International Journal of Solids and Structures 47 (2010) 2234-2245

Contents lists available at ScienceDirect = o
SOLIDS AND
. . STRUCTURES
International Journal of Solids and Structures =

journal homepage: www.elsevier.com/locate/ijsolstr

Micro-mechanical analysis of deformation characteristics of three-dimensional

granular materials
0. Duran!, N.P. Kruyt*, S. Luding

Department of Mechanical Engineering, University of Twente, The Netherlands

ARTICLE INFO

Article history:

Received 4 December 2009

Received in revised form 11 April 2010
Available online 22 April 2010

Keywords:
Granular materials
Deformation

1. Introduction

ABSTRACT

The deformation characteristics of idealized granular materials have been studied from the micro-
mechanical viewpoint, using Bagi’s three-dimensional micro-mechanical formulation for the strain ten-
sor [Bagi, K., 1996. Mechanics of Materials 22, 165-177]. This formulation is based on the Delaunay tes-
sellation of space into tetrahedra. The set of edges of the tetrahedra can be divided into physical contacts
and virtual contacts between particles. Bagi's formulation expresses the continuum, macro-scale strain as
an average over all edges, of their relative displacements (between two successive states) and the com-
plementary-area vectors. This latter vector is a geometrical quantity determined from the set of edges, i.e.
from the structure of the particle packing.

Results from Discrete Element Method simulations of isotropic and triaxial loading of a three-dimen-
sional polydisperse packing of spheres have been used to investigate statistics of the branch vectors and
complementary-area vectors of edges (subdivided into physical and virtual contacts) and of the relative
displacements of edges. The investigated statistics are probability density functions and averages over
groups of edges with the same orientation. It is shown that these averages can be represented by sec-
ond-order Fourier series in edge orientation.

Edge orientations are distributed isotropically, contrary to contact orientations. The average lengths of
the branch vectors and the normal component of the complementary-area vectors are distributed iso-
tropically (with respect to the edge orientation) and their average values are related to each other and
to the volume fraction of the assembly. The other two components of the complementary-area vector
are zero on average.

The total deformation of the assembly, as given by the average of the relative displacements of the
edges of the Delaunay tessellation follows the uniform-strain prediction. However, neither the deforma-
tion of the physical contact network nor of the virtual contact network has this property. The average rel-
ative displacement of physical edges in the normal direction (determined by the branch vector) is smaller
than that according to the uniform-strain assumption, while that of virtual contacts is larger. This is
caused by the high interparticle stiffness that hinders compression. The reverse observation holds for
the tangential component of the relative displacement vector. The contribution of the deformation of
the empty space between physical contacts to the continuum, macro-scale strain tensor is therefore very
important for the understanding and the prediction of the macro-scale deformation of granular materials.

© 2010 Elsevier Ltd. All rights reserved.

For quasi-static deformation of granular materials, the macro-
scale, continuum quantities of interest are stress and strain. The

The complex mechanical behavior of granular materials during
quasi-static deformation can be better understood from the micro-
mechanical approach, in which relationships are studied between
the macro-scale, continuum level and the micro-scale level of par-
ticles and interparticle contacts.
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relevant micro-scale level is that of particles and physical contacts,
since granular materials can be idealized as assemblies of semi-ri-
gid particles that interact at contacts through point forces. The con-
tact forces are determined from the contact constitutive relation
that involves the relative displacements of particles that are in
contact.

For micro-mechanically-based constitutive relations, a so-called
“localisation assumption” (see for example (Cambou et al., 1995;
Liao et al, 1997; Kruyt and Rothenburg, 2002); it also called
“macro-micro assumption” or “homogenisation assumption”) is
required that links the macro-scale strain to the micro-scale
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deformation. The proper formulation of such assumptions is an
open and difficult issue. Usually, the uniform-strain assumption
of affine deformation is employed. Its validity is rather limited,
however (Makse et al., 1999; Kruyt and Rothenburg, 2004).

Since granular materials are generally packed randomly, the
mechanical response will also show a significant random compo-
nent (relative to the mean field) in contact forces and deformation.
Statistical approaches are therefore considered appropriate.

Micro-mechanics of stress transmission in granular materials
has been studied extensively, see for example (Bathurst and Roth-
enburg, 1988; Bathurst and Rothenburg, 1990; Coppersmith et al.,
1996; Radjai et al., 1996; Mueth et al., 1998; Lovell et al., 1999;
Kruyt and Rothenburg, 2001; Kruyt and Rothenburg, 2002; Kruyt,
2003; Metzger, 2004; van Eerd et al., 2007). On the other hand,
deformation characteristics have not been studied in much detail.
Most studies are restricted to the two-dimensional case (Kruyt and
Rothenburg, 2003; Kruyt and Rothenburg, 2004; Kruyt and Antony,
2007; Tordesillas et al., 2010; Nguyen et al., 2009).

The focus of this micro-mechanical study is therefore on defor-
mation characteristics of three-dimensional assemblies. A previous
study (Duran et al., 2010) has shown that Bagi’s micro-mechanical
strain formulation (Bagi, 1996) is the most accurate three-dimen-
sional micro-mechanical strain formulation in reconstructing the
strain imposed at the boundary. Hence this formulation is em-
ployed here to study micro-mechanical characteristics of
deformation.

Discrete Element Method (DEM for short) simulations (Cundall
and Strack, 1979) of isotropic and triaxial loading of an initially iso-
tropic system of spheres are used to obtain the required detailed
information on particle positions and displacements, and hence
on the micro-scale deformation characteristics. These two test
cases are investigated, since they are frequently used to character-
ize the material behavior. In these DEM simulations the formation
of (global) shear bands is suppressed (through the use of periodic
boundary conditions) in order to obtain deformations without
large-scale spatial heterogeneity.

The outline of this study is as follows. Firstly, Bagi’s micro-
mechanical strain formulation is summarized. Then the DEM sim-
ulations are described of isotropic and triaxial loading. The detailed
results of these DEM simulations are subsequently used for the mi-
cro-mechanical analysis of the deformation characteristics.

2. Micro-mechanical strain

The strain tensor ¢; is defined as the symmetrical part of the
continuum-mechanical displacement gradient du;/9x;, where u(x)
is the displacement field with respect to the selected reference
configuration. However, for simplicity in terminology, we will refer
to the displacement gradient du;/dx; simply as the strain tensor:

_ ou;
=G (1)

The usual sign convention from continuum mechanics is employed,
according to which compression is considered as negative.

The volume average &; of the strain tensor over volume V, en-
closed by surface S, is given by:

N O I e .
&U_V'/‘/L,,dv_v/ axjdV_V/su,nde, (2)

where Gauss’ divergence theorem has been used. For simplicity in
notation, the overbar for the average strain &; will be dropped in
the following.

2.1. Bagi’s equivalent continuum strain formulation

In this section the micro-mechanical strain tensor formulation
of Bagi (1996) is summarized. Since this formulation is based on
the Delaunay tessellation of space, this tessellation is first
introduced.

2.1.1. Delaunay tessellation

The Delaunay tessellation of three-dimensional space consists
of its tessellation into tetrahedra. Given a set of vertices, the tetra-
hedra defined by the Delaunay tessellation connect the vertices in
such a way that the edges (connecting lines) of the tetrahedra form
the shortest path between the vertices. An equivalent definition is
that any sphere inscribed around an arbitrary tetrahedron contains
no other vertex.

In a granular system the vertices of the tetrahedra are the cen-
ters of the particles and their edges correspond to the shortest path
between them (see Fig. 1). An edge between particles p and q is
geometrically characterized by the branch vector IP9=X9 - XP
(see Fig. 2; right), where XP? is the position vector of the centre of
mass of particle p. The subset C of all edges E, resulting from the
Delaunay tessellation, that represents a physical contact between
the particles will be simply called contacts. Spherical particles are
in physical contact when the distance between their centers is
smaller than the sum of their radii. In contrast, the other E-C edges
will be called virtual contacts (Fig. 1).

2.1.2. Strain expression

The micro-mechanical expression for the average strain tensor
of a three-dimensional assembly of convex particles in a represen-
tative volume V can be written as an average over all edges of the
Delaunay tessellation (Bagi, 1996)

&j = Z Autd; =

where brackets (.). represent the average over all E edges. Analo-
gously, averages over physical contacts and virtual contacts are de-
noted by (.). and {(.),, respectively. The relative displacement vector

Au ), (3)

Fig. 1. Delaunay tessellation of a three-dimensional granular system consisting of
six spheres of different sizes. Note that the tessellation contains three tetrahedra:
{a,b,c.f}, {b,c,d.f} and {c,d,e,f}. Red edges are physical contacts, while blue edges
indicate virtual contacts. (For interpretation of references to color in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 2. (Left) The displayed tetrahedra are formed by the particles p and g (green spheres) and the particles that are in (physical or virtual) contact with both p and g (spheres
in dashed lines). Note that in this example the edge e(p,q) has six neighbors and hence six tetrahedra surround it, T, = 6. (Right) Branch vector 1?? connecting centers of
particles p and q and area vectors b? and b? of the faces opposite to particle p and g, respectively, for the tetrahedron determined by the particles {p,q,p1,q:} (these faces are
shown in red and blue, respectively). (For interpretation of references to color in this figure legend, the reader is referred to the web version of this article.)

Au® at the edge e(p,q), where index p(q) represents the particle at
the ‘tail’ (‘head’) of the directed edge, respectively, is given by

Au® = APt = UP — U, (4)

where UP is the displacement of the centre of mass of particle p.
Note that the relative displacement does not involve particle
rotations.

The vector d° is the complementary-area vector of the edge
e(p,q), defined as (Bagi, 1996):
1 &

W Z](bfh _bl’:)7 (5)

d’ =
where the sum is over all T, tetrahedra that share the edge e(p,q)
(see Fig. 2; left) and the vector b” represents the outward area-vec-
tor of the p face, defined as the face opposite to the vertex p (see
Fig. 2; right). As shown in Duran et al. (2010), d° reflects the distri-
bution of voids around a given edge e. In general, the complemen-
tary-area vector d° is not parallel with the branch vector I°.

3. Orientational averaging

From continuum-mechanical considerations, it is expected that
the relative displacement Au of points separated by a vector 1(Q),
where the solid angle Q describes the orientation of the edges be-
tween the points, is given by

Au(Q) = &-1(Q). (6)

Hence, it is meaningful to consider the average of Au® over groups
of edges with the same orientation Q (Rothenburg, 1980; Bathurst
and Rothenburg, 1988). Such an orientational average of an arbi-
trary quantity o associated with an edge is denoted by &(9Q).

The orientational distribution function (Horne, 1965) of edges
over a solid angle Q is defined such that p(Q)dQ gives the fraction
of edges with orientations between € and Q +dQ. This distribu-
tion function satisfies the normalization condition [, p(Q)dQ = 1.
Corresponding orientational distribution functions for physical
contacts and virtual contacts are denoted by p9(€) and p“(£2),
respectively.

The expression for the average strain tensor, Eq. (3), as a dis-
crete sum over edges, can be transformed into a continuous form
involving the orientational distribution function and the orienta-
tional average:

5=y [ P(@Aud (@)de )

where E is the number of edges in the volume V.

The assumption that all edges individually follow the relation-
ship Au®=¢-1° is called the uniform-strain or affine deformation
assumption and it is often employed in micro-mechanical studies.
Assuming that Eq. (6) holds is a weaker assumption of “orienta-
tional-averaged uniform strain”. However, for convenience, we re-
fer to Eq. (6) as the “uniform-strain assumption”.

Relative displacements (and branch vectors) from the DEM
simulations will be compared, in the following, with the predic-
tion according to the uniform-strain assumption, Eq. (6). How-
ever, first, a local, edge-based coordinate system is defined that
is convenient for representing the results in a more condensed
way for the considered test cases, in particular for the triaxial
compression.

3.1. Local edge-based coordinate system

In the following, triaxial and isotropic compression tests of an
initially isotropic sample are considered. In the triaxial test, the
deformation is imposed along the X-direction and lateral stresses
are kept constant at the initial value.

The unit vector n®=1° /||I°| is given by the local branch vector
orientation. Using the normal vector n® and one arbitrary direction
unit vector e;, we define the unit vector t° in the tangential direc-
tion and the unit vector s°® in the azimuthal direction. In the present
study, the unit vector e, = e, along the X-direction is chosen. This is
an arbitrary choice for isotropic deformation, but it is appropriate
for the case of triaxial deformation.

Let s® be oriented perpendicularly to the plane that contains n®
and e;. Thus s° = (e; x n°)/|le; x n°|| and t° = s® x n® as sketched in
Fig. 3. Note that (n®t°s®) form a local right-handed orthonormal
coordinate system. Furthermore, from the definition of s°, when
both e; and n° are (almost) parallel, the ratio (e; x n®)/||e; x n°|| re-
mains finite, although |e; x n°|| — 0.

Considering spherical coordinates (0,¢) with symmetry axis
e; = e,, the polar angle 6 is given by 0 = arccos(n® - e,) € [0, 7] and
the azimuthal angle ¢ € [0,27]. The vectors n, t and s become:

n = Cos 0e, + os ¢ sin e, + sin ¢ sin de;, (8a)
t = —sin0e, + cos ¢ cos e, + sin ¢ cos Oe,, (8b)
s = —sin ge, + cos pe,, (8¢c)

where the superscript e, denoting a given edge, is dropped since, the
angles (0, ¢) correspond not to a single edge, but to a family of edges.

In this local coordinate system any vector A associated with an
edge (such as the relative displacement vectors Au®, the branch
vector 1° and the complementary-area vectors d®) can be decom-
posed as
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Fig. 3. Sketch of the local, edge-based coordinate system (n,t,s) for an edge that is
oriented along n. The Cartesian coordinate system (x,y,z), a sphere with unit radius
and the azimuthal and polar angles, 6 and ¢, respectively, are shown for reference.
Note that by definition the vectors (n,t) are coplanar with ey, while s is in the plane
y-z (green region). (For interpretation of references to color in this figure legend,
the reader is referred to the web version of this article.)

A=An+At+As. 9)

For the triaxial compression test the boundary conditions for the
representative volume V are symmetrical in the Y, Z plane (the azi-
muthal plane). Given this polar (cylindrical) symmetry around the
X-axis, it is expected that the orientational average (over edges with
similar orientations) of an edge quantity A (denoted by A(Q), or in
terms of angles (0,¢) by 7\(0, ¢)) is independent of ¢. Then only
the azimuthal average (or polar average), denoted by A(6), is impor-
tant. This reduction forms the main motivation for the introduction
of the local, edge-based coordinate system.

Notice that an edge pq is equivalent to the edge gp. The orienta-
tion of edge pq is expressed by the spherical coordinates (6, ¢). The
orientation of edge gp then is given by (7w — 0,7 — ¢). Therefore,
the orientational average satisfies A(n —0,m—¢) = 7\(0, ¢) and
the azimuthal average satisfies A(7 — 6) = A(60).

The orientational distribution function p(0,¢) will (also) only
depend on 6 for the considered test cases. The corresponding (po-
lar) distribution is denoted by p4(0). A similar meaning is implied

by p§(0) and p(0).
3.2. Uniform strain

Here the azimuthally-averaged relative displacement vector
according to the uniform-strain assumption Eq. (6) is given for a
triaxial test. This relative displacement vector is expressed in the
components {&ﬁn, A, ﬂlg} (compare Eq. (9)). Here, and in the fol-
lowing, the tilde indicates quantities that are obtained from the
uniform-strain assumption. As shown in the Appendix A, these
components are given by

At (0) = (1) [(‘0‘“ ; 822) (8“ > 8”) cos 20] (10a)
Aue(0) = — (1) [(8“2;822) sin 20) (10b)
Aug(6) =0 (10c)
or, in terms of the Fourier components dy, a,, a

Ay (0) = (I)(do + @, cos 20), (11a)
Au(0) = —(I)a, sin 20, (11b)

where

(10:8“ ;8227 (12a)
~ &11 — &

= b . 2 (12b)
Gy = 0. (12¢)

The results for the (azimuthally-averaged) components {Au,(0),
Au,(0)} of the relative displacements from the DEM simulations, de-
scribed in the next section, conform to Eq.(11), but the corresponding
coefficients ag, a, and a, differ from those given in Eq. (12). Therefore,
the deviations from the ideal case of uniform-strain (or affine) defor-
mation can be characterized by the ratio between the actual Fourier
coefficients (ao ) for the relative displacements of edges, contacts
or virtual contacts, and those predicted by the uniform-strain
assumption (do . ), i.€. by the set of coefficients yq, y, and y,, defined by

a
Yone =7 - (13)
0,n,t

Results for these coefficients are presented in Section 5.3.

4. Discrete element method simulations

Discrete Element Method (DEM) simulations, as proposed by
Cundall and Strack (1979), have been performed to obtain detailed
information on particle displacements (and hence relative dis-
placements at the edges) under triaxial and isotropic compressive
loading conditions.

The assembly consists of 250,000 polydisperse spherical parti-
cles, with radii from a log-normal distribution. Its standard devia-
tion is 0.25, relative to the mean particle radius (r). The initial,
isotropic packing is prepared under isotropic stress conditions,
with stress go and with particle friction switched off, i.e. the inter-
particle friction coefficient u = 0. Its volume fraction v, i.e. the vol-
ume occupied by the particles divided by the total assembly
volume (including voids), is 0.65 and the (physical) coordination
number C. (the average number of physical contacts per particle)
is C.=6.19. The length of the initial cubic assembly is about 60
times the average particle diameter.

The contact constitutive relation of Cundall and Strack (1979) is
used, in which the elastic parts of the contact constitutive rela-
tions, for the normal and tangential contact forces, are linear. The
stiffness ratio k./k, = 0.5, with k, and k; being the stiffnesses in nor-
mal and tangential directions, respectively. The interparticle fric-
tion coefficient u=0.5. The contact deformations (‘overlaps’) are
small, since the non-dimensional stress go(r)/k, ~ 107> is small.

For the triaxial loading the compressive displacement is imposed
in the X-direction, while the lateral deformation is such that the lat-
eral stresses are kept constant at the initial stress o,. Periodic bound-
ary conditions have been employed to avoid wall effects and to
suppress the formations of (global) shear bands so that large defor-
mations without large-scale heterogeneity can be studied. Note that
small-scale heterogeneities will always be present (Kuhn, 1999).

The macro-scale deformation of the periodic box is determined
from the deformation of the periodic box, with lengths L; and initial
lengths L?

e,»j:lnL—[')(S,»j. (14)
L;

In the triaxial test the principal-strain directions correspond to the
Cartesian coordinate system for the periodic box. Note that the ten-
sor e represents the cumulative deformation given by e = fLLu g,
where ¢ is the incremental strain tensor.

The macro-scale, continuum response is characterized by the
deviatoric stress ratio g/p with invariant q = (01 — 022)/2 of the
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deviatoric stress and pressure p=tre/3 and volumetric strain
ev(ey=tre=1nV/V,, where V is the volume of the current state
and Vj is the volume of the initial state). Fig. 4 shows the evolution,
as function of the total imposed axial deformation e, of the devi-
atoric stress ratio and volumetric strain, with the characteristic
compression-dilation behavior for a dense initial packing. The
yield stress is reached after about 2% of axial deformation. Note
that no (global) shear band was observed, due to the use of peri-
odic boundary conditions.

In a previous study (Duran et al., 2010) it has been shown that
Bagi’s micro-mechanical expression, Eq. (3), for the average strain
tensor accurately represents the macro-scale deformation of the
boundaries, i.e. the changing lengths of the periodic box.

The employed Delaunay tessellation procedure does not take into
account the periodic boundaries of the system. Hence only “internal”
tetrahedra are employed. These internal tetrahedra are located more
than 5% of the system size away from any of the periodic boundaries.

5. Results

In this section, we study the evolution of the deformation char-
acteristics with imposed loading, as well as the geometrical quan-
tities involved in Bagi’s strain formulation. Hence, we will consider
the evolution of branch vectors 1° and the complementary-area
vectors d° and their orientational averages.

Furthermore, we will also study the probability distribution
function (PDF) and the evolution of the polar distribution of the
components {Auy,(0), Au,(0),Aus(0)} of the azimuthally-averaged
relative displacements from the DEM simulations. Although the
geometrical quantities will be mainly studied for triaxial loading,
we will also show some results for isotropic loading, whenever
they show interesting behavior.

5.1. Geometry

Due to their relevance for Bagi’s strain formulation, see Eq. (3),
we will study in detail the geometrical quantities:

e edge-based and contact-based coordination numbers C, and C,,
respectively;

o the edge structure, i.e. the polar distribution of edges p,(6), con-
tacts p§(0) and virtual contacts p}(0) (see Section 3.1);

e geometrical quantities like the azimuthally-averaged branch
vectors of edges I(0), contacts I°(0) and virtual contacts I”(0),
as well as the components of the complementary-area vector

d(0) for edges, contacts and virtual contacts.

0.6 T T T 8
\ 6
0.4 |
Q 4 :\°\
3> =
o
0.2 )
12
0 0
ap —— ey,
0 5 10 15 20
-4, (%)

Fig. 4. Evolution of the total volumetric strain ey and the ratio of the deviatoric
stress ratio q/p (as defined in the main text) as a function of the total axial
deformation —e;;, where compression is considered negative.

5.1.1. Coordination numbers

The connectivity of the packing and the Delaunay tessellation is
primarily described by the contact-based and edge-based coordi-
nation numbers C. and C,, respectively, defined as

C. = 2C/N, (15)
C. = 2E/N, (16)

where C, E and N are the number of (physical) contacts, edges and
particles, respectively. These coordination numbers C. and C, give
the average number of contacts and edges per particle, respectively.

The coordination number of the Delaunay tessellation C, re-
mains roughly constant during the tests (with a slight increase of
about 2% for the triaxial test and less than one percent decrease
for isotropic compression): C.~ 14.3 — 14.5, while C. decreases
(increases) by about 30% for triaxial (isotropic) compression, see
Fig. 5 (left).

Fig. 5 (right) shows the probability density function of C. and C,
in the initial isotropic state, as also studied, e.g. by Lochmann et al.
(2006).

Rattlers (i.e. particles without physical contacts) are ignored in
the analyses, so there are no particles with C =0, while there are
few particles with less than three contacts. We furthermore ob-
serve few particles with less than eight edges, but most have many
more edges with an average of C, ~ 14.3.

5.1.2. Distribution of edge and contact orientations

Fig. 6 shows the distribution of the edge orientations p(£2) and
contact orientations p(€2), for the triaxial test. It is clear that they
are independent of azimuthal angle ¢, as expected in the consid-
ered triaxial test with its transverse symmetry (see also Section
3.1). Therefore, only the distribution p,(0) contains relevant
information.

The distribution of the edge orientation p(€2) is isotropic during
the whole deformation, as was already observed in the two-dimen-
sional case (Tordesillas et al., 2010). In contrast, the polar distribu-
tion of contacts p§(0) (see Fig. 6, bottom left) is highly anisotropic
during the triaxial test. Along the compression axis (6 = 0) contacts
are created (p§(0) > 1/2), while in the directions of minor principal
stresses (0 =m/2) contacts are disrupted (p§(0) < 1/2). Note that
the distribution of virtual contacts p?(0) (Fig. 6, bottom right) is
not independent and can be calculated from:

Po(0) = ncpi(0) + (1 —nc)p; (0), (17)

where nc is the fraction of edges that are (physical) contacts. This
fraction can be expressed in terms of the coordination numbers C,.
and G, (defined in Egs. (15) and (16)):

€_¢C

Ne E Ce .

(18)

In our simulations the value of nc varies from ~0.3 to 0.5.

In order to study the evolution of the structure, i.e. the polar dis-
tribution of edges and contacts p,(0) and p§(6), in compact terms,
we decompose them in Fourier series in 0:

Po(0) ~ po + P, €05 20 + pycOS40 + - - - (19)
PS(0) ~ p§ + pS cos 20 + p cos 40 + - -- 20)

and study the evolution of the Fourier components p; and p§, for
i=0, 2, 4. The coefficients p,4 and p§, reflect the anisotropy of
the structure. Note that odd terms, like cosf, are not present due
to symmetry reasons, i.e. the distributions are periodic in the inter-
val 0 € [0, ). Higher order terms were practically zero in the cases
tested, so that we restrict ourselves to i = 0, 2, and 4. From the nor-
malization condition for distribution functions, [, p(2)dQ =1, we
then find that pg=1/2 + p,/3 + p4/15.
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Fig. 5. (Left) Evolution of the coordination numbers of edges C, and contacts C. during the isotropic (iso) and triaxial (3a) compression test. The axial deformation is
normalized by its maximum value '™ = —20% and —5% for the triaxial and isotropic compression, respectively. (Right) Probability density function of C. and C in the initial

isotropic state.
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Fig. 6. (Top) Orientational distribution of edges (left) and contacts (right) at peak
shear strength ratio, e;; = —2% from the triaxial test. (Bottom) Plot of the polar
distribution of edges p,(0) (top), contacts p§(0) and virtual contacts p?(0) (bottom
left and right, respectively), at e;; = —2% (solid symbols, in red), and for large
deformations, e;; = —20% (open symbols, in green), where 0 is the polar angle, with
0 €[0,m] by definition. (For interpretation of references to color in this figure
legend, the reader is referred to the web version of this article.)

The evolution during the triaxial test of these Fourier coeffi-
cients is shown in Fig. 7. As is shown in Fig. 7 (left) for the edge dis-
tribution, the anisotropy coefficients p, and p4 are small compared
to the isotropic one po, which confirms the isotropic character of
the Delaunay edge network: an isotropic network would corre-
spond to pp = 1/2 and p, = p4 = 0. On the contrary, the contact net-
work is highly anisotropic. As implied by Fig. 7 (right), both
anisotropy coefficients, p$ and p§, increase with the deformation
e11. In particular, for large deformations (|e;;| > 10%), the higher or-
der Fourier component p§ becomes as relevant as pS.

5.1.3. Characteristics of branch length and complementary-area vector

In this section the characteristics of the branch vector and the
complementary-area vector are given. This involves the polar dis-
tribution, as well as the evolution in the triaxial test of the Fourier
components for the average values.

5.1.3.1. Branch length. After azimuthal averaging (see Section 3.1),
the lengths of edges and contacts, I°(0) and I°(6), respectively, are
approximately isotropic during the whole triaxial test. This is a
consequence of the statistically uniform spatial distribution of par-
ticles, and thus edges, in the random packings.

Fig. 8 shows the evolution of the average length of the branch
vectors (l). ., for edges, contacts and virtual contacts. The evolution
of the average edge length closely resembles the volumetric defor-
mation of the assembly (see Fig. 4). Since the total volume of the
particles is conserved, the volume fraction should scale as
v o (r)?/(1)2, where (r) is the mean particle radius and (1), repre-
sents an average distance between particles, based on the defini-
tion of the Delaunay tessellation. Therefore (l), is proportional to
(ry/~/v (as shown by the solid line in Fig. 8, with a single propor-
tionality constant that is determined by matching the initial value
at eqq).

As expected for a low confining pressure (relative to the particle
stiffness k), the macro-scale deformation of the assembly does not
significantly affect the average length of (physical) contacts (l),
which remains nearly constant during the whole test. In contrast,
larger deformations occur in the empty space between the parti-
cles, encoded in (I),.

Finally, note that for contacts (I)./(r) > 2 (Fig. 8). This is a direct
consequence of the polydispersity of the assembly and has its ori-
gin in the correlation between the particle radius and the number
of contacts of a given particle: large particles with large surface
area have more contacts than small particles (Kruyt and Rothenburg,
2001; Madadi et al., 2004; Duran and Luding, in preparation).

5.1.3.2. Complementary-area vector. For the complementary-area
vector d, only the normal component d,(0) is different from zero
after azimuthal averaging, due to the statistical uniformity of the
random packing. Thus, even though the individual complemen-
tary-area vectors d° are not parallel to the branch vectors 1°, azi-
muthally-averaged they are parallel.

The azimuthally-averaged normal component of the comple-
mentary-area vector d,(0) can (also) be expressed as a Fourier ser-
ies in the polar angle 0 : dj(e) ~ dpo + dpp cos 26. The analysis of the
anisotropy ratio d,»/do (Fig. 9, left) shows that the normal comple-
mentary area d,(0) is nearly isotropic for edges and contacts (|d,;»/
dno| < 2%), while for virtual contacts it becomes slightly anisotropic
for large deformations (d,»/d,0 ~ —10%), where a negative value
means that the complementary-area vectors are somewhat smaller
in the compression direction than in the extension direction. The
even smaller coefficient of the fourth-order harmonic is not shown
and discussed here.
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Fig. 7. (Left) Evolution of the second-order Fourier components, relative to the isotropic value, of the polar distribution function of edges p,(0) and contacts p§(0). (Right)
Evolution of the fourth-order Fourier components, relative to the isotropic value, of the polar distribution functions of edges and contacts.
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Fig. 8. Evolution of the dimensionless average branch vector length (I)/(r), where
(r) is the mean particle radius, for edges (e), contacts (c) and virtual contacts (v). The
dimensionless length 1/¢/v (solid line), based on the volume fraction v, is also
shown for comparison.

The evolution of the normalized average (d,)ecy(lecv/(3(1)3) is
shown in Fig. 9 (right) for edges, contacts and virtual contacts.
The scaling of (d,). with 3(r)3/( I),, where (r) is the mean particle
radius, is suggested by the geometrical identity (Duran et al., 2010)
(dnly, = 3VJE, (21)
which implies an additional relation with the volume fraction v.
Since the number of edges remains almost constant during the test
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(see Fig. 5, left) and the actual volume of the packing is proportional
to (r)3/v, it follows that (d,)e(l)e/(3(r)?) o< 1/v, as shown by the solid
line in Fig. 9 (right). The single proportionality constant has been set
to match the initial value at e;; =0.

5.2. Relative displacements

In this section we study the relative displacements of edges,
(physical) contacts and virtual contacts during triaxial and isotro-
pic loading. In particular, we will focus on the orientational aver-
ages and the probability distribution function (PDF) of the
normal and tangential components of the relative displacements
for edges, contacts and virtual contacts.

The orientationally-averaged components of the relative dis-
placement vector, ZLTH((), ?), ZE((), ¢) and Ku\s((), ¢), are shown in
Fig. 10 for the triaxial test. As expected due to the polar symmetry
(see also Section 3.1), these averages are independent of ¢ and the
out-of-plane component vanishes, A/u\S(O, ¢) ~ 0.

In the following, we will therefore study the azimuthally-aver-
aged normal and tangential component of the relative displace-
ment of edges Au¢,(0) by analyzing the behavior of the contact
Au¢ ,(0) and virtual contact Au?,(0) contributions separately. These
components are not independent, as they are related by the nor-
malization condition:

p()((})ﬁg.t({)) = ncpg(())ﬂg,t((}) +(1- nC)pg(())E:{t(U):

where p,(6) and nc are defined in Eqs. (17) and (18), respectively.
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Fig. 9. Normal component d,, of the complementary-area vector for edges (e), contacts (c) and virtual contacts (v) in triaxial test. (Left) Evolution of the anisotropy ratio dp,/
dno. (Right) Evolution of the normalized average (d,)(l)/(3(r)3). As shown by the solid line in the right panel, (d,)(l)e/(3(r)3) is proportional to the inverse of the volume

fraction 1/v.
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Fig. 10. Orientational averages Z\u,‘ (0, ¢), H(e, ¢) and &Ts(e, ¢) for edges for tiiixial loading at deformation e;; = —2%. The magnitude of the average is given by the color
code, where red represents positive values and blue negative values. Note that Au; is negligible. (For interpretation of references to color in this figure legend, the reader is

referred to the web version of this article.)

5.2.1. Normal component

Fig. 11 shows the polar distribution of the normal components of
the azimuthally-averaged relative displacements Au$c?(0)/
(l&11[{D)e..,,) for edges, contacts and virtual contacts, at two different
axial deformations e;; during the triaxial test. The relative displace-
ments of edges, contacts, and virtual contacts are normalized by the
respective average length of the branch vectors and by the strain
increment |&q1].

As expected for triaxial compression, edges are compressed
(Aug < 0) in the X-axis (6 =0), while they expand (Au¢ > 0) in the
extension direction (0=7/2), see Fig. 11. However, this signifi-
cantly changes when the deformation of contacts and virtual con-
tacts is analyzed separately. Although virtual contacts deform (in
the normal direction) in a way similar to that of edges, they are de-
formed more. On the other hand, contacts are only slightly com-
pressed due to the strong repulsive forces active. For large
deformations (eq; ~ —20%), they practically do not deform at all
in the contact direction, i.e. AuS ~ 0 (Fig. 11, left). In this regime,
the deformation in the normal direction occurs predominantly in
the space between particles, i.e. ‘deformation of voids’ (character-
ized by the virtual contacts).

In general, the compressive (considered as negative) response in
relative displacements is stronger than the extension (considered
as positive) one. This observation is true for the peak stress (red)
and - even stronger - for the large strain regime (green). The con-
tacts have no significant (average) relative displacement in the
large strain regime in any direction.

The dimensionless normal component of the relative displace-
ments for edges, contacts and virtual contacts (Au¢<?(0)/(h,.,)
can be decomposed into a Fourier series, similar to Eq. (11a):

BU0) _ ocs
Deew

Again, for symmetry reasons, there is no term involving cos 6. Now,
it is possible to study the evolution of the Fourier components for

+a¢“?cos20 + - -- 23
n

ATy N(leqq] (). +

0.05 0.1

005 O

the different loading conditions used: isotropic (Fig. 12) and triaxial
(Fig. 13) loading. In all cases, only the first two components ay and
a, are relevant and higher harmonics contributions can be ne-
glected (data not shown).
The first component a§“” gives the isotropic contribution to the
relative displacement, where negative values mean that the edges/
contacts/virtual contacts are compressed. The contacts are, in all
cases, compressed less than the edges, while the virtual contacts
are compressed more (since there is no repulsive force acting
against compression for virtual contacts).

The a¢“? quantify the anisotropic parts, see Eq. (23), where neg-
ative values mean that the contacts are compressed in the com-
pressive  X-direction, while they are stretched in the
perpendicular, azimuthal plane. In particular, for isotropic com-
pression the anisotropic components are all practically zero. For
large strain in the triaxial test, the relative displacements of con-
tacts level out at a small, constant value.

While the relative displacements of the contacts saturate at
large strains in the triaxial test, the isotropic (anisotropic) Fourier
components of edges and virtual contacts increase (decrease) in
magnitude.

Somewhat surprisingly, the Fourier components of the normal
deformation of edges, a§,, nicely follow the uniform-strain predic-
tions dp = (€11 + €22)/2 and a, = (&11 — €2)/2, see Egs. (12a) and
(12b). As we will see in the next section, this also applies to the
tangential component of the relative displacements. This repre-
sents an important characteristic of the deformation of the Dela-
unay network.

On average, contacts do not deform according to the uniform-
strain assumption, contrary to the edges. This is even so for the
simple case of isotropic compression (see Fig. 12). For the more
complex triaxial loading, contact deformation is only a fraction of
the edge deformation (see Fig. 13). In triaxial loading, the Fourier
components of the contact deformation become very small at
about e;; ~ —2% when the system reaches the yield point (see
Fig. 4). Therefore, during what we call the deviatoric regime

Fig. 11. Triaxial loading: polar distribution of the scaled normal components of the azimuthally-averaged relative displacements Au,(0)/(|&1|(l)) for edges (top), contacts and
virtual contacts (bottom left and right, respectively) at e;; = —2% (full symbols in red) and —20% (open symbols in green). Negative (—) and positive (+) labels indicate
compression and extension, respectively. (For interpretation of references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 12. Isotropic loading: evolution of the normalized Fourier components, ao/|&11]
of the scaled relative normal displacement Au,/(l) for edges (red dots), contacts
(green solid circles) and virtual contacts (blue squares). The solid line represents the
uniform-strain prediction. Higher-order Fourier coefficients a2“? are small (data not
shown). (For interpretation of references to color in this figure legend, the reader is
referred to the web version of this article.)

(ler1] > 2%), the azimuthally-averaged length of contacts does not
change (i.e. Au¢(0) ~ 0) and thus, using Eq. (22), the normal com-
ponent of the relative displacement of all edges (Au¢(0)) can be
approximated in terms of the virtual contact deformation Au? as

Po(0)A(0) = (1 = nc)p; (0)Auy (0), (24)

which represents an additional (approximate) normalization condi-
tion, valid only in the large strain regime of the triaxial test.

5.2.1.1. Probability density functions. Probability density functions
of relative displacements at contacts have been studied in the
two-dimensional case in Kruyt and Rothenburg (2003). Here the
probability density functions of edges, physical contacts and vir-
tual contacts are given for the normal component of the relative
displacement. Fig. 14 shows the probability density function of
the dimensionless normal deformation Au¢<?/|eqq[(l), ., of edges,
contacts and virtual contacts for the triaxial loading, along three
characteristic directions: 6 = 0°, 45° and 90°.

The range of relative displacements at contacts is narrowly cen-
tered at zero, while virtual contacts deform over a much wider
range. In both cases, the deformation involves positive and nega-
tive contributions (i.e. both extension and compression, respec-
tively). The edge average of the relative normal displacement in
the compression direction (6 =0°) is negative, in the extension
direction (0 = 90°) it is positive, and in shear direction (0 = 45°) it
vanishes. All this is consistent with the previous observations
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and with expectation, since positive and negative correspond to
compression and tension, respectively.

Although not shown, similar qualitative behavior is observed
for the probability density function in isotropic loading. The two
main differences are that: (i) the contact normal displacement is
virtually truncated at zero, i.e. only very tiny compression at con-
tacts can be achieved, due to the strong repulsive contact forces
and (ii) the probability density functions for AuS” are closer to
Gaussian distributions (data not shown), while for triaxial loading
the probability density functions have near-exponential tails (see
Fig. 14).

5.2.2. Tangential component

Fig. 15 shows the polar distribution of the normalized tangen-
tial components of the azimuthally-averaged relative displace-
ments Auf“?/(|e11[{l),.,) for edges, contacts and virtual contacts,
at different axial deformations e;; during triaxial loading.

These averages are well described by a truncated Fourier series,
similar to Eq. (11b):

A_u‘t?"C‘Uw) ~ —atS?
Dec.o '

The evolution of the Fourier coefficients a;“” during the triaxial test
is plotted in Fig. 16. Similarly to the results for the normal compo-
nent, the tangential component of the relative displacement of
edges closely follows the uniform-strain prediction a; =a, =
(11 — €22)/2, see Eq. (12c). Note that, contrary to the normal com-
ponents, the tangential (physical) contact displacements are largest,
while the edge- and virtual contact displacements are smaller. The
edges have approximately the same magnitude of deformation in
both normal and tangential direction, since they deform affine, on
average (see also Eq. (12¢)).

sin20. (25)

5.2.2.1. Probability density function. Fig. 17 shows the probability
density function of Au,/(|e11|l) for edges, contacts and virtual con-
tacts for the triaxial test, along three characteristic directions
0=0° 45° and 90°. The probability density functions have near-
exponential tails, unlike for isotropic loading, where the distribu-
tions are closer to Gaussian (data not shown).

The probability density functions of the out-of-plane compo-
nent, Au¢<?, for edges, contacts and virtual contacts, are qualita-

tively similar to those of the tangential component Auf®?.

5.3. Deviations from uniform deformation

For development of micro-mechanical constitutive relations,
the uniform-strain assumption is often used as the kinematic
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Fig. 13. Triaxial loading: evolution of the normalized Fourier components of the scaled relative normal displacement Au,/(l) ) for edges (red circles), contacts (green dots) and
virtual contacts (blue squares): (left) ao/|¢11| and (right) a,/|€11|. The solid line represents the uniform-strain prediction. (For interpretation of references to color in this figure

legend, the reader is referred to the web version of this article.)
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Fig. 16. Triaxial loading: evolution of the normalized Fourier components, a,/|€11],
of the tangential relative displacements Auc/(l) for edges (e: red symbols), contacts
(c: green symbols) and virtual contacts (v: blue symbols). The solid line represents
the uniform-strain prediction. (For interpretation of references to color in this figure
legend, the reader is referred to the web version of this article.)

“localisation assumption” (Cambou et al., 1995). Here the appro-
priateness of this assumption is investigated by comparing the ori-
entation-averaged relative displacements with those according to
the uniform-strain assumption, Eqs. (12a)-(12c).

The results of the DEM simulations show that the (azimuthally)
averaged relative displacements Au:$”(0) can be expressed as a
Fourier series with coefficients a7}, see Eqs. (23) and (25). Note
that the edges’ coefficients af,, conform to the uniform-strain
assumption, while the (physical) contacts and virtual contacts do
not behave according to the uniform-strain prediction.

The deviations in deformation from the case of uniform-strain
(or affine) deformation of edges, contacts and virtual contacts
can be characterized by the ratio between the actual Fourier coef-

e.c.v

ficients (ag’;7) and those predicted by the uniform strain (G ), i.e.
by the set of coefficients:

e.c.v

ecv _ ont

Vi == (26)
o,n,t

e.c.v

Fig. 18 shows the evolution of the set of coefficients g} as function
of the imposed deformation, for isotropic and triaxial loading. As
was already clear from the previous sections, the deformation of
edges follows quite closely the uniform-strain prediction
(yome~ 1), and thus their deformation is on average affine.

In contrast, contact deformation strongly deviates from uni-
form-strain deformation. The main reason is that the high interpar-
ticle stiffness limits the relative displacements of contacts in the
normal direction, compared to that of virtual contacts. Therefore,
the normal component of the relative displacement of contacts is
much smaller than that of edges and of virtual contacts.

For the tangential component, the reverse observation holds to
a lesser degree: the deformation of physical contacts and virtual
contacts are of the same order of magnitude, but that of physical
contacts is larger. Contrary to virtual contacts, the tangential stiff-
ness limits the total deformation of contacts at the contact point,
which consists of translational as well as rotational parts. This
rotational part will counteract the translational part (‘rolling mode
of deformation’), i.e. have an opposite sign. This suggests that the
tangential component of the relative displacements of contacts is
smaller than that according to the uniform-strain assumption.

Thus, the main contribution to the strain arises from the deforma-
tion of the voids and from the tangential deformation of contacts.
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Fig. 17. Probability density function of Auf“?/(|e11|(l),.,) for edges, contacts and virtual contacts, along three characteristic directions, during triaxial loading at ey, = —2%.
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Fig. 18. Deviations from the uniform-strain prediction, given by the set of coefficients yg:} for edges (e), contacts (c) and virtual contacts (), as function of the axial
deformation, for isotropic (left) and triaxial (right) loading. In the former case only the isotropic y, are shown, whereas in the latter case the coefficients for edges (open
symbols) and contacts (solid symbols) are shown. Note that symbols like e(n), for instance, have to be interpreted as y.

6. Discussion

Bagi’s micro-mechanical formulation (Bagi, 1996) for the strain
tensor involves an average over edges of the Delaunay tessellation
of relative displacement vectors between particles and the comple-
mentary-area vectors. The set of edges can be subdivided into
physical contacts and virtual contacts.

The statistics of: (1) coordination numbers, (2) the edge orien-
tations, (3) the branch vectors, (4) the complementary-area vectors
and (5) the relative displacement vectors have been studied here,
using results from DEM simulations of isotropic and triaxial com-
pression tests. It is found that:

1. The coordination number for edges is almost constant for the
compression and triaxial tests, while the coordination number
for contacts shows strong changes.

2. The orientational distribution function of edges is close to iso-
tropic during all tests. The distribution of physical contacts
and virtual contacts becomes anisotropic in the triaxial test.
All these distribution functions are reasonably well approxi-
mated by second-order Fourier series.

3. The average length of the branch vectors of edges and virtual
contacts is varying, whereas that of physical contacts is practi-
cally constant.

4. The complementary-area vector, on average, only has a non-
zero normal component. This average normal component is iso-
tropic for edges and contacts, while that for virtual contacts
shows a mild anisotropy. The average values of the length of
the branch vector and the normal component of the comple-
mentary-area vector are related to each other and to the volume
fraction of the assembly.

5. The orientational averages of the relative displacements for the

edges, contacts and virtual contacts are well approximated by
second-order Fourier series. The evolution of these Fourier coef-
ficients with imposed strain has been studied and compared to
those according to the (averaged) uniform-strain assumption to
assess its accuracy. The total deformation of the assembly, as
given by the orientational averages of the relative displace-
ments of the edges of the Delaunay tessellation follows the uni-
form-strain prediction. However, neither the deformation of the
contact network nor of the virtual contact network has this
property. The normal component of the relative displacement
of physical contacts is smaller than that according to the uni-
form-strain assumption, while that of the virtual contacts is lar-
ger. The reverse observation holds for the tangential component
of the relative displacement vector.
In isotropic compression the probability density functions for
the relative displacements of edges, contacts and virtual con-
tacts are close to Gaussian, while in the triaxial test they exhibit
near-exponential tails.

This difference in behavior of the networks of physical and virtual
contacts poses a challenge for micro-mechanical modeling. The defor-
mation of the physical contact network, which represents the micro-
scale structure of those edges that contribute to the stiffness and thus
to the continuum, macro-scale stress, cannot easily be predicted. For a
micro-mechanical “localisation assumption”, an additional relation-
ship between the average deformation of virtual contacts and physi-
cal contacts needs to be established, like Eq. (22). The left-hand side of
this equation follows from the uniform-strain assumption, so that
knowing either Au¢ ,(0) or Au? ,(0) would allow one to close the prob-
lem by obtaining a “localisation assumption”. A possible approach is
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to investigate, from the DEM results, the interconnection between lo-
cal contact geometry and local deformation of small clusters of parti-
cles. However, this is a topic for future research.

In addition, it is recommended to also consider other loading
cases, for example a case where the direction of (initial) anisotropy
does not coincide with the direction of loading, as well as
other initial conditions, such as a loose initial packing. The Bagi
micro-mechanical strain expression, Eq. (3), involves only relative
displacements of particle centers, and hence excludes particle
rotations. Since this expression is actually for the displacement-
gradient tensor, it does describe the continuum-mechanical rota-
tion, i.e. the asymmetrical part of the displacement gradient. The
investigation of the role of particle rotations on deformation
measures is also a topic for further study.
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Appendix A. Uniform strain

Here the relative displacement vector according to uniform-
strain assumption is expressed in the local, edge-based coordinate
system (n,t,s) (see Section 3.1) for triaxial loading.

According to the uniform-strain assumption (see Eq. (6)), the
relative displacement Au; of an edge characterized by the branch
vector ;=1 n; is given by:

Au; = Sijlj (27)
with normal and tangential components,

Au, = n,—s,-jlj, (283)
Auy = t,‘S,‘jlj, (28b)
Aus = Si(‘),‘jlj, (ZSC)

where t and s are the tangential edge vectors, defined in Eq. (8).
In the triaxial compression test €33 = €35, and hence the strain
tensor is given by

&1 0 0
e=| 0 & 0| (29)
0 0 &

Using Eq. (8), it follows that the orientational-averaged relative dis-
placements (see Section 3) according to uniform strain are given by:

Bun(0, ) = () (" ;822) + (2 = “2) cos 20), (30a)
Auc(0,¢) = (1) [(@) sin 20, (30b)
Aug(0,¢) =0, (30c)

where the isotropy of the branch vector ||1(6,¢)|| ~ (I) has been used
(see Section 5.1.3.1).
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