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To achieve a high system availability at minimal costs, relevant decisions include the

choice of preventive maintenance frequency, spare part inventory levels and spare part

repair capacity. We develop heuristics for the joint optimisation of these variables for (a)

a single k-out-of-N system under condition-based maintenance and (b) an installed base

of multiple identical k-out-of-N systems under block replacement. We show that a

straightforward extension of the METRIC method for spare part inventory optimisation

yields inferior results, because both the availability and costs are not necessarily

monotonous functions of the decision variables. We develop an adjusted marginal

analysis and show that it performs considerably better in numerical experiments.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

Many of today’s capital assets require a high avail-
ability, because the consequences of downtime can be
serious. For example, the failure of a wafer stepper in the
semiconductor industry usually leads to a production
stop. This yields reduced output and hence reduced
revenues, so the consequence of a failure is serious. The
system availability is influenced by many tactical and
operational decisions, such as the maintenance frequency,
the amount of maintenance resources like service en-
gineers and test equipment, and spare part inventories. A
common approach is to decompose the overall trade-off in
a set of subproblems. However, we can argue that there
are clear relations between these decision variables.

For example, consider the interaction between spare
part inventories and maintenance frequency. Demand for
spare parts arises from both preventive and corrective
maintenance. A higher preventive maintenance frequency
leads to higher maintenance cost, but at the same time to
ll rights reserved.

t-Destombes).
a better predictable demand for spare parts and hence to a
lower spare parts safety stock. Also, the interaction
between repairable spare part inventories and the capa-
city needed to repair these spares cannot be neglected,
see e.g. Sleptchenko et al. (2002, 2003): low repair
shop capacity means a high utilisation, so long spare part
repair leadtimes. As safety stocks should cover the
demand during the leadtime, this means that savings on
repair capacity lead to a need for more spare parts and
vice versa.

In this paper, we discuss heuristics for the joint
optimisation of maintenance frequency, spare part in-
ventories, and spare part repair capacity. We focus on
k-out-of-N systems with hot stand-by redundancy. That is,
a system consists of N identical components of which only
koN are required for system operation. The N � k stand-
by components have the same failure behaviour as the k

operational components. We construct our optimisation
heuristics based on approximations that we have deve-
loped before to calculate the system availability as
function of the maintenance frequency, spare part in-
ventories and repair capacity (De Smidt-Destombes et al.,
2004, 2006, 2007). A complication is that the availability
might not be a monotonous function of the maintenance
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frequency. When the frequency decreases, the probability
that the system fails before maintenance starts increases
and this pushes the availability down. On the other
hand, the cycle length increases and the expected uptime
in a cycle increases as well, which pushes the availability
up. The aggregate effect may both be a decrease or an
increase in the system availability. Therefore, the devel-
opment of a joint optimisation method for spare part
inventories, repair capacity and maintenance frequency is
not straightforward.

The remainder of this paper is structured as follows. In
the next section, we discuss the related literature. In
Section 3, we develop an optimisation heuristic for a
single k-out-of-N system with condition-based mainte-
nance. We evaluate the quality of our heuristic in a
numerical experiment in Section 4. We give our conclu-
sions and directions for further research in Section 5.
2. Related literature

Although there is a lot of literature on spare part
management (e.g. Sherbrooke, 2004; Muckstadt, 2005)
and maintenance optimisation (e.g. Dinesh Kumar et al.,
2000), relatively little has been published on the interac-
tion between maintenance, spares and repairs. Most of the
current literature deals with the interaction of two out of
these three components in a specific setting.

The combination of maintenance and spare parts has
been analysed by several authors. For example, Kabir and
Al-Olayan (1996), Kabir and Farrash (1996) and Park and
Park (1986) deal with an age-based maintenance strategy
and non-repairable components. Brezavšček and Hudoklin
(2003) present a model with a joint optimisation of a
block replacement interval and the maximum inventory
level. In Chelbi and Aı̈t-Kadi (2001) the block replacement
interval, the optimal stock level as well as the replenish-
ment cycle are optimised simultaneously. Again the
components are not repairable, which is encountered in
most models that are concerned with joint optimisation of
a maintenance policy and a spares provisioning policy.

For the interaction between spare parts and repair
capacity, some models have been developed as well. Finite
repair capacity is usually modelled by (multi-class) multi-
server queues. Gross et al. (1985) were among the first to
realise that the combination of inventory and queueing
models might lead to insights in the trade-off with respect
to maintenance flexibility achieved either through stocks
or through sufficient capacity. They attempt to find a cost-
optimal combination of the number of spare parts and the
number of repair channels, under the constraint that a
target service level is met. Kim et al. (2000) have
presented an iterative algorithm to determine a cost
optimal combination of repair capacities and spare part
levels in a single item, multi-echelon model. Avsar and
Zijm (2003) consider more general multi-echelon resource
structures in which each repair facility may be a queueing
network, and show how under Poisson failure rates stock
levels at all echelons can be optimised. A similar approach
can be used for multi-indenture structures and for
combinations of multi-echelon and multi-indenture
structures, see Zijm and Avsar (2003). Sleptchenko
(2002) deals with the optimisation of the number of
spare parts and repair capacity in a multi-item system.
Sleptchenko et al. (2005) show that repair priorities may
seriously reduce the spare parts investment needed to
obtain a target supply availability.

Although the importance of integrating the mainte-
nance strategy, spare parts and repair capacity is recog-
nised, only a few papers describe quantitative models.
Natarajan (1968) considers a single unit with spares and a
number of repair facilities. By calculating the time to
failure the availability is determined. Furthermore, Wang
(1993, 1995) consider a single system consisting of
operational and stand-by components. They optimise
simultaneously the number of stand-by components,
number of spares and the number of repairmen. These
models are the ones that come the closest to our problem
definition. The strongest resemblance is found in Wang
(1993) in which there is a number of operating units, a
number of warm stand-by units and a number of cold
stand-by units (i.e. spare units). Choosing the failure rate
of the operating and warm stand-by units to be equal, we
have a redundant system in which replacements are done
after each component failure (one warm stand-by com-
ponent turns into an operating unit and a cold stand-by
unit becomes warm stand-by). However, they do not cover
the interactions we consider in this paper. They do
consider a parameter affecting the time until a system
failure, namely, the number of warm stand-by units; but
they do not have a parameter for the maintenance
frequency. So, the number of maintenance set-ups is fixed
(maintenance is done after every unit failure). As a
consequence the cost involved with the maintenance
set-ups is fixed. In this paper we do consider the
maintenance frequency as a parameter and we can
influence the total maintenance costs by choosing the
maintenance frequency.
3. Single system

We use the following model for a single k-out-of-N

system. Maintenance is initiated when the system has
mpN � kþ 1 failed components. After a deterministic
leadtime L (which can also be equal to zero), maintenance
is performed. The decision variables are the maintenance
initiation level m, the spare parts stock level S and the
repair capacity c. The expected costs per time unit Cm;S;c

include (i) the holding and depreciation costs of a spare
part per time unit Cspare, (ii) the cost of repair capacity per
time unit Ccapacity, (iii) the maintenance set-up cost Cinit.
The goal is to minimise these costs Cm;S;c given a lower
bound Av� for the expected operational availability Avm;S;c.
So, we formulate our problem as

min Cm;S;c ¼
Cinit

E½Tm� þ Lþ E½Dm;S;c�
þ SCspare þ cCcapacity

s.t. Avm;S;cXAv� (1)

Here E½Tm� denotes the expected time until maintenance
initiation (at m failed components) and E½Dm;S;c� the
expected maintenance duration. For the approximation
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of the relevant performance measures as a function of the
decision variables, we refer to De Smidt-Destombes et al.
(2004). There, we have found in numerical experiments
that the approximation error in the system availability is
relatively small, namely 0.2% on average.

As a first option to solve 1, we consider a straightfor-
ward extension of METRIC (Section 3.1), the well-known
greedy heuristic for spare part optimisation with
maximum increase in availability per invested dollar
spare part inventory investment, see Sherbrooke (2004).
It turns out that such an approach yields inferior results
(Section 3.2). Therefore, we develop a second method
where we combine multiple marginal analysis steps
in order to find a near-optimal parameter setting
(Section 3.3). In Section 4, we compare both methods in
a numerical experiment.
3.1. Marginal analysis

Our marginal analysis is a METRIC-like iterative
procedure, starting with an initial setting for the decision
variables ðm; S; cÞ. In each iteration, we consider a marginal
change of each decision variable and we select the change
leading to the largest quotient of the increase in
availability and the cost increase. Because the operational
availability is an increasing function of the decision
variables S and c, it is logical to select S ¼ 0 and c ¼ 1 as
initial values. For the maintenance initiation level m, this
is not immediately clear.

Given a certain combination (S, c) of the number of
spares and repair capacity, we either have a function for
which the target availability Av� cannot be reached
(for instance S ¼ 4, c ¼ 1 and S ¼ 5, c ¼ 1) or a function
that has one or multiple points at which the target
availability Av� is reached (the other parameter combina-
tions in Fig. 1). In the first case, we need to increase the
number of spares and/or the repair capacity. In the second
case, we usually have multiple options for m. Then we
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Fig. 1. Example of the availability as function of the number of failures at

maintenance initiation (7-out-of-10 system with L ¼ 40, l ¼ 0:0008,

m ¼ 0:001). The dotted line indicates a possible value for Av�.
should choose for the largest maintenance interval
(i.e. largest m) for which the target availability is reached,
because then the set-up costs per time unit are lowest. So
we start our marginal analysis with the largest realistic
value for m and consider the option of decreasing m by
one during the greedy algorithm. To compute the largest
realistic value for m, we have to take into account possible
downtime during the leadtime L. Therefore, an upper
bound for m is the value for which we are able to reach the
target availability Av� if the maintenance duration would
be zero. This results in the upper bound mmax:

mmax ¼ max 1pmpN � kþ 1
E½Tm� þ E½Um�

E½Tm� þ L
XAv�

����
� �

(2)

where Um denotes the uptime during the leadtime L if
maintenance is initiated when m components have failed
(see De Smidt-Destombes et al., 2004, for the computation
of E½Um�). So we use S ¼ 0, c ¼ 1 and m ¼ mmax as initial
setting of our decision variables. Next, we use a similar
marginal analysis as METRIC, where we consider decreas-
ing m, increasing S and increasing c in each step of the
algorithm and select the option yielding the highest
increase in availability relative to the additional invest-
ment. While performing this algorithm, we may either
encounter one or more options for which AvXAv� and
another option with the largest increment of the avail-
ability per cost unit and AvoAv�. Then, we select the latter
option and also store the cheapest parameter setting
satisfying AvXAv�. We found that this intermediate
solution may be better than the final solution found. So,
our first algorithm consists of the following steps:
Step 1:
 Initialise S ¼ 0; c ¼ 1 and m ¼ mmax.
Determine Avm;S;c and Cm;S;c .
Step

2a:

Determine Avm�1;S;c , Avm;Sþ1;c and Avm;S;cþ1.
Determine Cm�1;S;c , Cm;Sþ1;c and Cm;S;cþ1.
Step

2b:

Choose parameter setting ðx; y; zÞ 2 fðm� 1;
S; cÞ; ðm; Sþ 1; cÞ; ðm; S; c þ 1Þg where ðAvx;y;z �

Avm;S;cÞ=ðCx;y;z � Cm;S;cÞ is maximal.

Step

3a:

If one or more parameter settings yield AvXAv�,
then store the cheapest.
Step

3b:

Choose ðm; S; cÞ ¼ ðx; y; zÞ, Avm;S;c ¼ Avx;y;z and
Cm;S;c ¼ Cx;y;z.
If Avm;S;coAv� then go to Step 2a else go to Step 4.
Step 4:
 Choose the cheapest parameter setting from
Steps 2b and 3a.
Unfortunately, some numerical experiments revealed
that this algorithm may yield solutions that are far from
optimal, see Section 4. A cost difference of 10–20% is
not uncommon and in the worst case even a deviation
of 171% occurred! In the next section, we analyse the
causes of this problem and develop an alternative
heuristic that avoids local optima that are much worse
than the global optimum.

3.2. Drawbacks marginal analysis

The key cause for the bad performance of the marginal
analysis is the non-concavity of the expected availability
Avm;S;c in the decision variables m, c and S. We distinguish
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four major issues that oppose a good performance of the
first algorithm:
1.
 step size of the repair capacity c;

2.
 choice of the initial parameter setting in the algorithm;

3.
 shape of the availability as function of the maintenance

initiation level m;

4.
 overestimation of either spares S or repair capacity c;
The first issue arises from the large impact of an

increase in repair capacity on both costs and availability if
the repair shop capacity c is small and the repair shop
utilisation is high. For example, suppose that we have a
repair shop utilisation of 0:95 when c ¼ 1. An increase to
c ¼ 2 means a decrease in utilisation to 0:475, which has
an enormous impact on the repair shop throughput times.
Such an effect can hardly be called ‘‘marginal’’. Besides, it
is plausible that an optimal repair shop utilisation may be
around 0.6–0.8, which values are not even considered in
this example. We can solve this problem by allowing c to
have non-integer values (see Sleptchenko, 2002). For
practical purposes we can interpret this as e.g. part time
work or overtime. Then we can use a step size of (for
example) 0:1 full time equivalent (fte) instead of 1 fte.
Similarly, we can also choose for only integer values of c

and decrease the repair rate with a factor of 10 as well as
the cost for capacity, so that the minimum capacity is (for
example) c ¼ 10. In the next section, we discuss how to
compute this minimum capacity.

The second issue, concerning the initial parameter
values, is encountered if the number of spares is small,
say far less than the expected number of spares needed for
replacement during maintenance. Then the amount of
spares is far insufficient and the marginal impact of an
extra spare on the availability may be small. Consequently,
it is not likely that the algorithm chooses to add a spare.
Instead, we see an increase in repair capacity c or a
decrease of m. However, when the number of spares
would have been larger, the marginal impact on the
availability would be higher and so it would be attractive
to buy more spares. When we increase the number of
spares further, the marginal impact on the availability
decreases as expected. Therefore, the availability is not a
concave function of the number of spares, as is needed for
the marginal analysis.

In order to tackle this issue, Rustenburg (2000)
suggests starting values for the number of spares. These
starting values are related to the average number of spares
in the pipeline at the time of a spare demand. In fact, it
means that the starting values are such that the safety
stocks are approximately zero. It is plausible that the
optimal safety stocks are usually non-negative. In our
model, zero safety stock corresponds to a number of
spares equal to the expected number of failed components
in the system when maintenance starts. However, the
corresponding stock level S increases in the maintenance
initiation level m (assuming c to be constant). So the
initial value of S depends on m ¼ mmax, and when m

decreases during the execution of the algorithm, the
current value of S can be above the initial level for the new
value of m. As a consequence, S can have a value above the
new initial stock level, even if no spares have been
added during the course of the algorithm, and therefore S

can be higher than the optimal level, as we encountered in
our numerical experiments. Unfortunately, we will never
find the optimal value using the marginal analysis,
because S can only be increased and cannot be decreased.
Hence, simply defining initial values for S as the stock
levels correspond to zero safety stocks does not solve
our problem.

We illustrate the third issue, the shape of the avail-
ability as function of the maintenance initiation level m,
using Fig. 1. Suppose that we found an intermediate
solution S ¼ 4 and c ¼ 1, where m ¼ 2 yields the highest
availability. When increasing the spares by one (S ¼ 5,
c ¼ 1) the highest availability is attained for the main-
tenance initiation level m ¼ 3. This means less frequent
maintenance and therefore less set-up costs. However, the
algorithm does not permit an increase of m. As a result, we
will not find the optimal parameter setting.

As a fourth issue, we found that the algorithm
tends to increase the repair capacity in the first iterations
when the value of m is still relatively high. This is
logical, because a high value of m means infrequent
maintenance and hence lumpy demand for repair capa-
city at the repair shop (infrequent arrival of a large
batch of repair jobs). This causes long throughput
times, and so the added value of additional capacity is
relatively high. However, when the value of m decreases
during the execution of the algorithm, the demand
for repair capacity becomes more regular and hence
less repair capacity is needed to attain similar through-
put times. So in fact, we should decrease the repair
capacity, but the marginal approach only allows an
increase. As a consequence, we find a repair capacity c

that is too high. A similar effect is seen with the number
of spares.

We conclude that we can only easily deal with the first
issue in the standard marginal approach, but not with the
other three issues. Therefore, we have to develop an
alternative method.
3.3. Adjusted marginal analysis

To deal with the problems identified in the previous
section, we propose the following adjustments:
1.
 Smaller step sizes for the capacity (first issue).

2.
 Small initial value for the maintenance initiation level

(m ¼ 1) to enable small initial values for S and c

(second issue).

3.
 Examining high values of m to avoid unnecessary high

costs (third issue). Starting with small values of m to
solve the second issue concerning the starting values of
S and c we will often find a value of m that is smaller
than the optimum, see the discussion on the third
issue.
4.
 Balancing the number of spares and repair capacity to
reduce costs (fourth issue) to prevent ending up with a
solution in which the number of spares and/or capacity
is higher than necessary.
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We developed a new algorithm using these four
adjustments. In the remainder of this section we describe

the steps of this adjusted marginal analysis algorithm.

3.3.1. Step 0: initialisation

As stated in Section 3.2 we use smaller step sizes for
the repair capacity in such a way that we know for sure
that c ¼ 1 implies insufficient capacity. That is, we use a
step size of 1 in the optimisation algorithm, which may
correspond to (for example) 0.1 fte. As initial value for c,
we choose the minimum capacity needed to repair all
failed components in the long run at an availability close
to the target. The number of component failures per cycle
equals m plus the number of component failures during
the leadtime ðN �mÞð1� e�lLÞ. Ignoring downtime during
the leadtime, we find that we may at most use a period
with length ðE½Tm� þ LÞ=Av� to restore the components at
rate cm. Therefore, we find

cminðmÞ ¼
mþ ðN �mÞð1� e�lLÞ

ðE½Tm� þ LÞm Av�
� �

(3)

where dXe denotes the smallest integer larger than or
equal to X. Unfortunately, this initial value depends on m.
For simplicity we use the minimum over all m as initial
value for c, so that cmin ¼ cminð1Þ. To avoid the problems
with the first part of the function in S, we choose the
expected number of failed components when the system
comes in for maintenance as the initial value of S:

SminðmÞ ¼ bmþ ðN �mÞð1� e�lLÞc (4)

where bXc denotes the largest integer smaller than or
equal to X. In practice, the target availability is not very
low (say 80–90% or even higher), and therefore it is not
expected that this initial number of spares is too high.
However, this initial value depends on m again. We solve
this by choosing an initial value S ¼ Sminð1Þ that corre-
sponds to maintenance initiation level m ¼ 1. In this way,
we avoid an overestimation of the number spares needed
in the optimum. If we increase m during the algorithm, we
evaluate whether we violate the lower bound SminðmÞ and
if so, we increase S simultaneously.

Putting this together, we use as initial values m ¼ 1,
S ¼ Sminð1Þ and c ¼ cminð1Þ.

3.3.2. Step 1: improving availability without increasing costs

Here we only consider an increase in m as long as the
costs Cm;S;c decrease and the availability Avm;S;c increases.
The lower bound SminðmÞ increases simultaneously with
m. To avoid too high values of the capacity in the
beginning of the algorithm, the value of c ¼ cminð1Þ
remains unchanged. In this step, we reduce the main-
tenance set-up costs (decreasing maintenance frequency)
but we increase the spare part inventory costs. As we see
from Fig. 1, the combination of increasing m and S initially
leads to an increase in availability. Therefore, we proceed
as long as the net effect is a cost reduction and an increase
in availability. So, in the first part of this step (step 1a) we
determine the availability and costs corresponding to an
increase of m (and possibly an increase of S as well).
The second part of this step (step 1b) consists of adjusting
the parameters as long as the availability increases and
the costs decrease. The resulting values for m, S and c are
starting values for the next step.
3.3.3. Step 2: improving availability until Av� with

acceptance of increasing costs

If we have already reached the target availability Av�,
we move to step 3. Otherwise, we apply a marginal
analysis approach in which we consider an increase of the
repair capacity and an increase of spares. In step 2a we
consider the following two options:
�
 increase c by one and simultaneously increase the
value of m as much as possible such that the
availability does not decrease compared to the avail-
ability we found thus far. Note that we modify
(increase) the number of spare parts S if the increase
in m causes a violation of the spare part lower bound
SminðmÞ. As an example of this option from Fig. 1,
consider the parameter setting m ¼ 2, c ¼ 5 and S ¼ 1.
If we increase the capacity to c ¼ 6, we could increase
m to m ¼ 4 instead of m ¼ 2, thereby reducing costs
without loss of availability;

�
 increase S by one and simultaneously increase m as

much as possible such that the availability increases
compared to the availability we found thus far.

In step 2b we choose one of these options as the new
parameter setting. Both options may cause an increase of
the costs as well as a decrease of the costs. In case of a cost
reduction (DCo0) we choose the option with the lowest,
most negative, value for DAv=DC. Otherwise (DC40) we
choose the option with the largest DAv=DC.

We repeat this step until we reach or exceed the target
availability level Av�.
3.3.4. Step 3: reducing costs by increasing m and

maintaining Av�

Now we have reached the target availability, but
probably not at minimum costs. Therefore, we look for
other solutions having a similar availability but lower
costs by increasing the maintenance initiation level m.
Without this step we often end up with a value of m that is
too small, because we started our algorithm with m ¼ 1
(see Fig. 1). Basically, we continue the previous step, but
now we accept cost reductions only. Also, we accept all
availability levels XAv�. This adjustment solves the
problems mentioned under issue two.
3.3.5. Step 4: balancing the parameter setting

Finally, we address the third issue about possible
compensation between the spare part inventory level S

and the repair capacity c. We perform a last step to find a
better balance between the parameter values, where we
also include the value of m. We consider four options to
reduce the costs while attaining the target availability
level. Each option consists of a modification in two
parameters simultaneously, where one parameter mod-
ification yields a cost increase and the other yields a cost
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decrease. As long as the overall cost impact is a decrease,
we improve our solution.
�
 The first option is to decrease the capacity by one
(decrease in repair capacity costs) and increase the
number of spares (increase in spare part inventory
costs), where we choose a minimal increase in S such
that the availability is at least equal to Av�.

�
 The second option is to decrease the capacity by

one (decrease in repair capacity costs) and decrease the
value of m as much as necessary in order to obtain Av�

(increase in set-up costs).

�
 The third and fourth options are analogous to these two

options, only then the number of spares is decreased by
one, with a necessary increase of the capacity or
decrease of the maintenance initiation level.
After determining the parameter settings for each
option in step 4a, we choose from these options the one

that has the largest cost reduction in step 4b. We repeat
this procedure as long as we can find a cost reduction.

Summarised, our enhanced algorithm consists of the
following steps:
Step 0:
 Initialise m ¼ 1, S ¼ Sminð1Þ (Eq. (4)) and c ¼

cminð1Þ (Eq. (3)).
Determine Avm;S;c and Cm;S;c .
Step 1a:
 Determine Avmþ1;Sminðmþ1Þ;c and Smþ1;Sminðmþ1Þ;c :
Step 1b:
 If Avmþ1;Sminðmþ1Þ;c4Avm;SminðmÞ;c ^ Cmþ1;Sminðmþ1Þ;co
Cm;SminðmÞ;c ^mþ 1ommax

then ðm; S; cÞ ¼ ðmþ 1; Sminðmþ 1Þ; cÞ and go to
Step 1a else go to Step 2a.
Step 2a:
 If Avm;S;cXAv� go to Step 3 else

Find max emS 2 ½m;mmax� with Avm;S;coAvemS ;Sþ1;c
.

Find max emc 2 ½m;mmax�, eSc ¼ maxfS; SminðemcÞg

with Avm;S;coAvemc ;eSc ;cþ1
.

Step 2b:
 If minfCemS ;Sþ1;c
;Cemc ;eSc ;cþ1

goCm;S;c

choose ðx; y; zÞ 2 fðemS; Sþ 1; cÞ; ðemc;eSc; c þ 1Þg

with minðAvx;y;z � Avm;S;cÞ=ðCx;y;z � Cm;S;cÞ.

Else ðx; y; zÞ 2 fðemS; Sþ 1; cÞ; ðemc ;eSc ; c þ 1Þg with
maxðAvx;y;z � Avm;S;cÞ=ðCx;y;z � Cm;S;cÞ.

Go to Step 2a.

Step 3:
 Find max emS 2 ½m;mmax� with AvemS ;Sþ1;c

XAv�.

Find max emc 2 ½m;mmax�, eSc ¼ maxfS; SminðemcÞg

with Avemc ;eSc ;cþ1
XAv�.

If minfCemS ;Sþ1;c
;Cemc ;eSc ;cþ1

goCm;S;c choose cheapest

and go to Step 3.
Else go to Step 4a.
Step 4a:
 Determine Sc with Avm;Sc ;c�1XAv� and Avm;Sc�1;c�1

oAv�.
Determine mc with Avmc ;S;c�1XAv� and Avmcþ1;Sc ;c�1

oAv�.
Determine cS with Avm;S�1;cS

XAv� and Avm;S�1;cS�1

oAv�.
Determine mS with AvmS ;S�1;cXAv� and AvmSþ1;S�1;c

oAv�.

Step 4b:
 If minfCm;Sc ;c�1;Cmc ;Sc ;c�1;Cm;S�1;cS

;CmS ;S�1;cgo
Cm;S;c
then Cm;S;c ¼ minfCm;Sc ;c�1;Cmc ;Sc ;c�1;Cm;S�1;cS
;

CmS ;S�1;cg and go to Step 4a
Compared to the simple marginal analysis algorithm
from Section 3.1, the number of availability computations

has increased. However, we usually find a solution that is
much closer to the optimum. Next, we discuss the quality
of this method and its computational performance.
4. Numerical results for the single system

We study three system sizes: 7-out-of-10 systems,
58-out-of-64 systems and 2700-out-of-3000 systems. For
each system, we consider 108 parameter combinations for
repair times and cost parameters. We consider the
parameters that we initially used for the marginal analysis
algorithm from Section 3.1. For the adjusted algorithm
(Section 3.3), we divided the repair rate as well as the cost
for capacity by 10. In this way, we start at a higher value
for cminð1Þ and therefore the relative step size for the
repair capacity is smaller. In our comparison between
both algorithms, we only use the adjusted input para-
meters, which are given in Table 1. The cost parameters
are given per time unit. For the failure rate we choose
l ¼ 0:0001 for all systems. The leadtime equals L ¼ 168
for the 2700-out-of-3000 system and L ¼ 40 for the other
two systems. We use a target availability of Av� ¼ 0:99.

We used (time consuming) enumeration as bench-
mark. To this end, we need upper and lower bounds for
each of the three parameters. For m, we obviously search
over m 2 ½1;mmax�. Lower bounds for S and c are Sminð1Þ
and cminð1Þ, respectively. However, it is not immediately
clear how to choose the corresponding upper bounds.
Therefore, we proceed as follows. First, we look for an
arbitrary parameter setting that satisfies the availability
restriction Av�. We chose m ¼ maxf1; b0:5mmaxcg and c ¼

cminðmÞ and find the minimum number of spares S needed
to obtain Av�. Next, we use the corresponding cost bCm;S;c to
find upper bounds for S and c. As the total costs of spares
in the optimum solution should be less than bCm;S;c , upper
bounds for S and c are given by bCm;S;c=Cspare and bCm;S;c=Ccap,
respectively. To reduce the computational effort of
enumeration, we recalculate these upper bounds each
time we find a better solution during enumeration.

For each system size, we show in Table 2 the mean
and maximum relative deviation from the optimal costs
per time unit C�m;S;c . Besides, we show the percentage
of scenarios in which the optimisation heuristic found
exactly the optimal solution.

Looking to our detailed results (not included in this
paper because of the amount of data), we observe that
increasing the cost for capacity results in a decrease of
capacity compensated by more spares and sometimes
combined with a shift in the maintenance frequency. If the
cost for spares increases we see that the first result is a
lower maintenance initiation level often combined with
an increase of the repair capacity. An increase of the
maintenance initiation costs is compensated by an
increase of the maintenance initiation level combined
with an increase of the spares amount. The repair capacity
remains unchanged in almost every scenario. For all
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Table 2
For different system sizes the mean and maximum cost differences are given for the simple and adjusted marginal analysis algorithms compared to

enumeration

Simple marginal analysis Adjusted marginal analysis

Mean diff. (%) Max. diff. (%) Opt. found (%) Mean diff. (%) Max. diff. (%) Opt. found (%)

7-out-of-10 6:07 13:1 21:3 0:10 2:5 91:7

58-out-of-64 13:32 43:4 13:0 0:15 1:5 75:9

2700-out-of-3000 29:13 171:0 0:0 0:18 3:2 32:4
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Fig. 2. Deviations from the optimal solution found with the adjusted

marginal analysis for different system sizes. The percentages given are

the percentages from the total number of scenarios, so including the

scenarios in which the optimal solution was found.
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Fig. 3. A schematic representation of the balancing step in the

optimisation heuristic for a 7-out-of-10 system with L ¼ 40,

l ¼ 0:0001, m ¼ 0:0001, Cinit ¼ 100 000, Cspare ¼ 5 and Ccap ¼ 10. All

parameter settings that are given satisfy the target availability level. The

optimal solution is represented by the green dot, while the red dot is the

sub-optimal solution we find.

Table 1
For different system sizes we used different input parameters, resulting in 108 scenarios per system size

m Cinit Cspare Ccap

7-out-of-10 0.00005, 0.000075, 0.0001 50 000, 75 000, 100 000 0.5, 1, 2.5, 5 10, 15, 30

58-out-of-64 0.0005, 0.00075, 0.001 50 000, 75 000, 100 000 0.5, 1, 2.5, 5 10, 15, 30

2700-out-of-3000 0.003, 0.015, 0.03 50 000, 75 000, 100 000 0.5, 1, 2.5, 5 10, 15, 30
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scenarios we see, independent of the cost parameters, that
the maintenance initiation level is such that the system
does not fail before arriving at the repair shop.
So, the maintenance policy is obviously to perform
preventive maintenance.

As can be seen in Table 2, the enhanced algorithm
yields much better solutions than the straightforward
marginal approach. Using our enhanced algorithm we also
find the exact optimum solution more frequently. For the
cases in which the parameter setting of the adjusted
marginal analysis differs from the optimal solution, we
can classify the type of deviation, see Fig. 2. It shows the
percentage of each type of deviation as a percentage of the
total number of scenarios. We see that for the large
systems we find too small values for m and S in most
cases. For smaller systems, we tend to find the optimal
value of m combined with too large values for S and too
small values for c.

The deviations that are relatively large, more than 1%,
are mainly caused by too many spares and too few
capacity. In these cases we end up in a local minimum
from which we do not reach the global minimum by
balancing the spares and capacity using our heuristic. In
Fig. 3 we illustrate the balancing step of the algorithm.
The parameter setting marked as 0 is the solution we
find after the third step. From there we have the
possibility to move to one of the black dots if this
improves the cost. Obviously, the option marked as 1 is
the cheapest. Finally, we end up in the red dot instead of
the green one. Unless we would except more expensive
solutions, we are not able to make the change to the line
with m ¼ 3, c ¼ 12.

When we consider the utilisation rates, the differences
between the optimal solution and the solution found with
our optimisation heuristic are small as can be seen from
Table 3. The deviating utilisation rates are always found in
the scenarios where the parameter setting of the adjusted
marginal analysis has a too large number of spares and a
too small number of capacity (sometimes combined with
a maintenance initiation level that is too large). So, we
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Table 3
For different system sizes the average utilisation rates are given for the

solutions found using enumeration and the adjusted marginal analysis

Enumeration Adjusted marg. analysis

Min.

(%)

Mean

(%)

Max.

(%)

Min.

(%)

Mean

(%)

Max.

(%)

7-out-of-10 73:5 81:4 83:3 78:4 81:8 89:0

58-out-of-64 61:0 85:3 93:8 74:0 86:9 93:8

2700-out-of-

3000

81:5 92:4 97:6 81:5 92:8 98:0

Table 4
For different system sizes the average number of availability computa-

tions is given for the enumeration, the simple marginal analysis and the

adjusted marginal analysis algorithm

Enumeration Marg.

analysis

Adjusted marg.

analysis

7-out-of-10 442 85 87

58-out-of-64 2348 45 73

2700-out-of-3000 658 361 826 1249
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may conclude from this table that the utilisation rate is
not affected very much if we do not find the optimal
parameter setting in all cases.

In Table 4 we show the average number of availability
computations per solution method. We see that the
additional computational effort for the optimisation
algorithm remains within reasonable bounds. Although
enumeration is an option for small systems, it becomes
cumbersome for large systems. Especially, since the
computation times (on a Pentium III 996 MHz) for the
large systems become almost 7.5 h for 108 scenarios
(compare to 3.8 min using the optimisation algorithm). Of
course, one can argue that it is possible for large systems
to do a rougher enumeration (say a step size 5) for the
parameters S and m and then do a more extensive
enumeration for a few of the best solutions. However,
for this heuristic to be quicker than the one we propose,
the number of computations needs a reduction of more
than 99:8% of the enumeration we performed.

There is, however, one disadvantage when using this
optimisation algorithm. The algorithm finds a near-optimal
solution, but not via a path of near-optimal solutions for
various target availability levels as is true for METRIC. This
property of METRIC can be used to construct an availabil-
ity–cost trade-off curve. As a consequence, in principle we
have to start our computations all over again if the target
availability level changes. Of course, one could use the
solution found for a certain target availability as initial
value to find the best solution for a somewhat higher target
availability, just like METRIC. However, some experiments
revealed that this may lead to inferior results.
5. Conclusions and further research

In this paper, we presented a heuristic method to find a
cost effective balance between maintenance frequencies,
spare parts inventories and repair capacity in order to
achieve a target availability level. We considered a single
k-out-of-N system under condition-based maintenance.
We showed that ‘‘simply’’ extending the METRIC approach
yields inferior results, since the relationship between the
decision parameters and the operational availability is not
a monotonous one. We identified four major issues why
this approach does not work and found a solution to deal
with those issues.

We compared results of our optimisation heuristic to
the results of a complete enumeration. We found that the
cost differences are limited to 0:2% on average for the
single k-out-of-N system.

It is relatively easy to modify our optimisation
algorithm for several model variants, such as the inclusion
of component wear-out and the extension to an installed
base of k-out-of-N systems under block replacement. For
the latter model, we found that our optimisation heuristic
yields costs that are on average 0:8% more than the costs
found by enumeration. At the same time, the computation
times were a lot smaller, minutes compared to hours or
even days. We refer to De Smidt-Destombes (2006) for
the details.

Relevant further research should cover a generalisation
to multi-item models which is certainly not straightfor-
ward. Also, the inclusion of a multi-indenture product
structure (e.g. multiple k-out-of-N systems within one
system) is relevant but not simple. A simple but also
relevant generalisation is alternative stand-by models
(warm and cold stand-by instead of hot stand-by). For a
discussion on the possibilities and issues regarding these
research directions, we refer to De Smidt-Destombes
(2006).
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