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Abstract We consider networks of queues in which the independent operators of
individual queues may cooperate to reduce the amount of waiting. More specifically,
we focus on Jackson networks in which the total capacity of the servers can be redis-
tributed over all queues in any desired way. If we associate a cost to waiting that is
linear in the queue lengths, it is known from the literature how the operators should
share the available service capacity to minimize the long run total cost. This paper
deals with the question whether or not (the operators of) the individual queues will
indeed cooperate in this way, and if so, how they could share the cost in the new situ-
ation such that each operator never pays more than his own cost without cooperation.
For the particular case of a tandem network with two or three nodes it is known from
previous work that cooperation is indeed beneficial, but for larger tandem networks
and for general Jackson networks this question was still open. The main result of this
paper gives for any Jackson network an explicit cost allocation that is beneficial for
all operators. The approach we use also works for other cost functions, such as the
server utilization.
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1 Introduction

Consider a queueing network consisting of different queues, and assume that each of
these is operated by a different, independent operator. By working together (in some
way), the operators can optimize the performance of the network (in some sense),
leading to a social optimum with minimum total cost for the operators. On the other
hand, individual operators will try to minimize their own cost, and will only cooperate
if this is to their own benefit. This explains our idea of analyzing such networks using
cooperative game theory.

In particular, we can view the independent operators as decision makers (or players)
in a so-called cooperative cost game; see for example, [10]. In such a game, the players
make binding agreements (as opposed to non-cooperative games) to jointly optimize
the total cost they need to pay, and then try to share this cost by finding a fair cost
allocation. Typically, a cost allocation is fair if it lowers the cost for each possible coali-
tion (i.e., for any group of players). If this is not the case, then full cooperation is not
beneficial, but there may still be partial cooperation between some (but not all) players.

When we try to model a queueing network as described above, there are a number
of choices to be made. First of all, (i) one can think of a variety of ways in which the
operators may work together, including sharing service capacity, sharing buffer capac-
ity, or changing the routing structure; moreover, any of these can be done dynamically
or statically (i.e., dependent on the current state of the network or not). Furthermore,
(ii) different network topologies may be considered. Similarly, (iii) traffic characteris-
tics, i.e., the behavior of the arrival process(es) and service demands, can be modeled
in many ways. Finally, (iv) the performance of the total network and its individual
queues, and the associated cost, can be measured in many ways.

In this paper, we study an initial model to investigate whether this line of research
is useful to pursue. In this model, we make the following assumptions: (i) the different
servers are able to share their service capacity, and do so in a static way; (ii, iii) the
network is an n-node Jackson network see for example, [13]: customers arrive to (some
of the) nodes according to independent Poisson processes, then (after service) move to
another queue, according to some routing probabilities, etcetera, until they leave the
system; service times are all exponentially distributed; (iv) we take the cost at queue
i to be proportional to the long run expected queue length, or equivalently (by Little’s
law), proportional to the expected sojourn time of customers in queue i; furthermore,
the total cost of a group of queues is just the sum of the costs of the individual queues
(thus, there is no cost associated to the cooperation itself).

In earlier work [12], we treated a special case of our Jackson model, in which
the network is a traditional tandem queue. We found that even this very elementary
model exhibits some interesting and non-trivial behavior. In the current paper, we treat
the more general model, but also find better results. In particular, we present a cost
allocation which is shown to be beneficial for all operators.

In the queueing literature, there are many references in which the queues in a
network cooperate (sharing capacity, pooling resources, etc.) to reach some form
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of optimality, e.g., [2,9]. However, in most cases the whole network is (implicitly)
supposed to be run by a single operator. The combination of the queueing model
with game theory, in which independent operators are only willing to cooperate if a
good cost allocation can be found while they remain independent, is to the best of our
knowledge hardly studied so far. Some related references are the following. González
and Herrero [7] study several medical departments that may share an operating theater.
The cost of each department is linear in the capacity needed to satisfy a maximum
on the expected waiting time of its patients. It is shown that cooperation reduces the
total cost, and that a cost allocation can be determined based on the Shapley value.
In [4], García-Sanz et al. extend this model and study cooperation among Markovian
queues that share a common server with preemptive priority discipline. The authors
show that a cost allocation proportional to the arrival rates is fair. More recently, Anily
and Haviv [3] study cooperation in service capacity management. A number of servers
pool their capacities and customers. The cost of cooperation is the mean number of
customers in the pooled system. It is shown that fair cost allocations always exist. In
particular, servers with large capacities may receive payment for cooperation. In these
three papers, the servers cooperate by means of pooling. One way in which our paper
contributes is that we consider cooperation in a network of queues, while preserving
the autonomy of the individual queues; we do not allow for pooling.

In [5], cooperative game theory is used to study resource allocation in dynamic
ad-hoc networks, assuming that the cost function is superadditive. We also like to
mention [6] where a cooperative game is considered in which countries can form
coalitions to optimize the routing of (international) teletraffic streams. For a trial data
set, they identify the most important members of the possible coalitions and the way
in which benefits could be shared. Finally, we mention Altman et al. [1] who give
an extensive survey on networking games. The models and papers discussed in this
reference mostly deal with non-cooperative game theory, the only exception being a
short section focused on bargaining games. This strengthens our belief that the problem
formulation and approach in the current paper have not been studied before.

We end this section with a short overview of the remainder of the paper: in Sect. 2,
we introduce the model in more detail with the optimal capacity allocation, and recall
the basics of cooperative game theory. Based on these, we introduce the so-called
Jackson games in Sect. 2.3, for which we then present the main result, i.e., an explicit
cost allocation that is beneficial for all operators, see Theorem 3. In Sect. 3, we derive
some additional results and present some examples, distinguishing between Jackson
games with two, three, and more than three operators involved. In Sect. 4, we focus on
a special case, viz. the tandem games as earlier presented in [12], and on an extension
in which we choose the server utilization, rather than the expected queue length, as
performance measure. We conclude in Sect. 5, also sketching some main lines for
future research.

2 Jackson games: model, and main result

In this section, we first introduce our model in detail, and derive the optimal capacity
allocation. Then we recall the basics of cooperative game theory, focusing on the
solution concept of the core, which is the set of all cost allocations that are acceptable

123



4 Queueing Syst (2013) 75:1–17

to all possible coalitions of queues. The last subsection shows how our Jackson model
fits into the framework of cooperative game theory.

2.1 Model

We consider an n-node Jackson network, denoting the set of all queues by N =
{1, 2, . . . , n}. External customers arrive at queue i according to a Poisson process
with rate λ0

i . After finishing its service at queue i, any customer joins queue j with
probability pi j independent of all else, and leaves the network with probability 1 −∑

j∈N pi j . We are only concerned with the local arrival rates λi to queue i, which

follow from the traffic equationsλ j = λ0
j + ∑

i∈N pi jλi for all j ∈ N .The exponential
service capacity at queue i is given by μi ; to be more precise, we assume that upon
arrival at queue i, all customers draw a random, exponentially distributed workload
with mean 1, and the server at queue i is working at a rate of μi units of workload
per unit of time. For stability, we assume μi > λi . The cost incurred at queue i is
represented by the long run expected queue length λi/(μi −λi ). Furthermore, the total
cost of any subset S ⊆ N of queues is the sum of the costs of the individual queues in S.

Importantly, we assume that the queues in any subset S may cooperate to improve
their performance and save on costs. Cooperation here means that the queues in S may
redistribute their service capacities among each other. Denoting the service capacity
of queue i after redistribution by mi , this leads to the following optimization problem
for the set S:

min
mi ,i∈S

∑

i∈S

λi

mi − λi
(1)

s.t.
∑

i∈S

mi =
∑

i∈S

μi ,

mi > λi , i ∈ S.

To solve this, we omit the second constraint (which will turn out to be fulfilled auto-
matically), and rewrite the problem as

min
α,mi ,i∈S

∑

i∈S

λi

mi − λi
− α

(
∑

i∈S

mi −
∑

i∈S

μi

)

, (2)

where α is the Lagrange multiplier w.r.t. the first constraint.
Before turning to the solution, we introduce some additional notation. For each

queue, we define the relative excess capacity value, or simply r value, as the value of
the excess capacity, relative to the square root of the arrival rate, i.e.,

ri = μi − λi√
λi

, i ∈ N . (3)

We also generalize this concept to the r value of a set S as follows. Let

r̄S =
∑

i∈S(μi − λi )
∑

i∈S
√

λi
=

∑

i∈S

√
λi

∑
k∈S

√
λk

ri , S ⊆ N . (4)
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Both expressions will turn out to be helpful in the sequel; the first defines r̄S, general-
izing (3), and the second gives r̄S as a weighted average of the r values of the queues
in S. Also, for example, for two disjoint sets S and T we have

r̄S∪T =
∑

i∈S
√

λi
∑

k∈S∪T
√

λk
r̄S +

∑
i∈T

√
λi

∑
k∈S∪T

√
λk

r̄T . (5)

Turning back to solving (2), we can take derivatives which leads to the solution [8,
p. 63]

mi,S = λi +
√

λi
∑

k∈S
√

λk

∑

k∈S

(μk − λk) = λi + √
λi r̄S i ∈ S, (6)

which is denoted by mi,S to stress the dependence on the set S. In this solution, the
total excess capacity

∑
k∈S(μk − λk) is distributed proportional to the square root of

the arrival rate. Also,

αS = −
(∑

k∈S
√

λk)
)2

(
∑

k∈S(μk − λk)2 = − 1

r̄2
S

(7)

is the Lagrange multiplier for subset S. The corresponding minimal cost for the set S
of (cooperating) queues is

c(S) =
(∑

k∈S
√

λk
)2

∑
k∈S(μk − λk)

=
∑

k∈S
√

λk

r̄S
. (8)

Notice that queue i contributes the amount
√

λi
∑

k∈S
√

λk/
∑

k∈S(μk − λk) =√
λi/r̄S to the cost for S.

2.2 Preliminaries on cooperative cost games

A cooperative cost game is represented by a pair (N , c). The set N = {1, . . . , n} is
the set of players. A coalition S is a (nonempty) group of players, that is, a nonempty
subset of N . The cost function c assigns to each coalition S a certain cost c(S).

In our analysis, we will need the concept of marginal vectors, and monotonicity.
Let σ = (σ (1), . . . , σ (n)) be a permutation of the player set, where σ(k) is the player
in position k. Denote by Pσ (i) = { j ∈ N |σ−1( j) < σ−1(i)} the set of players in
positions before player i. Now imagine that the players enter a room one by one in the
ordering indicated by σ, and that each player has to pay the marginal contribution to
the total cost when he enters the room. Then player i pays

mσ
i (c) = c(Pσ (i) ∪ {i}) − c(Pσ (i)). (9)
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The vector mσ (c) = (mσ
1 (c), . . . , mσ

n (c)) is called the marginal vector1 corresponding
to the permutation σ. Further, a cost game is called monotone increasing (respectively
decreasing) if S ⊆ T implies c(S) ≤ c(T ) (respectively c(S) ≥ c(T )).

A game is additive if the coalitional costs are additive, c(S) = ∑
k∈S c({k}). If for

any two disjoint coalitions S and T of players it is beneficial to cooperate, we say
that the game is subadditive. In this case, cooperation never leads to higher cost when
compared to working separately:

c(S ∪ T ) ≤ c(S) + c(T ). (10)

Remark 1 Notice that in a subadditive game the choice T = N \ S in (10) implies
c(N ) ≤ c(S) + c(N \ S). Thus, if we split the coalition N of all players in two parts,
namely the coalitions S and N \ S, then the total cost does not decrease. This is an
incentive for all the players in coalition N to cooperate. �	

The main question that remains is how the total joint cost c(N ) should be allocated
among the players. A first step towards selecting a good and fair cost allocation is to
consider allocations in the core C(N , c) of the game (N , c), which is defined as

C(N , c) =
{

y ∈ R
N

∣
∣
∣
∣
∣

∑

i∈N

yi = c(N );
∑

i∈S

yi ≤ c(S) for all S ⊂ N

}

.

If the cost is allocated among the players according to an allocation in the core, then
any coalition S pays at most its own costs c(S). Hence, no coalition has an incentive
to break up the cooperation with coalition N .

We are now ready to view the Jackson network problem as a cooperative cost game.

2.3 Jackson games

Based on the optimal capacity allocation of a group of queues in our n-node Jackson
network, see Sect. 2.1, we define a corresponding cooperative cost game. From now
on we refer to this game as a Jackson game.

Definition A Jackson game is a cost game (N , c) with the set of queues N =
{1, . . . , n} as player set. The cost c(S) of coalition S ⊆ N is given by (8).

Proposition 1 The following properties hold.

(i) Jackson games are not monotone decreasing.
(ii) For all n ≥ 2, n-node Jackson games may or may not be monotone increasing.

(iii) Jackson games are subadditive.

1 Where this is convenient, we will denote the permutation in the superscript without parentheses and
commas; e.g., in Sect. 3.2 we write m123(c) instead of m(1,2,3)(c), etc.
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Proof For (i), assume without loss of generality that r1 ≤ r2, and let T = {1, 2} and
S = {2}. Then we have by (4) that

r̄T =
√

λ1√
λ1 + √

λ2
r1 +

√
λ2√

λ1 + √
λ2

r2 ≤ r2,

and hence, using (8),

c(S) =
√

λ2

r2
<

√
λ1 + √

λ2

r2
≤

√
λ1 + √

λ2

r̄T
= c(T ).

To prove (ii), we construct two concrete examples. A (non-trivial) example of an
n-node monotone increasing Jackson game can be found by choosing the capacities
sufficiently close together, e.g., take λi = 1 and all μi inside the interval [2−ε, 2+ε]
for some ε > 0. Then the cost of any k-node coalition lies inside [k/(1+ε), k/(1−ε)].
By taking ε < 1/(2k+1), we can ensure that these intervals do not overlap for different
k ≤ n. On the other hand, any n-node Jackson game with λ1 = λ2 = λ and r2 > 3r1
(i.e., μ2 > 3μ1 − 2λ) is not monotone increasing since for T = {1, 2} we have by (8)
and (4) that c(T ) = 2

√
λ/r̄T = 4

√
λ/(r1 + r2) <

√
λ1/r1 = c({1}).

To prove (iii), we observe that optimal capacity allocations for coalitions S and T
induce a feasible capacity allocation for coalition S ∪ T in optimization problem (1).

�	
The fact that Jackson games are usually not monotone is not helpful for the analysis

of the core. Before we move on to this in Sect. 3, we present some weaker monotonicity
results. In the following proposition, we show that the total cost of any coalition
may increase or decrease by adding queues with respectively sufficiently low or high
capacity to the coalition.

Proposition 2 Consider two coalitions S and T satisfying S ⊆ T ⊆ N . Then c(S) ≤
c(T ) is equivalent with

r̄T \S ≤
(

1 +
∑

k∈T
√

λk
∑

k∈S
√

λk

)

r̄S . (11)

In the particular case where T \ S only contains a single node, say T = S ∪ {i} with
i /∈ S, we have the following.

(i) A simple sufficient condition for c(S) ≤ c(T ) (increasing cost when adding queue
i to S) is given by ri ≤ 2r̄S .

(ii) A simple sufficient condition for c(S) > c(T ) (decreasing cost when adding queue
i to S) is that both ri > 3r̄S and

√
λi ≤ ∑

k∈S
√

λk hold.

Proof Using (8), the inequality c(S) ≤ c(T ) can be rewritten as

∑

k∈S

√
λk r̄T ≤

∑

k∈T

√
λk r̄S .
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Substituting

r̄T =
∑

k∈S
√

λk
∑

k∈T
√

λk
r̄S +

∑
k∈T \S

√
λk

∑
k∈T

√
λk

r̄T \S,

which is immediate from (5), we obtain

∑

k∈S

√
λk

( ∑
k∈S

√
λk

∑
k∈T

√
λk

r̄S +
∑

k∈T \S
√

λk
∑

k∈T
√

λk
r̄T \S

)

≤
∑

k∈T

√
λk r̄S .

Solving for r̄T \S leads to (11). Statements (i) and (ii) follow immediately. �	

2.4 Main result

As mentioned before, we study the core of Jackson games. In particular, we want to
know if fair cost allocations always exist. That is, if the core is always a nonempty
set. We now present our main result, which specifies an allocation for general Jackson
games, and prove that indeed it always belongs to the core.

Theorem 3 Consider an n-node Jackson network. The corresponding Jackson game
has a nonempty core. In particular, the cost allocation x := (x1, . . . , xn) with

xi =
(

2

√
λi

∑
j∈N

√
λ j

− μi − λi
∑

j∈N (μ j − λ j )

)

c(N )

belongs to the core. For any coalition S, the cost under this allocation is in fact strictly
less than c(S), unless r̄S = r̄N .

Proof It follows from the definition of x that this allocation is efficient, i.e.,
∑

i∈N xi =
c(N ). To verify the core condition for any coalition S, i.e.,

∑
i∈S xi ≤ c(S), we use

the definition of x to state the equivalent condition

2 ≤
∑

j∈N

√
λ j

∑
j∈S

√
λ j

(
c(S)

c(N )
+

∑
j∈S(μ j − λ j )

∑
j∈N (μ j − λ j )

)

.

Since this can be rewritten, using (4) and (8), in the form

2 ≤ r̄N

r̄S
+ r̄S

r̄N
,

and since a + a−1 ≥ 2 for any a > 0 (with equality holding only for a = 1), the
statements of the theorem follow. �	

Hence, a stable basis for cooperation always exists. Notice that the cost xi allocated
to a node i may be negative; the node is then payed for cooperation.
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This theorem also indicates that if r̄S < r̄N for all S ⊂ N , then the allocation lies
in the interior of the core; small perturbations (under the condition that the sum of the
allocation remains c(N )), do not get the allocation out of the core.

Interestingly, the cost allocation in Theorem 3 can also be given an interpretation
by rewriting it as

xi = λi

mi,N − λi
− αN (mi,N − μi ), (12)

where αN is the Lagrange multiplier as in (7). Thus, in addition to their “own cost”
after the capacity reallocation, all players pay (or receive) an additional amount which
is linear in the capacity increase (or decrease) they experience, weighted with the
(negative) shadow price of one unit of capacity. In fact, the form (12) can also be found
from [11], where it is also shown that so-called “market games” have a nonempty core,
which implies that the game is totally balanced. Indeed, our game is such a totally
balanced market game.

3 Additional results

In this section, we first derive additional results on the core of two- and three-node
networks. Then, we point out how larger networks differ from three-node networks,
and present additional results for these networks.

3.1 Two-node Jackson games

According to Theorem 3, Jackson games corresponding to two-node networks have
a nonempty core. This follows also from the subadditivity property (10) of Jackson
games, see Remark 1.

We give an example to illustrate that the core can easily be found explicitly in this
case.

Example 1 Consider a two-node network with arrival rates λ1 = 1, λ2 = 4, and
service rates μ1 = μ2 = 5. The costs of the coalitions are c({1}) = 1/4, c({2}) = 4,

and c(N ) = 9/5. Since cooperation is worthwhile, cost savings are achieved: c(N ) <

c({1}) + c({2}). The core of the game is nonempty and equals

C(N , c) = {(x, 9/5 − x) |−11/5 ≤ x ≤ 1/4 } .

�	
We note that the cost allocation in Theorem 3 may also lead to negative cost in the

case of widely varying r values. For instance, in the setting of Example 1, the resulting
cost allocation is x = (−18/75, 153/75), which has a negative cost component for
queue 1. In such allocations, the first queue gets paid for its cooperation. Note that
the first queue has the largest excess capacity; its contribution is so valuable that this
queue may receive payment to cooperate. This phenomenon is not always present,
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e.g., when μ1 = 2, we get c({1}) = 1, c({2}) = 4, c(N ) = 9/2 and C(N , c) =
{(x, 9/2 − x) |1/2 ≤ x ≤ 1 } .

3.2 Three-node Jackson games

All the results in this subsection are based on orderings of the r values of the queues.
First, we identify two cost allocations that belong to the core, but that are generally
different from the one in Theorem 3.

Theorem 4 If we assume2 that

r1 ≥ r2 ≥ r3, (13)

and σ(1) = 2, i.e., queue 2 is in first position, then the marginal vector mσ (c) is a
cost allocation that belongs to the core of the game.

Proof There are two marginal vectors in which node 2 is in first position, namely
m213(c) and m231(c). Consider the first marginal vector. The marginal contributions
of the nodes (see (9)) are

m213
1 (c) = c({1, 2}) − c({2}),

m213
2 (c) = c({2}),

m213
3 (c) = c(N ) − c({1, 2}).

We proceed by checking the core-conditions:

• m213
1 (c) ≤ c({1}): true by subadditivity;

• m213
2 (c) ≤ c({2}): true (with equality);

• m213
3 (c) ≤ c({3}): true by subadditivity;

• m213
1 (c) + m213

2 (c) ≤ c({1, 2}): true (with equality);

• m213
1 (c) + m213

3 (c) ≤ c({1, 3}): true by subadditivity;

• m213
2 (c) + m213

3 (c) ≤ c({2, 3}): see below;

• m213
1 (c) + m213

2 (c) + m213
3 (c) = c(N ): true.

It remains to prove the condition related to coalition {2, 3}, which can be written as

c({2}) + c(N ) − c({1, 2}) ≤ c({2, 3}), (14)

or as
(

λ2

x2

)

+
(

λ1

x̄1
+ λ2

x̄2
+ λ3

x̄3

)

≤
(

λ1

x̂1
+ λ2

x̂2

)

+
(

λ2

x̌2
+ λ3

x̌3

)

, (15)

2 We may assume this without loss of generality by relabeling the nodes. If two or three queues have equal
r value, either of these can be chosen as “the” queue with middle r value.

123



Queueing Syst (2013) 75:1–17 11

where we define (recall also (6)),

xi = μi − λi , i = 1, 2, 3,

x̄i = mi,{1,2,3} − λi , i = 1, 2, 3,

x̂i = mi,{1,2} − λi , i = 1, 2,

x̌i = mi,{2,3} − λi , i = 2, 3.

Each of these quantities can be interpreted as the excess capacity for queue i for the
optimal capacity allocation in a certain coalition, namely:

xi for coalition {i} (i.e. without cooperation),

x̄i for coalition {1, 2, 3},
x̂i for coalition {1, 2},
x̌i for coalition {2, 3}.
For x̂2 we can write, based on (6)

x̂2 =
√

λ2√
λ1 + √

λ2
(μ1 − λ1 + μ2 − λ2)

=
√

λ2√
λ1 + √

λ2
(x1 + x2)

≥ x2,

where we used x1
√

λ2 ≥ x2
√

λ1, which is due to the ordering in (13). Similarly, we
have x̌2 ≤ x2. As for x̄1, x̄2, x̄3, they satisfy x̄1 + x̄2 + x̄3 = x1 + x2 + x3 and x̄i +λi ,

i = 1, 2, 3, are the optimal solution to (1) for S = N . Now we consider a suboptimal
solution to this, given by

x̃1 = x̂1, x̃2 = x̂2 + x̌2 − x2, x̃3 = x̌3.

Notice that indeed x̃1 + x̃2 + x̃3 = x1 + x2 + x3 as should, because x̂1 + x̂2 = x1 + x2
and x̌2 + x̌3 = x2 + x3. Furthermore we have x̃2 = x̂2 − (x2 − x̌2) ≤ x̂2 and similarly
x̃2 ≥ x̌2. We can now prove (15) as follows,

(
λ2

x2

)

+
(

λ1

x̄1
+ λ2

x̄2
+ λ3

x̄3

)

≤ λ2

x2
+ λ1

x̃1
+ λ2

x̃2
+ λ3

x̃3

= λ2

x2
+ λ1

x̂1
+ λ2

x̃2
+ λ3

x̌3

≤ λ2

x̂2
+ λ1

x̂1
+ λ2

x̌2
+ λ3

x̌3
,

where the first inequality is due to the optimality of x̄i + λi , i = 1, 2, 3, in (1) for
S = N , and the second inequality is due to the convexity of the function λ2/x in x
and the fact that both x2 and x̃2 lie in the interval [x̌2, x̂2].
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For the second marginal vector m231(c), the marginal contributions of the nodes
are

m213
1 (c) = c(N ) − c({2, 3}),

m213
2 (c) = c({2}),

m213
3 (c) = c({2, 3}) − c({2}).

As above, the core-conditions can be checked to hold, either with equality, or by
subadditivity. The only exception is the condition related to coalition {1, 2}: c(N ) −
c({2, 3}) + c({2}) ≤ c({1, 2}), which is equivalent to (14) and therefore also holds.
This proves the result. �	

Notice that any convex combination of the two above-mentioned marginal vectors
also belongs to the core because this is a convex set. All of these cost allocations are
such that the queue with middle r value does not gain from cooperation. That is, the
cost that is allocated to this queue is the same as its stand-alone cost c({i}). Below we
present a condition under which all cost allocations in the core have this property.

Proposition 5 Consider a three-node Jackson network. If r2 = r̄{1,3} then

(i) c({2}) + c({1, 3}) = c(N ),

(ii) c({2})/c(N ) = √
λ2/(

√
λ1 + √

λ2 + √
λ3),

(iii) node 2 has no strict gain from cooperation, and
(iv) the core C(N , c) is the convex hull of the two marginal vectors m213(c) and

m231(c).

Proof (i) Assuming r2 = r̄{1,3}, we write

c({2}) + c({1, 3}) =
√

λ2

r2
+

√
λ1 + √

λ3

r̄{1,3}
=

√
λ1 + √

λ2 + √
λ3

r̄{1,2,3}
= c(N ),

where the first equality is due to (8), and the second equality follows after noting that
(5) implies

r̄{1,2,3} =
√

λ2
∑

k∈N
√

λk
r2 +

√
λ1 + √

λ3
∑

k∈N
√

λk
r̄{1,3} = r2 = r̄{1,3}.

Statement (ii) follows from applying (8) to find

c({2})
c(N )

=
√

λ2/r2

(
√

λ1 + √
λ2 + √

λ3)/r̄{1,2,3}
,

and then again noting that r2 = r̄{1,2,3}.
For statement (iii), first note that any allocation x in the core should satisfy x2 ≤

c({2}) and x1 + x3 ≤ c({1, 3}). Together with the efficiency condition x1 + x2 + x3 =
c(N ) and statement (i) this leads to x2 = c({2}) for any allocation in the core. Hence,
node 2 does not gain from cooperation.
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Table 1 Costs of all coalitions for the game in Example 2

S {1} {2} {3} {4} {1,2} {1,3} {1,4} {2,3} {2,4} {3,4}

c(S) 1/7 1/5 1/3 1 1/3 2/5 1/2 1/2 2/3 1

S {1,2,3} {1,2,4} {1,3,4} {2,3,4} {1,2,3,4}

c(S) 3/5 9/13 9/11 1 1

Finally, we turn to statement (iv). The equation r2 = r̄{1,3} implies that either
r1 ≥ r2 ≥ r3 or r3 ≥ r2 ≥ r1. According to Theorem 4, any convex combination of
the two marginal vectors m213(c) and m231(c) belongs to the core C(N , c). By Weber
[14], the core is a subset of the convex hull of all marginal vectors. Hence, in this case
the core is the convex hull of m213(c) and m231(c). �	
Remark 2 One may be inclined to argue that when a player does not gain from coop-
eration, as in the context of Proposition 5, he may refrain from cooperation to prevent
extra benefit for the other players. However, it is easy to see (from the first statement)
that his decision to cooperate or not does not affect the cost paid, or amount gained,
by the other players.

3.3 Jackson games with more than three nodes

For three-node Jackson networks, we identified two marginal vectors that belong to
the core, see Theorem 4. This approach cannot be extended to four-node networks, as
the following example illustrates.

Example 2 Consider the four-node tandem Jackson network with arrival rates λi = 1,

i = 1, . . . , 4, and service rates μ1 = 8, μ2 = 6, μ3 = 4, and μ4 = 2. The costs
of the various coalitions in the corresponding Jackson game are given in Table 1. The
24 marginal vectors are listed in Table 2. One can verify that none of these marginal
vectors belongs to the core of the game. �	

Next, we show some other simple structural results. If two queues i and j have
equal r values, then their joint cost c({i, j}) is the sum of their individual costs. This
follows from the more general statement below by taking S = {i} and T = { j}:
Proposition 6 Consider an n-node Jackson network with r̄S = r̄T for some disjoint
coalitions S, T ⊂ N , S ∩ T = ∅. Then c(S ∪ T ) = c(S) + c(T ) in the corresponding
Jackson game.

Proof First note that r̄S∪T = r̄S = r̄T . Then by (8) we have

c(S ∪ T ) =
∑

i∈S∪T
√

λi

r̄S∪T
=

∑
i∈S

√
λi

r̄S
+

∑
i∈T

√
λi

r̄T
= c(S) + c(T ).

�	
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Table 2 The 24 marginal vectors of the game in Example 2

m1234 m1243 m1324 m1342 m1423 m1432 m2134 m2143 m2314 m2341 m2413 m2431

0.143 0.143 0.143 0.143 0.143 0.143 0.133 0.133 0.100 0 0.026 0

0.190 0.190 0.400 0.182 0.192 0.182 0.200 0.200 0.200 0.200 0.200 0.200

0.267 0.308 0.257 0.257 0.308 0.318 0.267 0.308 0.300 0.300 0.308 0.333

0.400 0.359 0.200 0.418 0.357 0.357 0.400 0.359 0.400 0.500 0.467 0.467

m3124 m3142 m3214 m3241 m3412 m3421 m4123 m4132 m4213 m4231 m4312 m4321

0.067 0.067 0.100 0 −0.182 0 −0.500 −0.500 0.026 0 −0.182 0

0.200 0.182 0.167 0.167 0.182 0 0.192 0.182 −0.333 −0.333 0.182 0

0.333 0.333 0.333 0.333 0.333 0.333 0.308 0.318 0.308 0.333 0 0

0.400 0.418 0.400 0.500 0.667 0.667 1 1 1 1 1 1

Top to bottom entries correspond to players 1–4

Next, if (and only if) all queues have equal r values, then there is a unique core
allocation in which each queue pays its own cost as if in isolation, proportional to the
square root of the arrival rate.

Proposition 7 An n-node Jackson game is additive if and only if all nodes have equal
r value. In this case, the core consists of a single allocation x with xi = λi/(μi −λi ) =√

λi/r for all i, where r is the common r value of the nodes.

Proof If ri = r for all i ∈ N , then also r̄S = r for any coalition S. Therefore, the cost
of coalition S equals

c(S) =
∑

i∈S
√

λi

r̄S
=

∑

i∈S

√
λi

ri
=

∑

i∈S

λi

μi − λi
=

∑

i∈S

c({i}).

Hence the game is additive, so there is a unique core allocation x with xi = λi/(μi −λi )

for all i.
The converse is a consequence of the last part of Theorem 3: when not all r values

are equal, some nodes i will have ri = r̄N and hence xi < c({i}), while any remaining
nodes (if any) will have xi = c({i}). Hence c(N ) = ∑

i∈N xi <
∑

i∈N c({i}), so the
game cannot be additive. �	

4 Special case and extension

We now present a special case (in Sect. 4.1) and an extension (in Sect. 4.2) of our
model, which are in particular interesting from the queueing perspective, rather than
the game-theoretic perspective.
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4.1 Tandem games

When all arrival rates are equal, λi ≡ λ, say, as is the case in a tandem queue network
(see also [12]), some of the results take on a simpler form. The role of the r values as
criterion value for many of the results is now simply played by the excess capacities
μi − λ, or indeed by the capacities μi . For convenience sake, we highlight the main
results for this particular setting.

Let |S| be the number of queues in coalition S, and μ̄S is the mean capacity of the
queues in S. Then first of all, the optimal capacity allocation for coalition S is simply
to share the total capacity equally between all queues in S, so (6) becomes mi,S =
μ̄S = ∑

i∈S μi/|S|, with total cost c(S) = |S| λ/(μ̄S − λ). Next, the monotonicity
condition (11) in Proposition 2 simplifies to

μ̄T \S ≤ μ̄S + |T |
|S| (μ̄S − λ).

The main result in Theorem 3 shows a particular cost allocation that now simplifies to

xi =
(

2 − μi − λ

μ̄N − λ

)
c(N )

|N | . (16)

This belongs to the core of the game, and for any coalition S the cost under this
allocation is strictly less than c(S), unless μ̄S = μ̄N .

Theorem 4, and Propositions 5, 6, and 7 continue to hold under the same respective
assumptions, in which “r values” can always be simply replaced by the corresponding
“μ values”. The second statement of Proposition 5 simply becomes c({2})/c(N ) =
1/3.

4.2 Utilization as cost

We now extend our results to a different cost structures, namely to the case in which
the cost of queue i is given by the server utilization, instead of the expected number
in queue. This may be useful when the operator is more interested in the direct cost
of operation, rather than the delay performance for the customers. Thus, we take
c(i) = λi/μi and replace the minimization problem for coalition S in (1) by

min
mi ,i∈S

∑

i∈S

λi

mi
(17)

s.t.
∑

i∈S

mi =
∑

i∈S

μi , mi ≥ λi .

The second set of constraints mi ≥ λi is included to ensure that the utilizations never
exceed 1. In fact for stability of the queue sizes, we need these inequalities to be strict,
but then a solution may not exist.
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Since solving the solution to this problem is cumbersome, we restrict ourselves
to the assumption that all arrival rates are equal (λi = λ, say), as in the previous
subsection. The optimal capacity allocation is then to share the total capacity equally
between all queues in S, i.e., mi,S = μ̄S = ∑

i∈S μi/|S|. Notice that indeed μS > λ

if for all i ∈ N we have μi > λ, as we assume. The total cost for coalition S is
obviously given by c(S) = |S| λ/μ̄S .

In this setting, it is possible to find a similar cost allocation that lies in the core as
in Theorem 3, or rather as in (16). It is given by

xi =
(

2 − μi

μ̄N

)
c(N )

|N | .

This belongs to the core of the game, and for any coalition S the cost under this
allocation is strictly less than c(S), unless μ̄S = μ̄N .

5 Conclusions and future work

5.1 Conclusions

We considered a Jackson network of queues in which each queue has an independent
operator, and investigated whether or not these operators are willing to cooperate in
order to reduce the total waiting cost, which is linear in the expected queue lengths (or
equivalently, in the expected waiting times). Such a cooperation will involve sharing
the individual service capacities, and then dividing the resulting total cost in some
way. Our main conclusions are as follows:

• The core of the corresponding cooperative game is never empty. That is, there
always exists a cost allocation such that the (operators of the) individual queues
have an incentive to cooperate.

• One specific cost allocation has been found explicitly, see Theorem 3. This allo-
cation is strictly beneficial for each coalition, unless the so-called relative excess
capacity value of a coalition equals that of the grand coalition.

• The so-called relative excess capacity value, or simply r value, as just mentioned,
turns out to be an important quantity throughout the analysis. It is defined as the
(total) excess capacity of a (coalition of) queue(s), divided by (the sum of) the
square root(s) of the arrival rate(s), see (3) and (4).

• For the case with two queues, the core can be characterized explicitly as the convex
combination of the two marginal vector allocations; for the case with three queues,
the core always contains two specific marginal vectors; for cases with more queues,
the core may contain no marginal vectors at all.

• In the case of large asymmetries between queues in terms of arrival and/or service
rates (more precisely, in the case of large differences in r value), core allocations
can be such that some queue(s) have negative cost. In other words, such queues
may receive payment from the other queues for the cooperation.

• Similar results are found when the cost is not based on expected waiting times or
queue lengths, but on server utilizations.
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5.2 Future work

As mentioned in Sect. 1, many assumptions can be made within our framework of
“queueing network games”. In particular, we intend to study another way of “sharing
capacity”, in which the routing pattern is changed such that “underloaded” queues
can provide service to jobs that otherwise would have been routed to other (highly
loaded) queues. Also, we will consider dynamic ways of cooperation, and stochastic
cost structures.
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