice strains measured on a group of crystallites (Willemse et

al., 1982; Hauk, 1986; Hauk et al., 1988; Pintschovius et al.,

1987). However, this direct method of microstress analysis can

be applied only if the crystallographic texture is significant and

if it can be decomposed to a number of well defined preferred

orientations. In this case, the plastic incompatibility stresses

can be determined for the major texture components.

Significant effort has been made to determine the so-called

stress orientation function from the lattice strains measured

for many orientations of the scattering vector using different

hkl reflections. The stress components dependent on lattice



orientations were expanded into generalized spherical

harmonics (Bunge, 1982; Wang et al., 1999, 2003; Behnken,

2000) and correlated with the measured lattice strains. To

describe the dependence of the stress tensor on lattice

orientation, functions for six independent components have to

be found, contrary to the case of orientation distribution

function analysis, where only a scalar function is needed

(Bunge, 1982). Consequently, the solution is possible only if at

least five or six independent hkl reflections are used to

measure the strains for different orientations of the scattering

vector (usually such measurements are not possible owing to

the low intensity of the measured diffraction peaks, especially

for textured materials). Even when sufficient experimental

data are available, the solution is not unique and additional

assumptions, such as the minimum of the stress or strain

variance (Behnken, 2000, 2002) or a stress–strain relation

based on Hill’s constraint tensor (Wang et al., 2001, 2003), are

needed. However, it has not been proved that the obtained

solution will be unique when the additional assumptions are

introduced.

Concurrently, a methodology of determining stresses based

on the analysis of the physical behaviour of crystallites in a

polycrystalline material was proposed and developed by

Baczmański and co-workers (Baczmański et al., 1994, 1997,

2004; Baczmański, Braham & Seiler, 2003). This method

allows quantitative evaluation of the macrostresses and the

plastic incompatibility stresses using diffraction data and the

self-consistent model. By analyzing the nonlinear hdð’; Þifhklg

versus sin2 curves measured using one hkl reflection, the

plastic incompatibility stresses in cold rolled ferritic steel

(Baczmański et al., 1994, 1997) and in duplex steel (Inal et al.,

1999) were estimated. A more general multi-reflection method

for determination of stresses in anisotropic materials has been

elaborated by Baczmański, Braham & Seiler (2003) and

Wroński et al. (2007). In the present work, the method of

determining the macrostresses and plastic incompatibility

stresses is applied to plastically deformed ferritic steel samples

under an applied load.

2. Theoretical principles

2.1. Physical origins of stresses in a grain

Stresses are generated in elastic materials when subjected to

an external load or a thermo-mechanical treatment changing

the relative shapes or volumes of different parts of the body.

Usually the stress field is heterogeneous and anisotropic. In

numerous processes the changes in the internal structure after

the treatment are permanent and lead to development of

residual stresses. To fully describe the residual stress field in a

polycrystalline material, the stresses in a single grain, as well as

in a macroscopic volume V containing a large number of

grains, must be considered (for example, the volume contri-

buting to diffraction).

Owing to the large-scale heterogeneity of the irreversible

plastic deformation, non-zero residual loads are created at the

boundaries of the given volume V of the sample. The mean

stresses related to these loads are called the �M
mn macrostresses.

The grain elastic constants, defined with respect to the sample,

vary with orientation (g) of the crystal lattice and they may

differ significantly between the grains belonging to different

phases. Consequently, different values of so-called elastic

grain stresses �gðerÞ
ij ðgÞ will result from elastic responses of

grains within the considered volume V to the loads applied.

From linear elasticity, the elastic grain stress �gðerÞ
ij ðgÞ can be

related to the macrostress, i.e.

�gðerÞ
ij ðgÞ ¼ B

g
ijmnðgÞ �

M
mn; ð1Þ

where BgðgÞ is the stress concentration tensor and summation

over repeated indices is applied.

It should be noted that the elastically induced stresses

�gðerÞ
ij ðgÞ linearly depend on the macrostress values and they

disappear when �M
mn ! 0 [equation (1)]. The stress concen-

tration tensor can be calculated for each grain (within volume

V) using different models (Mura, 1993; Lipinski & Berveiller,

1989; Clyne & Withers, 1993). It will depend on the elastic

anisotropy of the individual grains and of the whole sample

(crystallographic texture), elastic coupling between the grains,

and the presence of different phases.

During deformation of a polycrystalline material, the irre-

versible incompatibilities caused by varying plastic flow in

different grains will lead to plastic incompatibility stresses

�gðicÞ
ij ðgÞ. These stresses will remain in the grains even when the
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Figure 1
(a) Orientation of the laboratory system L with respect to the sample
system X given by the  and ’ angles; the L3 axis is parallel to the
scattering vector Dk, and the uniaxial stress �A

11 is applied along the
X1-axis direction. Directions of rolling: the RD (rolling), TD (transverse)
and ND (normal) directions are indicated. (b) Definition of lattice
rotation around the scattering vector Dk normal to the (hkl) plane.



external force is removed, i.e. when �M
mn ! 0. The grain stress

�g
ijðgÞ can be expressed as a superposition of a term �gðerÞ

ij ðgÞ

[dependent on the macrostresses defined by equation (1)] and

another term �gðicÞ
ij ðgÞ describing the plastic incompatibility of

a particular grain, i.e.

�g
ijðgÞ ¼ �

gðerÞ
ij ðgÞ þ �

gðicÞ
ij ðgÞ: ð2Þ

Using equation (1), the stress in the grain can be related to the

macrostresses acting in the volume V, i.e.

�g
ijðgÞ ¼ B

g
ijmnðgÞ �

M
mn þ �

gðicÞ
ij ðgÞ: ð3Þ

2.2. Diffraction method for stress determination

In the present work, the modified sin2 diffraction method

(Baczmański et al., 1994; Baczmański, Braham & Seiler, 2003)

is applied to determine stresses in a cold rolled ferritic steel

sample. This method is based on the measurements of inter-

planar spacing for various orientations of the scattering vector,

defined by the ’ and  angles (see Fig. 1a). According to

equation (3), the grain stress and the lattice strain depend on

the macrostresses �M
ij and the plastic incompatibility stresses

�gðicÞ
mn ðgÞ. Consequently, in the case of a single-phase material

the measured mean lattice strain, h"ð’; Þifhklg, will be

composed of two terms,1 i.e.

h"ð’; Þifhklg ¼ Fijðhkl; ’;  Þ �M
ij þ h�3m �3n s

g
mnijðgÞ �

gðicÞ
ij ðgÞifhklg;

ð4Þ

where h"ð’; Þifhklg is the mean lattice elastic strain in the L3

direction for crystallites having the scattering vector perpen-

dicular to the {hkl} planes, Fijðhkl; ’;  Þ are the diffraction

elastic constants (described below), s
g
mnijðgÞ are the single-

crystal elastic constants defined with respect to the X system, g

denotes grain orientation and �km are elements of the matrix

transforming strains and stresses from the sample (X) to the

laboratory (L) coordinate system (see Fig. 1a).

According to the methodology proposed by Baczmański et

al. (1994) the anisotropy of the incompatibility stresses can be

predicted qualitatively by the self-consistent model. However,

the absolute values of the stresses will depend on the hard-

ening and relaxation processes occurring during plastic

deformation. These processes are difficult to model and in

general the amplitude of the stress tensors is not correctly

predicted. To relate the magnitude of theoretical stresses to

the actual ones, an unknown scaling factor q is introduced in

the modified sin2 method (Baczmański et al., 1994, 2004;

Baczmański, Braham & Seiler, 2003). This factor does not

depend on the grain orientation g and it rescales the amplitude

of the stress tensor, i.e. the incompatibility stress �gðicÞ
ij ðgÞ in the

real sample is equal to

�gðicÞ
ij ðgÞ ¼ q �gðicÞ

ij ðgÞ; ð5Þ

where q is the scaling parameter and �gðicÞ
ij ðgÞ is the plastic

incompatibility stress for a grain with orientation g as

predicted by the model.

Finally, by defining the measured lattice strain as

h"ð’; Þifhklg ¼
hdð’; Þifhklg � d0

fhklg

d0
fhklg

; ð6Þ

the experimental interplanar spacings hdð’; Þifhklg obtained

from the diffraction method can be expressed as

hdð’; Þifhklg ¼

h
Fijðhkl; ’;  Þ �M

ij

þ q h�3m �3n s
g
mnijðgÞ �

gðicÞ
ij ðgÞifhklg

i
d0
fhklg þ d0

fhklg; ð7Þ

where h�3m �3n s
g
mnijðgÞ �

gðicÞ
ij ðgÞifhklg are the model-predicted

strains caused by the plastic incompatibility stresses,

hdð’; Þifhklg is the mean interplanar spacing for the {hkl}

planes in the direction of the scattering vector and d0
fhklg is the

strain-free interplanar spacing.

Using the least-squares method for equation (7), the fitting

parameters (i.e. �M
ij , q and d0

fhklg) can be determined. The

procedure used in this work is based on minimizing the merit

function, denoted �2, which is defined as

�2
¼

1

N �M

XN

n¼1

"
hdð’n;  ni

exp
f211g � hdð’n;  ni

cal
f211g

�n

#2

; ð8Þ

where hdð’n;  ni
exp
f211g and hdð’n;  ni

cal
f211g are the experimental

and calculated interplanar spacings [equation (7)], �n ¼

�n½hdð’;  Þifhklg� is the measurement error (standard deviation)

of the determined spacing hdð’; Þifhklg for the nth measure-

ment, and N and M are the number of measured points and

fitting parameters, respectively.

We emphasize that the term q h�3m �3n s
g
mnijðgÞ �

gðicÞ
ij ðgÞifhklg

in equation (7), characterizing the nonlinearities of the sin2 
plot, is adjusted to the experimental data by varying the q

parameter. Thus, only the amplitude of the theoretical func-

tion h�3m �3n s
g
mnijðgÞ �

gðicÞ
ij ðgÞifhklg is rescaled by the q factor,

while its dependence on the orientation of the scattering

vector (i.e. on ’ and  ) is given by the model. When the value

of q is determined by a fitting procedure, the real values of the

plastic incompatibility stresses �gðicÞ
ij ðgÞ can be calculated for all

grain orientations g using equation (5). Thus, the macro-

stresses �M
ij and the plastic incompatibility stresses �gðicÞ

ij ðgÞ can

be estimated.

To illustrate the level of the plastic incompatibility stresses

in a statistical grain, the average equivalent residual stress

[�gðicÞ
eq ] is calculated:

�gðicÞ
eq

� �
¼

1

8�2

Z
E

�gðicÞ
eq ðgÞ f ðgÞ dg; ð9Þ

where
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1 A more general formula for two-phase material was derived by Wroński et al.
(2007), where the incompatibility stresses �gðicÞ

ij ðgÞ were defined as the
superposition of the average phase incompatibility stresses �phðicÞ

ij and second-
order incompatibility stresses for this phase. However, in single-phase material
�phðicÞ

ij ¼ 0, and consequently the grain incompatibility stresses are equal to the
second-order incompatibility stresses [as defined by Wroński et al. (2007)], i.e.
�gðicÞ

ij ðgÞ ¼ �
IIðicÞ
ij ðgÞ.



�gðicÞ
eq ¼

�
ð1=2Þ

�
ð�gðicÞ

11 � �
gðicÞ
22 Þ

2
þ ð�gðicÞ

11 � �
gðicÞ
33 Þ

2

þ ð�gðicÞ
22 � �

gðicÞ
33 Þ

2
�
þ 3

�
ð�gðicÞ

12 Þ
2
þ ð�gðicÞ

13 Þ
2
þ ð�gðicÞ

23 Þ
2
��1=2

is the equivalent stress calculated according to the von Mises

formula for a grain with orientation g, and the integral is

calculated over the whole orientation space E using the f(g)

orientation distribution function (Bunge, 1982) as the

weighting parameter.

In the next sections, the contributions of the macrostresses

and incompatibility stresses to the lattice strains [equation (4)]

are described.

2.2.1. Contribution of macrostresses to lattice strains. If

the incompatibility stresses are not present in the material, the

relation between lattice strains h"ð’; Þifhklg measured using

the hkl reflection and macrostresses can be expressed by the

linear equations (Dölle, 1979; Brakman, 1987; Barral et al.,

1987; Welzel et al., 2005)

h"ð’;  Þifhklg ¼ Fijðhkl; ’;  Þ�M
ij or

h"ð’;  Þifhklg ¼ Rijðhkl; ’;  Þ�0Mij ;
ð10Þ

where �0Mij and �M
ij are the macrostresses expressed in the L

and X systems (Fig. 1a), respectively; Rijðhkl; ’;  Þ and

Fijðhkl; ’;  Þ denote the corresponding diffraction elastic

constants defined for the hkl reflection and the orientation of

the scattering system given by the angles ’ and  .

The relation between these two types of diffraction elastic

constants is given by the equation

Fijðhkl; ’;  Þ ¼ �mi �nj Rmnðhkl; ’;  Þ: ð11Þ

Different approaches have been proposed to calculate the

Rijðhkl; ’;  Þ diffraction elastic constants for quasi-isotropic

and textured materials [for example, the geometrical mean

approach (Baczmański et al., 1993; Matthies & Humbert,

1995)]. The classical methods are based on the assumptions of

homogenous stress in the Reuss (1929) model or homogenous

strain in the Voigt (1928) model, while in the self-consistent

model, the elastic interaction of ellipsoidal inclusion with the

homogenous matrix is considered (Kröner, 1961; Kneer, 1965;

Lipinski & Berveiller, 1989). The methods for calculation of

diffraction elastic constants are widely described in the

literature (Dölle, 1979; Brakman, 1987; Baczmański et al.,

1993; Hauk, 1997; Welzel et al., 2005).

Recently a new approach based on the directional depen-

dence of grain interaction has been proposed, to calculate the

diffraction elastic constants of thin coatings in which the grains

are built as a two-dimensional aggregate having different in-

plane and normal properties (Van Leeuwen et al., 1999; Welzel

et al., 2003; Welzel & Fréour, 2007). It is assumed that, for

crystallites with a columnar structure (having dimensions

equal to the thickness of the film), the grains exhibit the same

in-plane strain (a Voigt-type behaviour), whereas they can

deform freely in the direction perpendicular to the coating

surface (a Reuss-type behaviour). To determine the diffrac-

tion elastic constants, a grain-interaction approach based on

the Vook–Witt method (Witt & Vook, 1968) was developed

and applied for a general stress state in a textured material

(Van Leeuwen et al., 1999; Welzel et al., 2003; Welzel & Fréour,

2007).

In the present work, the classical methods [i.e. the Reuss

and Voigt methods as defined by Brakman (1987), Baczmański

et al. (1993) and Welzel et al. (2005)] and the methods based on

the self-consistent elastic model were applied to calculate the

diffraction elastic constants for anisotropic samples [the

experimental f(g) orientation distribution function was used in

the calculations]. Considering the interaction of the grain with

a surrounding matrix as given by equation (1) and by using the

self-consistent model approach, the diffraction elastic

constants Rmn can be expressed as (Baczmański, Skrzypek et

al., 2003; Baczmański, Braham & Seiler, 2003)

Rmn ¼

P
fhklg

"R0
2�

s
0g
33ijðgÞB

0g
ijmnðgÞ f ðgÞ d�

#
hklP

fhklg

"R0
2�

f ðgÞ d�

#
hkl

; ð12Þ

where B
0g
ijmnðgÞ are the components of the stress concentration

tensor calculated by the model and s
0g
klijðgÞ are the single-crystal

compliances (the prime denotes that the quantity is defined in

the L coordinate system). The integral is calculated over the

volume of all grains having orientations corresponding to

crystallites rotated by �(g) – the angle around the Dk scat-

tering vector (Fig. 1b) – while the summation is performed for

all symmetrically equivalent planes {hkl}.

Two different models are used to calculate the B0gðgÞ tensor

from equation (1). The first, which is a standard method, is

based on the self-consistent model applied to an ellipsoidal

inclusion embedded in a homogenous matrix (Lipinski &

Berveiller, 1989; Baczmański, Skrzypek et al., 2003; Bacz-

mański, Braham & Seiler, 2003), i.e.

B
0g
ijmnðgÞ ¼ B

0gðscÞ
ijmn ðgÞ: ð13Þ

This approach represents interaction of grains inside the

sample volume and is termed the ‘self-consistent interior

method’.

In the second model, called the ‘surface-free self-consistent

method’, the directional dependence of grain interaction (as in

the Vook–Witt method) is incorporated into the self-consis-

tent calculations (see also Baczmański et al., 2006). In this

case, the influence of a free surface is considered, assuming

that grains on the surface can be freely deformed in the

normal direction. Owing to absorption of X-rays, surface

grains contribute more to diffraction than the grains that lie

deeper in the sample. Consequently, the following scheme for

grains in the near surface volume (Fig. 2) is proposed: the

forces and stresses normal to the surface act similarly as in the

Reuss model (free deformation in the normal direction), while

a two-dimensional elastic coupling between the grains occurs

in the plane parallel to the sample surface (which is calculated

by the self-consistent model). Taking an approach similar to

that in equation (1), the grain stresses �gðerÞ
ij can be related to

the macrostresses by the concentration tensor Bgðsc�fsÞ, i.e.
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�gðerÞ
ij ðgÞ ¼ B

gðsc�fsÞ
ijmn ðgÞ �M

mn: ð14Þ

The tensor must be calculated for an inclusion on the surface

of the sample. All quantities are expressed in the X coordinate

system (see Fig. 1a).

The main difficulty is to calculate the tensor Bgðsc�fsÞðgÞ,

which is different from that defined for an inclusion comple-

tely embedded in the material. To emulate the conditions of

flat grains with a free surface, a special construction of the

stress concentration tensor expressed in the X system is

proposed, i.e.

B
g
ijmnðgÞ ¼ B

gðsc�fsÞ
ijmn ðgÞ

¼

Iijmn for i ¼ 3 or j ¼ 3) as in Reuss model

B
gðscÞ
ijmn ðgÞ for i 6¼ 3 and j 6¼ 3) as in self�

consistent bulk model;

8><
>: ð15Þ

where I is the identity tensor and BgðscÞ is the concentration

tensor calculated for an inclusion completely embedded in the

material. The calculated BgðgÞ tensor is then transformed to

the L system and used in equation (12) as B0gðgÞ.

The free-surface method presented above was tested by

Baczmański et al. (2006), by comparing theoretical and

measured diffraction elastic constants for cold rolled ferritic

steel. It was shown that, by using this new approach, the

diffraction elastic constants of a textured sample can be

calculated accurately.

2.2.2. Contribution of plastic incompatibility stresses –
calculation model. To determine the contribution of incom-

patibility stresses on the measured lattice strain, the theore-

tical values of the �gðicÞ
ij ðgÞ stresses must be computed using the

self-consistent model. In the model, the evolution of grain

properties occurring as a result of slip on crystallographic

planes and elastic deformation under applied local stress is

considered. The slip is active on a slip system [uvw](hkl)

(denoting the slip direction and plane, respectively) when the

resolved shear stress exceeds the critical value �½uvw�ðhklÞ ¼ �c.

The multiplication of dislocations and their spatial distribution

inside a grain will lead to a hardening due to the interaction of

different slip systems, i.e. �c increases with deformation. The

rate of increase of the critical shear stress on the sth system

can be approximated using the work hardening matrix H,

_��s
c ¼

P
t

Hst _�� t; ð16Þ

where _�� t is the rate of plastic slip on the tth active system and

the dot denotes the time derivative. In this work, the hard-

ening is assumed to be isotropic and linear, i.e. all components

of the H matrix have the same value H, which does not depend

on the grain deformation or other evolution parameters.

It was found in our previous work (Baczmański et al., 1994)

that the orientation distribution function calculated by the

self-consistent model quantitatively differs from the experi-

mental one, when the model calculations are performed for

large plastic deformations (of about 50–90%) on initially

randomly orientated grains. To avoid such a disagreement, a

new approach is applied in the present work. The self-

consistent calculations (Lipinski & Berveiller, 1989; Zattarin et

al., 2000) are performed for a set of grains having initially zero

stresses and the distribution of lattice orientations (g) corre-

sponding to the experimentally determined crystallographic

texture. To simulate the cold rolling process, the following

form of the strain tensor is applied to the sample during

calculations:

Erol ¼

"
Erol

11 0 0

0 0 0

0 0 �Erol
11

#
: ð17Þ

The elasto-plastic deformation is modelled for a few percent

of elasto-plastic deformation, up to a certain value of the total

sample macrostrain Erol
11 . Finally, after unloading of the stresses

applied to the sample, denoted by �rol
ij (i.e. when �rol

ij ! 0),

the theoretical stress tensor �gðicÞ
ij ðgÞ for each grain and the

lattice strains

h"0gðelÞ
33 ð’; Þifhklg ¼ h�3m �3n s

g
mnijðgÞ �

gðicÞ
ij ðgÞifhklg

are calculated. In the next step, the fitting procedure based on

equation (7) is applied to compute the �2 parameter. Such a

procedure is repeated for a few different values of macrostrain

(Erol
11 ) to find the best agreement of the theoretically predicted

anisotropy of the incompatibility stresses with the experi-

mental data. In subsequent calculations, the model results for

which the �2 parameter reaches a minimum value are used.

3. Analyses of experimental data using the self-
consistent model

3.1. Experimental technique

Two samples were prepared from an ultra low carbon

ferritic steel (ULC96) which had been cold rolled to a

reduction of 96% in thickness. The chemical composition of

this steel is given in Table 1. By electrochemical polishing,

layers of 200 and 100 mm material were removed in the

ULC96_1 and ULC96_2 samples, respectively. This was

necessary to remove any surface artefacts or irregularities.

The hdð’; Þif211g versus sin2 curves were measured using

an improved Rigaku X-ray Stress Analyser (MSF-2M)
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Table 1
Chemical composition of ULC96 ferritic steel (in wt%).

C Si Mn Cr Al Fe

0.002 0.012 0.195 0.016 0.058 Balance

Figure 2
Scheme of interaction between elongated and flat grains in the near-
surface volume for a cold rolled sample, i.e. Reuss model in the X3-axis
direction and the self-consistent model in the plane X1X2.



equipped with a parallel beam optics and filtered Cr K� X-ray

radiation (	K� = 0.2291 nm). The measurements were carried

out using the side-inclination method ( -goniometer

geometry). In each measurement, diffraction profiles for the

211 reflection were obtained in 13–17 different  directions [’
is fixed; see Fig. 1(a)]. The measured X-ray intensity profiles

were corrected for background, Lorenz polarization, absorp-

tion (LPA) and K�1/K�2 overlap. A least-squares fit was

applied to the resulting K�1 diffraction profile to calculate the

peak position (2
peak), from which the hdð’;  Þif211g values at

different  tilt angles were determined using Bragg’s law.

X-ray measurements at different ’ angles were performed

after rotating the goniometer by an angle ’ with respect to the

sample axis. To perform the measurements on the sample

under a uniaxial load, a mechanical tensile test machine was

used. In this test machine, a constant load was maintained

during the X-ray measurements. The X-ray measurements

were performed at different applied load levels characterized

by tensile stresses denoted by �ten
11 . The samples were instru-

mented with strain gauges on both sides to account for any

bending and were calibrated beforehand. The applied tensile

forces were also measured using a load cell. Using this

experimental setup, it was possible to perform X-ray

measurements at different ’,  and applied stress levels.

The nonlinearities of the measured interplanar spacing

hdð’;  Þif211g for different orientations of the scattering vector

confirmed a strong anisotropy of the plastic incompatibility

stresses in the plastically deformed (cold rolled) steel (Fig. 3a).

To illustrate that the nonlinearities of the hdð’; Þif211g versus

sin2 curves are caused by incompatibility stresses, one of the

cold rolled samples was subsequently annealed. After

annealing, the nonlinearity significantly decreased as

expected, since the plastic incompatibility residual stresses

were reduced (Fig. 3b).

3.2. Diffraction elastic constants and theoretical incompat-
ibility stresses

The experimental orientation distribution function,

presented in Fig. 4(a), and the single-crystal elastic constants

given in Table 2 were used to calculate different types of

diffraction elastic constants.

To determine the theoretical stresses �gðicÞ
ij ðgÞ, the defor-

mation due to the cold rolling process was simulated using the

self-consistent model [the sample strain tensor Erol is defined

in equation (17)]. The polycrystalline sample was represented

by 10 000 grains having (initially) zero values of the stress

components and a distribution of lattice orientations (g)

corresponding to the experimentally determined texture

(Fig. 4a). The calculations were performed up to different

values of the sample strains Erol
11 [see equation (17)], using the

parameters given in Table 2. The fitting procedure based on

equation (7) was applied to adjust the theoretical hdð’; Þif211g

versus sin2 functions to the experimental results for the as-

received ULC96_1 sample. The values of the �2 parameter

were determined using �gðicÞ
ij ðgÞ stresses obtained for different

macrostrains Erol
11 . The diffraction elastic constants calculated

by the self-consistent method for a free surface were used and

an uncertainty of 0.02� in diffraction peak position determi-

nation was assumed, i.e. �(2
) = 0.02�.

As shown in Fig. 5(a), the best fit corresponds to the

deformation Erol
11 = 7.5% when the �2 parameter reaches the

minimum value. The poor agreement between the theoretical

and the experimental data for Erol
11 < 7.5% can be explained by

the gradual evolution of the incompatibility stresses, which

increase from a zero value to higher values characteristic of

stable elasto-plastic deformation. When the deformation is

stable, i.e. starting from Erol
11 = 7.5%, the theoretical mean von

Mises plastic incompatibility stress [�gðicÞ
eq ] [see equation (9)]

becomes a linear function of the macrostrain Erol
11 (Fig. 5b). For

deformations larger than Erol
11 = 7.5% the poor fit of the sin2 

plot (see Fig. 5a) is due to a significant modification of the

crystallographic texture during calculations. In other words,

the texture computed by the model

differs significantly from the experi-

mentally determined texture. Finally,

the theoretical stresses calculated for

Erol
11 = 7.5% were used in further

analyses of the experimental data. It

was verified that for this sample

deformation the crystallographic

texture does not change significantly

(compare Figs. 4a and 4b).

3.3. Stresses determined during ‘in
situ’ tensile testing

Using the theoretical stresses

�gðicÞ
ij ðgÞ calculated for macrostrain
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Figure 3
Exemplary hdð’; Þif211g versus sin2 curves measured for cold rolled (a) and annealed (b) steel
samples.

Table 2
Parameters used in the prediction model.

�c is the critical resolved shear stress and H is the hardening parameter.

Single crystal elastic constants (GPa)

Assumed slip
systems c1111 c1122 c1212 �c (MPa) H (MPa)

h111i{211} and
h111i{110}

231 134 116 250 80



Erol
11 = 7.5%, the fitting procedure based on equation (7) was

applied to the data from the ULC96_1 and ULC96_2 samples

(in as-received and loaded conditions, respectively), and the

unknown adjusting parameters (i.e. �M
ij , q and d0) were

determined. An uncertainty of �(2
) = 0.02� was assumed in

diffraction peak position determination. The earlier analysis

of the plastic incompatibility stresses in a cold rolled ULC

ferritic steel sample was only partially carried out by Bacz-

mański et al. (1994), since the methodology was not sufficiently

well developed at that time. Furthermore, the data from the ‘in

situ’ loaded sample could not be evaluated. Self-consistent

calculations for a large number of grains (106) were not

possible then, and consequently the incompatibility stresses

and stored elastic energy were not determined for each

orientation of polycrystalline grains in the case of a strongly

textured material. The present work included the above

aspects.

The results of the current analyses on ULC cold rolled

samples in as-received (not loaded) condition are given in

Table 3. Different types of diffraction elastic constants have

been used in the analyses of the experimental data. In Figs. 6

and 7 the measured and the theoretical fitted curves for as-

received (a) and for loaded samples (b and c) are shown. In

the case of the loaded samples different tensile uniaxial

stresses �ten
11 , within the elastic range of deformation, were

applied to the ULC96_1 and ULC96_2 samples. The theore-

tical plots are obtained using two different assumptions, viz. (i)

the plastic incompatibility stresses are not present (dashed

lines, q = 0), and (ii) the influence of �gðicÞ
ij ðgÞ stresses is taken

into account and the q parameter is determined from equation

(7) (continuous lines, q 6¼ 0). As seen in Figs. 6 and 7, the

calculated lines definitely fit better to the experimental points

when non-zero plastic incompatibility stresses are taken into

account in the data analyses. The same conclusion can be

drawn from Fig. 8, where the �2 para-

meter characterizing the quality of

fitting is shown.

By analysing the obtained results, it

was found that the nonlinearities of the

sin2 plot are complex and depend on

the sample elastic anisotropy (texture)

and plastic incompatibility stresses. It

should be noted that anisotropy of

diffraction elastic constants alone did

not account for the nonlinarities of the

sin2 plots (see disagreement of the

experimental points and dashed lines,

especially in Fig. 6).

3.4. Stress analysis using different
types of diffraction elastic constants

The quality of fitting as character-

ized by the �2 parameter will depend

on the type of diffraction elastic

constants Fij used in equation (7). The

best agreement between the experi-

mental and the theoretical results was

found when the Fij constants were

calculated by the Reuss and the self-

consistent free-surface models (Fig. 9).

This confirms that the influence of

sample elastic anisotropy on the

nonlinearities of the hdð’; Þif211g

versus sin2 curves is best predicted by

these two approaches.

For a known q factor, the average

equivalent von Mises stresses [�gðicÞ
eq ]

were estimated using equations (5) and

(9). As shown in Fig. 10, the most stable

(i.e. independent of the applied load)

values of the equivalent plastic incom-

patibility stresses [�gðicÞ
eq ] were obtained

when the Reuss and the self-consistent
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Figure 4
(a) Experimental orientation distribution function used as input data for the self-consistent model
and (b) the predicted texture obtained after additional deformation Erol

11 = 7.5% of the cold rolling
process. Sections through Euler space at intervals of 5� along the ’2 axis are presented.

Figure 5
(a) Values of �2 characterizing the quality of fitting obtained when the model calculations were
performed for different sample macrostrains Erol

11 of the cold rolling process, and (b) average
equivalent von Mises plastic incompatibility stress [�gðicÞ

eq ] versus total macrostrain Erol
11 , calculated by

the self-consistent model.



free-surface models were used to calculate the Fij constants.

When Fij constants calculated by other models (i.e. the Voigt

and the self-consistent approach for a sample interior) are

used in the fitting procedure, the determined value of [�gðicÞ
eq ]

stress strongly depends on the value of the external stress

applied to the sample. In such cases, the anisotropy of the

diffraction elastic constants is not correctly predicted and the

nonlinearities of the hdð’; Þif211g versus sin2 curves are

interpreted mostly as the effect of plastic incompatibilities.

Consequently, the values of [�gðicÞ
eq ] are artificially increased or

decreased and they significantly depend on the applied stress

�ten
11 (Fig. 10).

For every sample there exists a value of the applied load

(�11) at which the determined [�gðicÞ
eq ] stress does not depend

on the type of the diffraction elastic constants used (inter-

section point of all lines in Fig. 10). This applied stress �ten
11

compensates the component �M
11 of residual macrostress acting

in the as-received samples. When �ten
11 ’ ��

M
11, the influence of
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Figure 6
Measured lattice parameters (points) and theoretical results of fitting (continuous lines for q 6¼ 0 and dashed lines for q = 0) for the ULC96_1 sample (see
Table 3). The results are presented for (a) the as-received sample, (b) superimposed tensile stress �ten

11 = 90 MPa and (c) �ten
11 = 150 MPa. The self-

consistent free-surface method was used for calculation of the diffraction elastic constants. The error bars correspond to �(2
) = 0.02�.

Figure 7
Measured lattice parameters (points) and theoretical results of fitting (continuous lines for q 6¼ 0 and dashed lines for q = 0) for the ULC96_2 sample (see
Table 3). The results are presented for (a) the as-received sample and (b) superimposed tensile stress �ten

11 = 400 MPa. The self-consistent free-surface
method was used for calculation of the diffraction elastic constants. The error bars correspond to �(2
) = 0.02�.



the diffraction elastic constants on the hdð’; Þif211g versus

sin2 curves and on the determined [�gðicÞ
eq ] stresses is mini-

mized. This is due to the small net resultant macrostress after

superposition of the applied and the residual stresses. The

residual stresses �M
11 in the as-received samples, deduced from

intersection points in Fig. 10 (i.e. about 200 MPa for the

ULC96_1 and 45 MPa for the ULC96_2 samples) are

approximately equal to those determined by the modified

sin2 method with Reuss and self-consistent free-surface

diffraction elastic constants (i.e. about 182 MPa for the

ULC96_1 and 53 MPa for the ULC96_2 samples; see Table 3).

Such agreement proves that the macrostresses in plastically

deformed samples can be accurately determined using the

modified sin2 method (accounting for the presence of plastic

incompatibility stresses and crystallographic texture).

In Fig. 11 the values of the stress-free interplanar spacing

d0
f211g versus applied loads are presented for both studied

samples. It is important to note that the value of d0
f211g does not

depend significantly on the values of

the stresses present in the sample (the

df211g range is kept the same in Figs. 6, 7

and 11 for an easy comparison). Thus

the proposed method offers an addi-

tional advantage of determining the

stress-free lattice parameter for

samples containing significant macro-

stresses and plastic incompatibility

stresses.

Finally, the possibility of deter-

mining the macrostress tensor was

evaluated using the data obtained at

different applied loads. In fact, it is

impossible to verify the absolute values

of the residual macrostresses present in

the samples in the as-received condi-

tion. However, the differences between

the determined macrostresses can be

compared with the corresponding

applied stresses. In Fig. 12 the re-eval-

uated stresses �E
ij as a function of the

applied stress �ten
11 is presented. The re-

evaluated stress is defined as

�E
ij ¼ �

M
ij ð�

ten
11 Þ � �

M
ij ð0Þ; ð18Þ

where �M
ij ð0Þ and �M

ij ð�
ten
11 Þ are the

macrostresses determined in the as-

received and in the �ten
11 stress-applied

conditions, respectively.

It was verified (Fig. 12) that the

values of the applied stresses were
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Figure 8
Values of the �2 parameter obtained when the plastic incompatibility stresses were neglected (q = 0)
or were taken into account (q 6¼ 0) in the fitting procedure based on equation (7). The results for as-
received and ‘in situ’ loaded (a) ULC96_1 and (b) ULC96_2 samples are shown.

Figure 9
Values of the �2 parameter obtained when different types of diffraction elastic constants were used in
the fitting procedure based on equation (7). The results for as-received and ‘in situ’ loaded (a)
ULC96_1 and (b) ULC96_2 samples are shown.

Table 3
Results of fitting procedure for ULC96 as-received samples [errors correspond to uncertainty in peak position, �(2
) = 0.02�].

Calculations were performed taking into account plastic incompatibility stresses. The values of the �2 parameter obtained neglecting plastic incompatibility
stresses are given in {} brackets. [�IIgðicÞ

eq ] is the average equivalent plastic incompatibility stress and d0
f211g is the stress-free interplanar spacing.

Macrostresses (MPa)

Sample
Type of diffraction elastic
constants used �M

11 �M
22 �M

12 q ½�IIgðicÞ
eq � (MPa) d0

f211g (Å)
�2ðq 6¼ 0Þ
f�2ðq ¼ 0Þg

ULC96_1 (200 mm removed) Reuss �53 (9) �39 (10) �4 (8) 0.54 (3) 128 (4) 1.17061 (4) 2.5 {12.1}
Self-consistent (free surface) �53 (10) �39 (10) �4 (9) 0.54 (3) 127 (4) 1.17061 (4) 2.6 {12.2}
Self-consistent (interior) �49 (10) �35 (10) �9 (9) 0.57 (3) 134 (4) 1.17061 (4) 2.6 {14.3}
Voigt �43 (10) �33 (10) �12 (9) 0.58 (3) 138 (4) 1.17062 (4) 2.8 {15.5}

ULC96_2 (100 mm removed) Reuss �183 (24) �88 (19) �26 (17) 0.52 (7) 111 (15) 1.17063 (8) 3.0 {7.6}
Self-consistent (free surface) �182 (25) �80 (19) �34 (17) 0.51 (7) 109 (14) 1.17063 (8) 3.1 {7.5}
Self-consistent (interior) �150 (25) �65 (18) �39 (17) 0.67 (7) 143 (13) 1.17067 (8) 3.5 {12.7}
Voigt �120 (25) �51 (19) �48 (17) 0.76 (7) 162 (14) 1.17070 (8) 4.1 {16.4}



precisely re-evaluated when the Reuss

model or the self-consistent model for

a free surface were used to calculate

the diffraction elastic constants. The

values of the applied stresses were

correctly re-evaluated (below �ten
11 =

400 MPa), i.e.

�E
11 ’ �ten

11 ; �E
22 ’ 0 and �E

12 ’ 0:

ð19Þ

Only for �ten
11 = 500 MPa is the re-

evaluated stress smaller than the

applied one (Fig. 12), probably as a

result of local plasticity occurring when

the superposed stresses exceed the

elastic limit. Consequently, it can be

concluded that the present method can

be used to determine macrostresses in

anisotropic (textured) samples and in

the presence of plastic incompatibility

stresses.

4. Stress and energy orientation
distribution functions

By using the q factor obtained from the

fitting procedure in equation (5), the

values of the plastic incompatibility

residual stresses for each orientation of

a polycrystalline grain can be calcu-

lated. For complete results, six

components of the stress tensor should

be shown in Euler space. In the case of

the cold rolled samples (bcc structure)

analysed, it is sufficient to show the

stresses using only one section of the

Euler space (0� � ’1 � 90�, 0� � � �
90� and ’2 = 45�), since this section

contains all main texture components.

The model calculations were

performed for a large number of

orientations (106 grains) in order to

have good statistical information about

the stress values at all points of a mesh

created in Euler space with a step of 5�

for the ’1, � and ’2 angles. The

experimental texture (Fig. 3a) and the

initial parameters shown in Table 2

were used in the calculations. A scaling

factor of q = 0.54 was used (the same

value as was used for 10 000 grains) in

equation (7) to determine the plastic

incompatibility stresses. In Fig. 13, the

contour plots of the orientation distri-

bution function f(g), the equivalent von

Mises stress �gðicÞ
eq ðgÞ [as defined in
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Figure 10
Values of average equivalent stress [�gðicÞ

eq ] obtained when different types of the diffraction elastic
constants were used in the fitting procedure based on equation (7). The results for as-received and ‘in
situ’ loaded (a) ULC96_1 and (b) ULC96_2 samples are shown.

Figure 12
Values of re-evaluated stresses �E

ij determined using different types of the diffraction elastic
constants.

Figure 11
Values of the stress-free interplanar spacing d0

f211g obtained when different types of diffraction elastic
constants were used in the fitting procedure based on equation (7). The results for as-received and ‘in
situ’ loaded (a) ULC96_1 and (b) ULC96_2 samples are shown.



equation (9)] and the stored elastic energy are presented. The

stored elastic energy was calculated using the formula

WgðicÞ
ðgÞ ¼ ð1=2Þ �gðicÞ

ij ðgÞ s
g
ijklðgÞ �

gðicÞ
kl ðgÞ; ð20Þ

where s
g
ijklðgÞ is the compliance tensor of a grain having the

lattice orientation g.

In Fig. 14 the components of the stress tensor �gðicÞ
ij ðgÞ are

shown. In Figs. 13 and 14, the areas with high density of

orientations (texture) are indicated in grey.

As seen in Fig. 13(c), the elastic energy WgðicÞðgÞ is not

equally distributed among different orientations. The highest

energy is stored in the grains having lattice orientations close

to the texture components f112gh1�110i (component A in

Fig. 13), while the energy minimum corresponds to the group

of symmetrical orientations f111gh1�221i (components Y and Y*

in Fig. 13). Other preferred orientations (f001gh1�110i and

f111gh1�110i, i.e. R, R* and Z, Z*, respectively) exhibit the

average value of energy. As shown in Fig. 13(b), the depen-

dence of the equivalent von Mises stress �gðicÞ
eq ðgÞ on the lattice

orientation is similar to that seen with the elastic energy

WgðicÞðgÞ.

Interesting conclusions can be drawn when the dependence

of the stress components �gðicÞ
ij ðgÞ on the lattice orientation is

studied. By applying the Schmid law to cold rolled bcc

materials, the resolved shear stresses for different slip systems

were compared by Shiraiwa & Sakamoto (1970). They found

that the crystals having f111gh1�221i and f001gh1�110i lattice

orientations are the most difficult and the most easy to

deform, respectively. This observation is now confirmed by

this study when applying the self-consistent model. In the

results presented in Fig. 14, the negative value of the

component �gðicÞ
11 ðgÞ indicates the lattice orientations of the

grains that are more plastically elongated along the rolling

direction (in comparison with the average sample deformation

in this direction). These grains have lattice orientations

around f001gh1�110i (i.e. R and

R* in Fig. 14) and correspond

to orientations for which the

maximum resolved shear stress

for active slip exhibits the

largest value. Thus, the plastic

deformation in grains with

orientations close to f001gh1�110i

occurs easily, which produces

incompatibility back stress

(compressive) having the

opposite sign with respect to

the macrostress applied along

the rolling direction (tensile).

Conversely, for f111gh1�110i and

f111gh1�221i (Z, Z* and Y, Y*)

lattice orientations the

maximum value of the resolved

shear stress is relatively low.

Hence these grains are less

deformed along the rolling

direction than the average

volume of the sample and

tensile incompatibility stresses

are created in this direction.

For lattice orientations that are

close to the f112gh1�110i (i.e. A in

Fig. 14) texture component, the

smallest value of the �gðicÞ
11 ðgÞ

residual stress has been found.

This means that the elasto-

plastic deformations of grains

having that lattice orientation

are approximately equal to the

macrostrain of the whole

sample (consequently the grain

incompatibilities are small).

When comparing the �gðicÞ
33 ðgÞ

and �gðicÞ
11 ðgÞ incompatibility

research papers

864 A. Baczmanski et al. � Stresses and elastic energy in ferritic steel J. Appl. Cryst. (2008). 41, 854–867

Figure 13
Contour plots of (a) the orientation distribution function f(g), (b) the equivalent von Mises stress �gðicÞ

eq ðgÞ
(MPa) and (c) the stored elastic energy WgðicÞðgÞ (kJ m�3) presented in the section ’2 = 45�. The following
notation is used for the main texture components: (hkl) is the crystallographic plane parallel to the surface of
the sheet and [uvw] is the crystallographic direction parallel to the rolling direction (RD). The grey shaded
areas in plots (b) and (c) indicate a high density of orientations.



stresses, the opposite signs of these components have been

found for the same lattice orientation g. During the rolling

process, the macrostresses applied to the sample in the normal

and the rolling directions have opposite signs (compression in

the normal direction and tension in the rolling direction). The

tensile stress �gðicÞ
33 ðgÞ confirms that the plastic deformation

occurs more easily for the f001gh1�110i than for the f111gh1�110i

and f111gh1�221i lattice orientations for which the compressive

values of the �gðicÞ
33 ðgÞ stress are observed. Almost zero �gðicÞ

33 ðgÞ

stress was found for the grains having the f112gh1�110i lattice

orientation, confirming small plastic

incompatibilities for those grains.

When analysing the shear components

of plastic incompatibility stresses, near

zero values of �gðicÞ
13 ðgÞ and �gðicÞ

12 ðgÞ stresses

were found for all main texture compo-

nents. In contrast, significant absolute

values of the �gðicÞ
23 ðgÞ stress component

were determined for the f111gh1�110i and

f112gh1�110i orientations (Z, Z* and A

components in Fig. 14), and near zero

values of the �gðicÞ
23 ðgÞ stress for the

f111gh1�221i and f001gh1�110i orientations (Y,

Y*, R and R* components in Fig. 14). It

should be mentioned that the �gðicÞ
23 ðgÞ

stresses for the Z and Z* orientations have

opposite signs because of the sample

symmetries imposed on the stress tensor

[the symmetries for the stress tensor are

different from those defined for the scalar

orientation distribution function f(g); see

Wang et al. (1999)]. The shear components

of the determined stress tensor show that

the x principal axis of the incompatibility

stresses is parallel to the rolling direction

for all main texture components. For

orientations f111gh1�221i (i.e. Y) and

f001gh1�110i (R), the y and z principal axes

coincide with the transverse and normal

directions, respectively. However, in the

case of the f111gh1�110i (Z) and f112gh1�110i

(A) orientations, the y and z principal axes

of the stresses are significantly tilted from

the transverse and normal directions

[significant values of the shear stresses

�gðicÞ
23 ðgÞ were determined].

It should be emphasized that the above-

described variations in incompatibility

stress are caused by the anisotropy in

plastic and elastic deformations of grains

and cannot be easily interpreted without

the self-consistent model.

The values of incompatibility stresses

determined in the present work were

quantitatively compared with those

measured by the neutron diffraction

method for a similar sample (Pintschovius

et al., 1987). To measure the plastic

incompatibility stresses, Pintschovius et al.

(1987) determined lattice strains for

various hkl reflections and for particular

directions of the scattering vector corre-
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Figure 14
Components of the stress tensor �gðicÞ

ij ðgÞ (MPa) presented in the section ’2 = 45�. The main
texture components and the areas of high density of orientations (grey shaded areas) are
indicated.



sponding to the main texture components. The mean stresses

over the whole cross section of the sheet were determined

using a large gauge volume. This method enabled the authors

to find the stress tensor only for particular orientations of a

strongly textured sample. Similar conclusions concerning

shear stresses and orientations of principal stress axes were

drawn for all considered texture orientations. In addition, a

very good agreement between the neutron results and the

present data was found for the �gðicÞ
22 ðgÞ stress for different

texture components. In the case of the �gðicÞ
11 ðgÞ and �gðicÞ

33 ðgÞ

stress components, a direct comparison cannot be made since,

in the case of neutron diffraction measurements, non-zero

macrostresses in the rolling and transverse directions were

found and the plastic incompatibility stresses were not deter-

mined.

5. General conclusions

In the present study, the modified sin2 diffraction method

(Baczmański et al., 1994) for determination of the stresses in

polycrystalline material was further developed. In the current

version of the method, the theoretical plastic incompatibility

stresses are calculated by the self-consistent model starting

from the experimental texture data. It has been shown that,

after a relatively small plastic deformation (7.5%), the non-

linearities in hdð’;  Þif211g versus sin2 curves are correctly

predicted. The best fitting of the model predictions with

experimental results is obtained by minimizing the value of the

merit function �2. The advantage of this new methodology is

that the calculations can be performed for grain orientations

determined from experimental texture and consequently the

sample anisotropy is correctly defined.

The methodology was also enriched by incorporating a new

type of X-ray diffraction elastic constant. Using a new

approach, the relaxation of the stresses perpendicular to the

sample surface is considered and the free-surface self-consis-

tent model is introduced. Previously, the new diffraction

elastic constants were successfully tested for cold rolled steel

(Baczmański et al., 2006).

For the first time, the modified sin2 method was tested on

samples subjected to known external tensile loads. It has been

demonstrated that, by using this method, such applied

macrostresses can be accurately re-evaluated and separated

from the plastic incompatibility stresses for strongly textured

samples. It has been shown that the values of the applied

macrostresses are precisely re-evaluated when the Reuss or

the self-consistent method for a free surface are used to

calculate the diffraction elastic constants. The latter results

also showed that reasonable values of the diffraction constants

can be obtained when the directional dependence of the

grains’ interaction is considered in the self-consistent model.

The tests performed with the modified sin2 method

allowed us to select an optimal plastic sample strain Erol
11 =

7.5% for model prediction and to chose the free-surface self-

consistent diffraction elastic constants for an analysis of the

residual stresses in as-received ULC ferritic steel samples. The

tensor of plastic incompatibility stress �gðicÞ
ij ðgÞ has been found

for each orientation of a polycrystalline grain and the results

are presented in Euler space. In this simulation, a great

number (106) of grains were used. The obtained grain stresses

agree with the results from previous work where the stresses

were determined for different groups of grain orientations.

Finally, for the first time the distribution of elastic energy

WgðicÞðgÞ (caused by plastic incompatibilities between grains)

was determined for cold rolled ferritic steel, and the results are

shown in Euler space.

In conclusion, it should be emphasized that the advantage

of the modified sin2 method is that quantitative values of

incompatibility stresses and stored elastic energy can be

determined for all orientations of the crystallite lattice without

any assumptions. The previous methods provided only quali-

tative indications. They gave no unique solution and enabled

measurement of stresses only for a few particular orientations

of strongly textured samples.
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