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Diffusive Shielding Stabilizes Bulk Nanobubble Clusters
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1. Introduction

Gas bubbles are ubiquitous in nature, industry and daily life.
They are found in streams of water, manufacturing processes
of many types of materials, and, of course, when we enjoy a
carbonated drink. Even though gas bubbles are commonly
present in many of the liquids we deal with on a daily basis,
bubbles are, in fact, usually unstable against dissolution in the
medium that surrounds them.[1] The dissolution rate increases
as the bubble becomes smaller because of the increased (Lap-
lace) pressure Dp = 2g/R inside the bubble, where g is the in-
terfacial tension of the bubble wall and R the bubble radius.
The consequence is that nanoscopic bubbles cannot survive
for more than a few microseconds.

In contrast to this expectation, surprisingly, experiments by
Ohgaki et al.[2] have shown that stable bulk nanobubbles do
exist, although there is some discussion on whether these are
actually nanobubbles rather than impurities.[3, 4] In these experi-
ments the bubbles were observed to be packed closely to-
gether (the distance between neighbouring bubbles was mea-
sured to be less than 10R), suggesting that a shielding mecha-
nism between bubbles may act to keep the bubbles from dis-
solving. In addition to this direct observation of bulk nanobub-
bles, their presence has also been indirectly measured in
experiments, using dynamic laser light scattering.[5, 6] Although
this technique cannot distinguish between nanobubbles and
liquid density variations in the liquid caused by other sources
(such as large organic molecules), the observed fluctuations
disappear after degassing the liquid, indicating that the ob-
served objects are indeed bulk nanobubbles.

In addition to these experiments, there are many publica-
tions where the presence of surface nanobubbles is observed
at liquid–solid interfaces. Generally, these surface nanobubbles
are detected by atomic force microscopy (AFM), and they can
survive for days.[7–9] Similar to bulk nanobubbles, surface nano-
bubbles should dissolve within microseconds, in contrast to
the AFM observations.[7, 8, 10–19] Various stabilization mechanisms
have been proposed,[7–9, 20, 21] and many of them invoke the
direct bubble–wall interaction. This in particular holds for the
dynamic equilibrium theory promoted by some of us.[9, 21, 22]

These stabilization mechanisms are therefore not applicable to
bulk nanobubbles: the symmetry breaking caused by the pres-

ence of the substrate in the case of surface nanobubbles does
not exist for bulk nanobubbles.

On the other hand, different stabilization mechanisms may
exist that could account for stable bulk nanobubbles. Such a
mechanism will be discussed herein. When a bulk nanobubble
is surrounded by more nanobubbles, the diffusive outflux is
shielded: a locally high concentration of dissolved gas in the
water suppresses the diffusive outflux from the bubble. For
this to happen, a cluster of bubbles must exist where the spac-
ing between bubbles is not too large. Indeed, the bulk nano-
bubbles reported by Ohgaki et al.[2] have a distance of 10R or
less.

Previously, some molecular dynamics (MD) simulations stud-
ies were performed on nanobubbles, where it was found that
surface tension plays a role for bubbles larger than 1 nm.[23] In
an earlier study it was found that gas concentration is a crucial
parameter for the formation of surface nanobubbles.[24] To our
knowledge no systematic study of the stability of bulk nano-
bubbles has been performed using MD.

Herein, we discuss MD simulations of binary mixtures of
simple (Lennard-Jones) fluids. One of the fluids is under the
imposed conditions (T = 300 K, p = 105 Pa) in the liquid state,
the other in the gaseous state. The simulations are carried out
in a simulation domain of which one dimension is very small
(‘� ‘� d,d ! ‘), such that the simulations are quasi-2D, see also
Figure 1. For a full 3D case, the results will only differ quantita-
tively, but qualitatively they will be the same. Periodic boun-
dary conditions are applied in all directions, such that we only
have to simulate one single nanobubble which is then mir-
rored. This infinite repetition of nanobubbles then represents
an infinite (periodic) nanobubble cluster (Figure 1) in a closed
system. The closed system means that the total amount of gas
is conserved. Herein, we explore two box sizes: ‘= 15 nm and
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Using molecular dynamics, we study the nucleation and stabili-
ty of bulk nanobubble clusters. We study the formation,
growth, and final size of bulk nanobubbles. We find that, as
long as the bubble-bubble interspacing is small enough, bulk
nanobubbles are stable against dissolution. Simple diffusion

calculations provide an excellent match with the simulation re-
sults, giving insight into the reason for the stability: nanobub-
bles in a cluster of bulk nanobubbles protect each other from
diffusion by a shielding effect.

N
an

o
b

u
b

b
le

s

ChemPhysChem 2012, 13, 2197 – 2204 � 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 2197



‘= 30 nm, with d = 3.64 nm in both cases. Due to the periodic
boundary conditions the distance between neighbouring bub-
bles is ‘.

The paper is organized as follows: In Section 2 the numerical
details of the simulations are outlined, such as the parameters
and algorithms used, as well as the initial conditions. Next, in
Section 3, the results of the MD simulations are presented and
discussed, and in Section 4 we compare these results (particu-
larly the equilibrium radius Req of bulk nanobubbles) with con-
tinuum predictions. Finally, in Section 5 we discuss the stability
of the entire cluster (as opposed to just single bubbles inside
the cluster).

2. Numerical Details

2.1. Molecular Dynamics

To simulate a cluster of bulk nanobubbles, we use molecular
dynamics (MD) simulations of simple fluids. The atoms in the
simple fluids interact with each other through the Lennard-
Jones potential given by Equation (1):

ULJ rð Þ ¼ 4eij

sij

r

� �12

� sij

r

� �6h i
ð1Þ

Here, eij is the interaction strength between atom species i and
j, and sij the interaction radius between atomic species i and j.
In our simulations we use two atom types: the first is in the
liquid state under the conditions considered (p = 105 Pa, T =

300 K) and the second in the gas state. The interactions are de-
fined by ell; egg; elg

� �
¼ 3; 1;

ffiffiffiffiffiffiffiffiffiffi
ellegg
p ¼ 1:73

� �
kJ mol�1 and

sll; sggslg

� �
¼ 0:34; 0:5; sll þ sgg

� �
=2 ¼ 0:42

� �
nm.

The simulations are carried out in the NPT-ensemble (constant
number of particles, pressure, and temperature). A Berendsen
pressure-scaling algorithm was applied, and the temperature
was kept constant using a velocity rescaling thermostating
procedure.[25]

2.2. Initial Conditions

We use two different atomic start-position configurations,
which are shown in Figure 2. The first configuration consists of
a preformed bubble at a predefined radius R0 containing gas
(333 atoms) and vapour. Outside the bubble the simulation

box is completely filled with liquid, and the remainder of the
gas is uniformly dissolved throughout the liquid. For the
second configuration, the simulation box is completely filled
with liquid with the gas uniformly dissolved in this liquid (so
no pre-existing bubble). In this configuration, a nanobubble
will occur if the concentration of gas in the liquid is high
enough such that the energy barrier for homogeneous nuclea-
tion can be overcome. Since the pressure is maintained at a
constant value throughout the simulation, the box size is al-
lowed to vary to accommodate this. In practice, we find that
the box dimensions never vary more than 10 % from their ini-
tial values. The initial velocities for all atoms are sampled from
a Maxwell–Boltzmann distribution at 300 K.

3. Results from the MD Simulations

A total of eight different bubbles were simulated (see Table 1)
which started with a pre-existing bubble in the initial condi-
tions (Figure 2 a). Of those configurations five additional simu-
lations were performed using the initial conditions without a
pre-existing bubble (Figure 2 b), to see whether the initial con-
ditions affect the final result. The boundary of the bubble is
defined at 1* = 0.5, where [Eq. (2)]:

1* ~rð Þ ¼ 1~rð Þ � 1v

1l � 1v

ð2Þ

Here, 1v is the bulk number density of the gas/vapour phase
inside the bubble and 1l the number density in the bulk liquid.
This boundary is then fitted with a circle giving R(t). Some
snapshots of a selection of simulations are shown in Figure 3.
R(t) against time is plotted in Figure 4 where we see that some
bubbles are stable, while others are not.

Figure 2. The two types of initial conditions for the simulations. a) A pre-
formed bubble containing 333 gas atoms surrounded by liquid. If there are
more gas atoms in the system (Ng>333) they are uniformly dissolved
throughout the liquid. b) All (Ng) gas atoms are uniformly dissolved through-
out the liquid, so there is no preformed bubble. If the concentration of gas
is high enough, homogeneous nucleation will occur, forming a nanobubble.

Figure 1. A cluster of nanobubbles on a rectangular grid. The dotted lines
indicate the unit cell, which is rectangular and has sides with length ‘,
which is the distance between two neighbouring bubbles.
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As one would intuitively expect, the bubbles that
are closest together (‘= 15 nm, configurations I–IV)
are stable, whereas some bubbles that are spaced
further apart (‘= 30 nm) are not. The stable bubbles
benefit from their nearest neighbours, as they shield
the diffusive outflux that would normally lead to dis-
solution within microseconds. To confirm that these
bubbles are truly stable, we extended one simulation
(configuration III) until t = 0.8 ms, where we found
that after t = 3 ns the radius R remained perfectly
constant (see inset Figure 4).

The bubbles that are spaced farther from each
other (‘= 30 nm, configurations V–VIII) are not
always stable. The configurations with the least
amount of gas (configurations V and VI) dissolve
within 70 ns, whereas configurations VII and VIII—
which contain more gas—are stable.

What happens when the initial
conditions are changed from a
pre-existing bubble (Figure 2 a)
to uniformly dissolved gas in
bulk liquid (Figure 2 b)? If a
bubble forms, there is no reason
why it should not grow to the
same equilibrium size as the cor-
responding bubbles with differ-
ent initial conditions. In Figure 5
we show the results of some
simulations with the alternative
initial conditions (I-b, III-b, V-b,
VII-b, and VIII-b) compared to
the data of the similar bubbles

Table 1. Simulation parameters of the different simulations. The initial conditions (IC) type refers to the config-
urations shown in Figure 2.

Exp. ‘ [nm] Ng [#] Nl [#] Ng/Nl Ng/
p

Nl IC type (Figure 2) Stable?

I 15 333 12 339 2.70 � 10�2 3.0 a yes
II 15 342 12 330 2.77 � 10�2 3.1 a yes
III 15 432 12 240 3.53 � 10�2 3.9 a yes
IV 15 531 12 141 4.44 � 10�2 4.8 a yes
V 30 333 52 489 0.63 � 10�2 1.5 a no
VI 30 342 52 480 0.65 � 10�2 1.5 a no
VII 30 432 52 390 0.82 � 10�2 1.9 a yes
VIII 30 832 51 990 1.60 � 10�2 3.6 a yes
I-b 15 332 12 340 2.69 � 10�2 3.0 b yes
III-b 15 436 12 236 3.56 � 10�2 3.9 b yes
V-b 30 333 52 489 0.63 � 10�2 1.5 b no nucleation
VII-b 30 432 52 390 0.82 � 10�2 1.9 b no nucleation
VIII-b 30 837 51 985 1.61 � 10�2 3.7 b no nucleation

Figure 3. Snapshots from a selection of simulations. Note that the bubbles do not remain centered in the simulation box due to Brownian motion. This is not
a problem since periodic boundary conditions are imposed, such that the bubble moves back into the simulation domain at the opposite site from which it
leaves. Note also how the box size adapts to keep the pressure in the system constant. Left : Two simulations (III and VI) with initial conditions type a
(Figure 2). For simulation III, the bubble grows towards a stable radius. For simulation VI (larger ‘), the bubble completely dissolves within ~70 ns. Right: Bub-
bles simulated using initial conditions type b (Figure 2). For simulation III-b, homogeneous nucleation occurs and the bubble grows towards the same equilib-
rium radius as the bubble in simulation III. For simulation VIII-b, no nucleation occurs and the gas remains homogeneously dissolved throughout the liquid.

Figure 4. Results from the simulations with initial condition type a (Figure 2). All bubbles
in the small box (‘= 15 nm) are stable (I–IV), whereas the simulations in the large box
(‘= 30 nm) and with little gas initially dissolved in the liquid (V,VI) are unstable. When a
sufficient amount of gas is initially dissolved in the liquid (VII, VIII) the bubbles are stable
even in the large box. The inset shows the extended simulation of configuration III, to
verify that the bubble is indeed stable at long timescales.
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with the original initial conditions (I, III, V, VII, and VIII). We see
that when nanobubbles form, they indeed grow towards the
same equilibrium size, which they also achieve when starting
with a finite-size bubble. The reason that for these initial condi-
tions in some cases no bubbles form is that the gas concentra-
tion f in the liquid is not large enough to overcome the nucle-
ation barrier.

4. Continuum Description

In this section, we use continuum fluid mechanics to explain
and predict the behavior of nanobubble clusters. In particular,
we address their stability and calculate their equilibrium size.
However, we first address the subject of homogeneous nuclea-
tion, which is relevant for the simulations where there was no
pre-existing bubble in the initial conditions.

4.1. Nucleation Theory

In the case where there is no pre-existing bubble in the initial
conditions (Figure 2 b), we are dealing with homogeneous nu-
cleation, since there are no seeds (such as contamination)
available to start heterogeneous nucleation.[26] In the case of
homogeneous nucleation, the change in free energy of the
system when a bubble of radius R forms is given by Equa-
tion (3):

DG ¼ 4
3

pR3Gv þ 4pR2g ð3Þ

Here, DG is the energy gain or loss for the system to
form a bubble of radius R. Gv is the (volumetric)
energy associated with a unit volume of gas and is a
negative number, hence it promotes nucleation. The
liquid-vapour surface tension g is always positive and
therefore acts against nucleation. For small R, the sur-
face energy term usually wins, but when the bubble
reaches a critical radius R* =�2g/Gv then dG/dR j R>

R*<0, meaning that the bubble will grow. In our
case, we start out with a bubble of zero radius, but
due to thermal fluctuations small bubbles appear
randomly throughout the system. By increasing the
gas concentration in the liquid, the magnitude of Gv

increases as it becomes more and more favourable
for the system to have gas atoms in the gas phase
than in the dissolved state. This decreases the value
of R*, until it is small enough that the spontaneously
forming tiny bubbles are already large enough (R>
R*) to overcome the surface energy penalty and
grow. The growth stops when equilibrium between
the gas and liquid phase is achieved [Equation (5)] .

4.2. Growth Dynamics

The stage between the nucleation of a gas bubble
and it reaching its final size is governed by diffusive

bubble growth. The relation between R and t for diffusive
bubble growth is well known, namely a square root power law
[Eq. (4)]:[27, 28]

R tð Þ � Dtð Þ
1
2 ð4Þ

where D is the diffusion constant of the gas in the liquid. In
Figure 6 we show the growth of bubble VIII on a log–log scale.
The curve is shifted in time such that R(t=0) = 0. Power-law be-

Figure 5. Bubble radius evolution as a function of time comparing similar systems with
different initial conditions. When bubbles nucleate, they grow towards the same equilib-
rium size independent of initial conditions. Although a stable bubble exists for configura-
tions VII and VIII, the bubbles in configurations VII-b and VIII-b do not reach this state as
the bubbles do not nucleate. Naturally, nucleation also does not occur for the configura-
tion where no stable bubble can exist (V, V-b).

Figure 6. Bubble radius as a function of time during growth. The data
shown represents bubble VIII, as it grows towards its equilibrium size and
has been shifted such that R(t=0) = 0. At intermediate times an exponent of
0.56 is observed, consistent with diffusive bubble growth. In the final stage
the availability of gas is too low to sustain the growth rate, and the bubble
settles at its equilibrium radius.
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haviour with an exponent of 0.56 is observed. This is close to
the expected exponent of 1

2, suggesting that the growth of the
gas bubbles in the simulation is indeed limited by diffusion.
The power law of Equation (4) is derived assuming that the
magnitude of the Laplace pressure is small compared to at-
mospheric pressure. This condition is not fulfilled, in particular
for the tiny bubbles in the beginning, which presumably ac-
counts for the observed deviation from Equation (4). Also, the
final stage of bubble growth (t010 ns) exhibits different be-
haviour with time, which is caused by the closed nature of the
simulation system and thus the limited amount of gas avail-
able. At this stage the available gas in the system is depleted,
and the bubble assumes its (final) equilibrium radius.

4.3. Equilibrium Radius

Finally, the bubble reaches its equilibrium radius. When a
bubble with radius R exists inside an infinite body of liquid,
the concentration of dissolved gas just outside the bubble (r =

R) is given by Henry’s law [Eq. (5)]:

p
�
¼ kH ð5Þ

Here, p is the partial pressure of a specific gas in the gas
phase, f the gas concentration of that specific gas inside the
liquid, and kH is Henry’s constant. Herein we use the (dimen-
sionless) mole fraction of the gas and liquid as the concentra-
tion f. The total pressure in a (2D) bubble is given by Equa-
tion (6):

pb ¼ pl þ
g

R
ð6Þ

where pl is the pressure in the surrounding liquid, which is
usually negligible in the case of nanobubbles. From this rela-
tion, we can see that surface tension is a strong driving force
for dissolution, especially as the bubble radius R becomes
small.

kH is Henry’s constant and depends on the type of liquid
and the type of gas involved. kH is temperature-dependent,
but here we consider a system with a fixed temperature. In
separate measurements (in a system consisting of a liquid
phase in equilibrium with a gas phase at p = 1 atm) we found
that kH~109 Pa for the Lennard-Jones fluids considered herein.

A gas concentration gradient induces a diffusive mass flux J
according to Fick’s law, given by Equation (7):

J ¼ �D ~r� ð7Þ

In the case of a cluster of bubbles, there is a limited amount of
liquid present between neighbouring bubbles. Since the
amount is limited (and small if the bubbles are sufficiently
close to each other) the concentration is noticeably affected
by the gas flow out of the bubbles. Eventually, as more and
more gas enters this space, the gas concentration at the mid-

point between these bubbles will reach the gas concentration
at R as prescribed by Henry’s law [Eq. (5)] . When this has hap-
pened, there is no concentration gradient any more (the con-
centration is equal everywhere) and no diffusive gas flow
exists—the bubbles are stable.

Using Henry’s law we can predict the equilibrium size of
these nanobubbles. For this, we have to express the concen-
tration of the gas in the liquid as a function of the bubble
radius R. First, we know that the amount of gas in the liquid is
simply given by Equation (8):

nl
g Rð Þ ¼ 2pgRd

kBT
ð8Þ

where nl
g is the number of gas molecules dissolved in the

liquid, Ng the total number of gas atoms in the system, and nb
g

the amount of gas molecules inside the bubble. The amount
of gas inside the bubble can be related to the size of the
bubble, using the Laplace pressure and the ideal gas law
[Eq. (9)]:

nb
g Rð Þ ¼ 2pgRd

kBT
ð9Þ

Here, kB is Boltzmann’s constant, T the temperature of the
system. To obtain this relation, we assumed that the Laplace
pressure difference is much greater than the ambient pressure,
which is a valid assumption for nanobubbles exposed to at-
mospheric ambient pressure. Henry’s law [Equation (5)] dic-
tates the equilibrium condition, so by combining Equations (8)
and (9) we can now solve for the equilibrium bubble radius Req

[Eq. (10)]:

Req ¼
kBTNg

4pgd
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

pg2dNl

kBTkHN2
g

s !
ð10Þ

Figure 7. Critical number of gas atoms N*
g against Nl. The critical number of

gas atoms is the amount of gas atoms required to prevent full dissolution of
a nanobubble. As the system is larger (hence larger separation distance be-
tween nanobubbles) more gas is required to sustain a stable nanobubble.
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Since the equation is quadratic
we get two solutions, of which
we cannot say a priori which
one is valid, because both are
positive and finite.

4.4. Comparison with
Simulations

We can now compare the simu-
lation results to the model
[Equation (10)] .

From Equation (10) it is clear
that for a physical solution to
exist the number of gas atoms
Ng must be larger than the value
given by Equation (11):

N*
g :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pg2dNl

kBTkH

r
ð11Þ

Hence, N*
g is a critical amount of

gas atoms: When fewer gas
atoms are present in the system
the bubble will completely dis-
solve.

In Figure 7 this critical gas
content is shown as a function
of Nl, which is proportional to
the system size. The two system
sizes considered herein are an-
notated in Figure 7. From
Figure 7 it is clear that for larger
systems (hence, larger nanobub-
ble separations and higher Nl)
the required amount of gas in-
creases. Intuitively, one would
expect the ratio N*

g =Nl to be
constant, but from Equation (11)
and Figure 7 we can see that
this is not the case. Instead, the
minimum number of gas mole-
cules scales with the square root
of the amount of liquid present,
meaning that it scales linearly
with the interbubble distance ‘.

The predicted equilibrium
radius [Eq. (10)] as a function of
gas content for the small sys-
tems (‘= 15 nm) and the large
systems (‘= 30 nm) are shown in
Figure 8 a. The measured equilib-
rium radii are also depicted, and
show excellent agreement with
the model. For configurations V
and VI (large systems), the

Figure 8. a) Equilibrium radii Req as measured in the simulations (symbols) and predicted by the model (lines) as a
function of Ng. The black data correspond to the small system (‘= 15 nm), whereas the gray data correspond to
the large system (‘= 30 nm). The model nicely predicts the equilibrium size in both systems, but of course does
not account for the configurations where no bubble nucleation occurs (V-b, VII-b, and VIII-b). To obtain the theo-
retical curves, a value of kH = 1.5 � 109 Pa was used as a fit parameter. Independent measurements have shown
kH~109 Pa. b) Collapse of the nondimensionalized equilibrium radii. All data points nicely follow the master curve.
The simulations where no nucleation occurs are not included in this plot, to emphasize the good prediction of
both Req and N*

g by the model. The dashed lines indicate the expansion when Ng @ N*
g , Equation (12).
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model correctly predicts that there is no stable bubble size,
hence they fully dissolve. For configurations VII-b and VIII-b
the model predicts that an equilibrium radius does exist, how-
ever in these cases there are no bubbles because the nuclea-
tion barrier is too high, which is not accounted for in the
model. By nondimensionalizing the equilibrium radius Req with
‘, and rescaling Ng with N*

g we can collapse the data on a
single curve, independent of system size, as shown in Fig-
ure 8 b.

For Ng @ N*
g , Equation (10) can be expanded to Equa-

tion (12):

Req¼
kBTNg

4pgd
� 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

N*
g

Ng

	 
2
s" #

¼ kBTNg

4pgd
�

2þ O
N*

g

Ng

h i2� �

1
2

N*
g

Ng

� �2
þO

N*
g

Ng

h i4� �

8><
>:

ð12Þ

These asymptotic solutions are plotted in Figure 8 b as the
black dashed lines. The first solution of Equation (12) repre-
sents the limit where all gas atoms are contained within the
bubble. This can also be seen by comparing this result with
Equation (9). It is apparent from Figure 8 that almost all bub-
bles are close to this limit, that is, there is virtually no gas dis-
solved inside the liquids in the simulations.

5. Nanobubble Cluster Stability

Finally, we discuss the stability of the entire cluster of nano-
bubbles. Although it is now clear that bubbles that are sur-
rounded by mirror images can indeed be in equilibrium, this
does not mean that the entire cluster is stable. There are two
obvious threats to this stability: 1) the Brownian motion of
bubbles can cause neighboring bubbles to collide, leading to
coalescence and coarsening of bubbles within the cluster and
2) when neighboring bubbles are not exactly equally sized,
smaller bubbles would drain into larger bubbles via diffusion
(similar to Ostwald ripening).

First, we address the possibility of bubbles colliding. Since
the distance between neighbouring bubbles is at best ten
times as large as the bubble radius, Brownian motion of nano-
bubbles can indeed lead to collisions (see Figure 3, where the
nanobubbles are shown to move around). An obvious way to
prevent this from happening is to make sure that the bubbles
repel each other. This repulsion could be electrostatic (e.g. by
using an ionic surfactant, or by the intrinsic negative charge of
air bubbles in water),[29–31] which is sufficiently long-ranged.
Adding salt to the solution, which leads to screening of the
electrostatic fields around the nanobubbles, would then
reduce the stability of bulk nanobubble clusters which has
indeed been observed in experiments.[5]

The second issue (Ostwald ripening) is harder to prevent,
and we expect that in time coarsening would indeed occur. Of
course, the larger bubbles that are formed in this way are still
able to provide some shielding, but the polydispersity of

bubble sizes will make a theoretical analysis difficult. Therefore,
at this point, we do not have an explanation for the measured
stability by Ohgaki et al.[2] where Ostwald ripening apparently
has been suppressed.

6. Conclusions

We showed that bulk nanobubble clusters can indeed be
stable under specific conditions. First, the individual bubbles
are surrounded by similar nanobubbles. The distance between
these bubbles must be small enough that the bubbles can suc-
ceed in saturating the liquid between the bubbles with gas
before the bubbles are completely drained. When a cluster of
stable bubbles exist, and the system is gastight the bubbles
will in principle live forever, as long as they cannot merge and
Ostwald ripening is somehow prevented. The merging of bub-
bles can be prevented by ionic surfactants. Ostwald ripening is
harder to prevent in theory, but experimental results showing
that nanobubble cluster can indeed be stable for longer times
indicate that there is a mechanism that can prevent Ostwald
ripening from occuring.[2, 5, 6]
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