
193

VISCOELASTIC BEHAVIOR AND DURABILITY OF STEEL-

WIRE - REINFORCED POLYETHYLENE PIPES UNDER A HIGH 
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The strength tests of steel-wire-reinforced polyethylene pipe specimens showed that, under a constant internal 
pressure exceeding 80% of their short-term ultimate pressure, the fracture of the specimens occurred in less 
than 24 hours. At pressures slightly lower than this level, some specimens did not fail in a year and a half. The 
analytical model developed for describing the mechanical behavior of such pipes considers that polyethylene 
is viscoelastic and steel is elastoplastic. This allows one to evaluate their short-term strength as well as their 
durability under a high internal pressure. The experimental results obtained in strength tests are explained by 
the redistribution of stresses between the two materials of the reinforced pipe. Calculations were carried out 
using the MathCAD software.

Results of Pipe Tests

The technology of polyethylene pipes reinforced with a steel wire skeleton has been developed and introduced for the 
first time at the “Mepos” company (Ekaterinburg, Russia). At present, such pipes are manufactured by several Russian companies, 
in particular, “Polimak” JSC (Ekaterinburg) and “Gazprom Transgaz Stavropol” LLC (Stavropol). The wires in the skeleton 
are fastened by spot welding at their intersection points (Fig. 1). The results of a finite-element modeling of stresses in the wire 
skeleton and in the polyethylene body of pipe specimens, obtained in tests for the short-term strength, are discussed in [1].

The tests for the short- and long-term strength of pipe specimens manufactured by “Polimak” JSC, with an outer di-
ameter of 140 mm, including the nonreinforced thickened zone of a butt weld of polyethylene, were carried out at the Perm 
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TABLE 1. Results of Tests on Pipe Specimens for the Long-Term Strength

Specimen pconst, МPа pconst/plim ∙100% Time to failure and its character

4 9.8 87.5 1 h, a longitudinal crack with a broken reinforce-
ment

5 9.2 82 21 h, a longitudinal crack with a broken reinforce-
ment

6 8.2 73 Did not failed in 570 days (1.37∙104 h)
7 7.5 67 Did not failed in 630 days (1.51∙104 h)

8 6.0 (during 298 days 
(7.15∙103 h), then in-
creased to 8.4

54 (during 298 days), then 
increased to 75

Did not failed in 298 days at a pressure of 6.0 MPa; 
on increasing to 8.4 MPa, failed in 11 hours at a 
polyethylene seem

Fig. 1. Steel skeleton of a reinforced plastic pipe.

Specimen

Fig. 2. Specimen of a reinforced pipe after short-time tests under internal pressure.
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State Technical University. Specimens 1, 2, and 3, loaded with an internal pressure at a rate of 10 MPa/min, in short-term 
strength tests, failed at 10, 13, and 10.5 MPa, respectively. The ultimate pressure describing the short-term strength of the pipe, 
averaged over three specimens, was plim  = 11.2 MPa. A typical pattern of failure of a pipe specimen is illustrated in Fig. 2, 
where a longitudinal crack with broken circular coils of the reinforcement is shown. 

In tests for the long-term strength (Table 1), the internal pressure grew to a certain level pconst  and was then main-
tained at this level up to failure of specimens. We should note that, at a loading level higher than a certain value (~80% of the 
short-term strength), the failure occurred within 24 hours with the break of reinforcement, as in the case of tests for the short-
term strength (see Fig. 2). However, at a pressure below this level, specimens 6 and 7 did not fail even in one year and a half. 
The purpose of the present study is to explain this fact and to predict the long-term strength of such pipes at high loading 
levels.

Taking into account the fact that polyethylene is viscoelastic, but the greater part of load is taken up by the steel wire, 
we may assume that the long-term strength of the pipes at high load levels, in the course of time, is caused by redistribution 
of the load between the polyethylene and the wire wound in the circumferential direction.

The destruction character of specimen 8 indicates that, at load levels lower than ~80% of the short-term strength, for 
the given standard-size pipes, the creep failure of polyethylene in the axial direction can occur in the region of a nonreinforced 
thickened joint (Fig. 3). For predicting the failure according to this mechanism, competing with the break of the circular rein-
forcement, data on the nonlinear behavior of polyethylene in creep up to failure are necessary.

Properties and Deformation of the Wire in the Circular Direction

The wire skeleton of a pipe of outer diameter 140 mm had the following parameters: wire diameter 2r  = 3 mm, 
median diameter of the wire ring 2R  = 134 mm, and the winding step a  = 8 mm. Figure 4 shows tension diagrams of the 
wire in the initial state and of a wire taken out of the pipe, i.e., weakened by contact welding. 

For our calculations, we used a simple piecewise linear two-section approximation of the tension diagram (Fig. 5). 
The elastic region is followed by a region of a constant stress σ σ= max � at a strain ε ε εs ≤ ≤ lim . Here, ε σs E= max , where 
E  is the elastic modulus of steel. The parameters σmax  and ε lim  are chosen so that to describe the weakest wire, since its 
destruction leads to the failure of neighboring wires and to the formation of a longitudinal crack. It is seen that the contact 
welding affects the tension diagram significantly. 

Upon twisting the wire into a ring, some part of the material occurs in the region of plastic deformation. The longitu-
dinal deformation of bending due to winding | | � �ε ≤ r R  = 0.022 is distributed linearly over the cross section of wire. Using 

Fig. 3. Failure of specimen 8 (according to Table 1) along a welded unreinforced joint.
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Fig. 4. Deformation diagrams of the wire in the initial state (a) and after the contact welding (b).
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the tension diagram of the wire (see Fig. 4) and assuming that the diagram σ ε( )  in compression is similar, we come to a 
relation between the longitudinal strain of the wire after winding and the coordinate y . At the center of cross section of the 
wire, y  = 0. After imposing on the wire the tensile deformation from the internal pressure in the pipe, an elastic unloading 
occurs in the compressed region of cross section. 

Figure 6 shows the distribution of stresses over the cross section of the wire at different values of the average strain 
(tensile strain from the internal pressure). The distribution of the stresses was described by the piecewise linear function
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where ε  is the strain averaged over the cross section.
Integrating Eq. (1) over the cross-sectional area of the wire, we obtain a relation between the force Fst  which stretch-

es the wire and ε  (Fig. 7).
This relation was approximated by the piecewise linear function
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Viscoelastic Deformation of Polyethylene

In [2], the viscoelastic properties of the polyethylene used for pipes manufactured by winding of a polyethylene tape 
reinforced with a steel wire were determined from creep tests at six levels of constant stresses, from 4 to 14 MPa.

The circumferential strain in the reinforced pipes before origination of a crack was rather small, of an order of mag-
nitude 2%. For such a level of strains, the nonlinear viscoelastic behavior of polyethylene was approximated in [2] by the 
linear viscoelastic model 
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Fig. 7. Tensile force Fst  as a function of the strain ε averaged over the cross section of the wire.
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The kernel K tG ( )  in Eq. (3) was taken as a sum of five exponents: 
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The values of τ i  and Gi in Eq. (4), found by the method of least squares, are presented in Table 2.
For the case of uniaxial tension, we have from relation (3)
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The instantaneous modulus E0  can be expressed in terms of the constant G0  and the Poisson ratio � ν  = 0.42 (taken 
from [2]): E G0 02 1= +( )ν .

The parameters of the kernel K t( )  in Eq. (5) can be expressed in terms of parameters of the kernel K tG ( ) :
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The functional inverse to (5), with subscripts omitted, is 
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The constants of the kernel � Γ( )t  in (6) were calculated from those of the kernel K t( )  by using the known relations [3] 
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and their values are also presented in Table 2.
Let us find what estimate for the level of axial strain ε* reached in the polyethylene joint by the instant of failure or 

the end of the tests is given by the linear model. For the diameter of butt joint 164 mm, the calculations by Eq. (5) give the 
following values of ε* for specimens 4-8 (see Table 1): 2.4, 3.3, 3.8, 3.5, and 3.6%, respectively.

TABLE 2. Parameters of the Linear Viscoelastic Model [2] and the Calculated Values of the Relaxation Kernel in Uniaxial 
Tension

Parameter i = 0 i = 1 i = 2 i = 3 i = 4 i = 5
τi, s 10 500 5∙103 5∙104 5∙105

Gi , MPa 470 509 477 359 367 314
G0 /Gi

0.925 0.99 1.31 1.28 1.50
1/βi

5.3 330 3.49∙103 3.86∙104 3.97∙105

Ai /βi
0.473 0.184 0.102 0.054 0.037
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As seen, the strain level in specimen 8 is higher than in other ones, except for specimen 6, which did not fail. However, 
the distinction is insignificant and apparently lies within the statistical straggling of the ultimate strain for a welded polyethylene 
joint. As already mentioned, for predicting the failure in a nonreinforced thickened joint, it is necessary to have data on the 
nonlinear behavior of polyethylene in creep up to failure, as well as data on the strength of welded joints.

Viscoelastoplastic Deformation of a Reinforced Pipe

Let us consider the deformation of a pipe under an internal pressure according to a simplified model, assuming that 
the circular reinforcement is preliminary deformed elastoplastically and the polyethylene is linearly viscoelastic (the pres-
ence of the longitudinal reinforcement is neglected since the load from the internal pressure is taken up mainly by the circular 
reinforcement). 

Let us now examine the equilibrium of a nonuniform ring of rectangular cross section of width a  ( a  is the distance 
between wire coils in the pipe), thickness h , and inner radius R1 , loaded with an internal pressure p . The ring contains a 

steel wire ring with a median radius R  and cross-sectional area A rst = π
2 ; the radius of the wire is r . The cross-sectional 

area of the ring occupied by polyethylene is A ha Ape st= − . The equilibrium equation of such a ring has the form

	 pR a F F1 = +st pe( ) ( )ε ε ,		  (8)

where Fst ( )ε  is the force falling on the steel wire (2), and Fpe ( )ε  is that falling on the polyethylene part of the ring. 
For simplicity, we assume that the strain in the polyethylene ring is homogeneous and equal to the average cross-

sectional strain in the wire. Thereby we pass on to the consideration of tension of a nonuniform rod with a steel core, assum-
ing that both the steel and the polyethylene in this core are in a uniaxial stress state. Let us designate the longitudinal strain of 
the core by ε . Fst ( )ε  is determined by Eq. (2), whereas Fpe ( )ε , with account of Eqs. (6), is given by
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Let us consider the case ε ε≤ 2 s . Equation (8), with account of Eqs. (2) and (9), can be put into the form
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At ε ε≤ 2 s , the deformation can be presented as the functional inverse to (10)
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where Γ1( )t  is the resolvent of the kernel K t1( ) ; the parameters of the kernels are connected by relations similar to Eqs. (7). 

The time at which ε ε1 2ts s( ) =  is designated by ts .
Then, Eq. (8) can be written as
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For the case ε ε> 2 s , we have from Eq. (11)
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where ∆p t p t ks( ) = ( ) − 2ε st.

Example of Estimation of the Short-Term Strength and Durability of a Reinforced Pipe at a High Pressure 

Let us consider the example of calculation of a pipe of outer diameter 140 mm with the following geometrical param-
eters: R1  = 57 mm, R  = 67 mm, h  = 13 mm, a  = 8 mm, and 2r  = 3 mm. The lower estimate for the ultimate pressure upon 
its short-term increase can be found from Eq. (8) by neglecting the second term in the right-hand side, which is responsible 
for the contribution of polyethylene to the load-carrying ability of the pipe:

	 p kst s stlim( ) = 2ε 	

For the parameter σmax  = 600 MPa of the approximating diagram of the steel wire (see Fig. 4), this estimate gives 
plim st( )  = 9.3 MPa. At a lower pressure, no destruction due to the redistribution of stresses is possible. Now, we will take into 

account the contribution of polyethylene to the load-carrying ability of the pipe. As a criterion of exhaustion of its load-car-
rying ability, we choose 

	 ε ε( ) limt ≤ ,	 (14)

where ε lim  = 1.8%.
Let us consider the loading at a constant speed p =10 MPa/min = 1/6 MPa/s. Using Eqs. (11) and (13) and criterion 

(14), we find the ultimate pressure at a constant rate of its increase: plim = 12.6 MPa. In this case, the contribution of the steel 
wire to the magnitude of breaking pressure in short-term loading up to failure makes 74%. The time-dependent strain of the 
pipe at a constant rate of loading by internal pressure is illustrated in Fig. 8.

The kink in the strain diagram is explained by the kink in the calculated diagram for the steel wire. The pressure at 
this point is p ts( )  = 10.2 MPa. 

20 40 60 80 100
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.

Fig. 8. Circumferential strain  ε  as a function of time t at the constant loading rate of the pipe p t( ) =  
10 MPa/min.
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Now, we will consider the deformation of the steel wire during long-term tests, when the pressure is raised with a 
constant rate p  up to a given level pconst  and then is held constant at this level up to failure. Analytically, the pressure in such 
tests is described by the piecewise linear function of time

	 p t p t f t p
p

( ) = − −









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

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



1
const .	 (15)

Inserting Eq. (15) into Eq. (11), we obtain a relation between the strain and time for ε ε≤ 2 s . In calculating the time 
ts  at which the strain reaches the level 2ε s , we employ Eq. (13) to construct the time–strain relationship at ε ε> 2 s . The 
relationships obtained are shown in Fig. 9a for pconst1  = 10.8 MPa and Fig. 9b for pconst2  = 10.3 MPa. Related to the esti-
mated ultimate pressure plim  = 12.6 MPa in short-term tests, these pressure levels are practically equal:

	 p
p
const

lim

1 100 86⋅ =% % , p
p
const

lim

2 100 82⋅ =% % .	

Using then criterion (14), we come to a predicted durability T1  = 47 min in the first case and T2  = 18 h in the second 
one. All the calculations were carried out in the MathCAD package. 
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Fig. 9. Deformation of the wire in long-term strength tests at pconst1  = 10.8 MPa (a) and pconst2  = 
10.3 MPa (b).
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Conclusions

The analytical model suggested for estimating the short-term strength and durability of highly loaded pipes reinforced 
with a steel skeleton yields quite good results in comparison with experimental data. 

The calculated short-term strength is somewhat overestimated compared with the experimental one: 12.6 MPa against 
11.2 MPa, averaged over three tests. For a more accurate estimate, more complete data are needed on the deformation of a 
wire weakened by contact welding. We should also point to the wide scatter of experimental data on the short-term strength.
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