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Abstract Low flow forecasting is crucial for sustainable

cooling water supply and planning of river navigation in

the Rhine River. The first step in reliable low flow fore-

casting is to understand the characteristics of low flow. In

this study, several methods are applied to understand the

low flow characteristics of Rhine River basin. In 108

catchments of the Rhine River, winter and summer low

flow regions are determined with the seasonality ratio (SR)

index. To understand whether different numbers of pro-

cesses are acting in generating different low flow regimes

in seven major sub-basins (namely, East Alpine, West

Alpine, Middle Rhine, Neckar, Main, Mosel and Lower

Rhine) aggregated from the 108 catchments, the dominant

variable concept is adopted from chaos theory. The number

of dominant processes within the seven major sub-basins is

determined with the correlation dimension analysis.

Results of the correlation dimension analysis show that the

minimum and maximum required number of variables to

represent the low flow dynamics of the seven major sub-

basins, except the Middle Rhine and Mosel, is 4 and 9,

respectively. For the Mosel and Middle Rhine, the required

minimum number of variables is 2 and 6, and the maxi-

mum number of variables is 5 and 13, respectively. These

results show that the low flow processes of the major sub-

basins of the Rhine could be considered as non-stochastic

or chaotic processes. To confirm this conclusion, the

rescaled range analysis is applied to verify persistency

(i.e. non-randomness) in the processes. The estimated

rescaled range statistics (i.e. Hurst exponents) are all above

0.5, indicating that persistent long-term memory charac-

teristics exist in the runoff processes. Finally, the mean

values of SR indices are compared with the nonlinear

analyses results to find significant relationships. The results

show that the minimum and maximum numbers of required

variables (i.e. processes) to model the dynamic character-

istics for five out of the seven major sub-basins are the

same, but the observed low flow regimes are different

(winter low flow regime and summer low flow regime).

These results support the conclusion that a few interrelated

nonlinear variables could yield completely different

behaviour (i.e. dominant low flow regime).

Keywords Rhine river � Low flows � Seasonality ratio �
Correlation dimension � Mutual information � Rescaled

range analysis

1 Introduction

Hydrological events such as high flows and low flows are

controlled by climatic surpluses and deficits that propagate

through the river basin in different seasons. In this paper, we

are interested in low flows and we focus on the identification

of the number of dominant processes (i.e. predictors) for low

flows by using nonlinear methods and the seasonality

properties of low flows by analysing the persistence of low

flow occurrence days. Detecting the seasonality will help to

understand the dominant processes and identifying the

number of dominant processes will help to link the processes

to the identified numbers. The resultant predictors then can

be incorporated in a low flow forecast model.
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Low flow is defined as an integral phase of large rivers

(Smakhtin 2001). Different processes and storages are

involved in the occurrence of low flows. Identifying the

number of dominant processes is the first step prior to an

elaborated analysis of which dominant processes and which

spatial and temporal scales are relevant for the occurrence

of low flows. In this paper we particularly address the

number of dominant processes that are minimally required

for an appropriate model which includes dominant pro-

cesses in the basin (Booij 2003). The dominant processes

concept has been introduced in the last decade (Woods

2002; Sivapalan 2003) to avoid over-parameterization

problems that occur when processes that are not important

are represented in models (Grayson and Blöschl 2001;

Sivakumar 2008). Here, we define a dominant process as a

major hydrological driver or a storage component sus-

taining low flows in a prolonged dry period.

A reliable forecast of low flows several weeks or months

in advance using dominant processes can benefit, gener-

ally, the management of freshwater resources, and partic-

ularly in Europe, the freight shipment and cooling water

supply for the energy sector as heavily industrialised cities

are located along the rivers. Other river functions such as

drinking water supply, agricultural water supply and eco-

logical and recreational activities are also vulnerable to low

flows and can profit from reliable forecasts as well.

Many different methods have been applied to reveal

dominant processes in river basins such as chaos theory

(Sivakumar 2001; Regonda et al. 2004; Sivakumar 2008),

wavelet theory (Markovic and Koch 2005; Schaefli et al.

2007), circular statistics (Laaha and Blöschl 2006) and time

series analysis techniques (Zaidman et al. 2001; Kavvas

et al. 1977).

Laaha and Blöschl (2006) identified winter and summer

low flow regions in Austrian river basins using the circular

statistics as a part of the seasonality analysis of low flows.

Schaefli et al. (2007) identified dominant processes for high

flows for the Alpine catchments in Switzerland by ana-

lysing the cross correlations between precipitation, tem-

perature and discharge through application of the wavelet

coherence method. It was shown that the processes, leading

to high flows, can be detected from the extraordinary co-

variations of the relevant hydrological processes at various

temporal scales. They found a significant coherence

between temperature and precipitation during the floods in

autumn 1993 and 1994 showing that these floods where the

result of exceptional meteorological situations. Further,

they also found significant coherence between discharge

and temperature at scales between a few days and a month

showing that the Alpine catchments do not seem to sig-

nificantly react to day to day variations of temperature.

This is from the fact that only very small areas start con-

tributing to the discharge in contrast to lowland flat

catchments, where a short temperature variation affects

large areas simultaneously (Schaefli et al. 2007). Wilcox

et al. (1991) analysed daily runoff series to verify if

snowmelt runoff processes exhibit chaotic dynamics. The

chaotic behaviour of a hydrological process could reveal

the determinism in the system which consequently helps

identifying the principal drivers of the process. However,

Wilcox et al. (1991) found no evidence of chaotic behav-

iour in the runoff processes. Lisi and Villi (2001) explored

chaotic behaviour in the dynamics of river flows using the

correlation dimension method. They used the identified

chaotic feature (i.e. determinism) in predictions. The

results showed that nonlinear river flow modelling is a

more effective method to improve the discharge predic-

tions in comparison to a classical linear model. Eng and

Milly (2007) analysed the base flow recession time com-

ponent using regional regression models of low flow

characteristics. They found that a base flow recession time

component in addition to drainage area can be used as

predictor in these low flow regression models. The esti-

mation error was significantly reduced (i.e. halved) in their

linear approach including the time component compared to

the conventional low flow regression model using only

drainage area as predictor.

However, to our knowledge, nonlinear analysis methods

have not been applied to low flows. The objective of this

study is to identify the number of dominant processes that

are acting in generating summer and winter low flows in

the Rhine basin. As an essential part of nonlinear theory,

the chaos theory offers an appropriate tool to illustrate the

characteristics of dynamical systems as well as defining the

number of dominant processes (Yu et al. 2011). The cor-

relation dimension method is one of the most frequently

employed methods to identify chaotic and non-chaotic

behaviour of a system (Sivakumar 2004a). Long term

memory properties could affect low flow dynamics. The

rescaled range analysis provides an appropriate framework

to reveal the long term memory properties.

The Rhine River is the fourth largest river in Europe and

heterogeneous in terms of the dominant processes and we,

therefore, sub-divided the Rhine basin into seven sub-

basins based on previous studies (e.g. Belz and Frauen-

felber-Kääb 2007; Hurkmans et al. 2008).

The river discharges at the outlet of the sub-basins were

analysed using circular statistics (i.e. seasonality ratio

index) and nonlinear techniques such as the mutual infor-

mation analysis, correlation integral analysis and rescaled

range analysis. In this study, low flows are defined as flows

below a threshold equal to the 75 % exceedence proba-

bility (hereafter Q75) whereas e.g. Laaha and Blöschl

(2006) used Q95 as a low flow threshold.

The organization of the paper is as follows. The next

section describes the study area and discharge data, the
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methods we applied to estimate the number of dominant

processes and the seasonality ratio index are explained in the

third section, the results are discussed in the fourth section

and finally conclusions are drawn in the fifth section.

2 Study area and data

2.1 Study area

The Rhine River flows through a 1,233 km long course

(Fig. 1) and its basin covers an area of 185,300 km2. The

Rhine basin covers part of Switzerland, Germany, Lux-

embourg, France and the Netherlands and about 60 million

people live in the basin (Huisman et al. 2000). Besides that,

more than 60 percent of the Netherlands’ fresh surface

waters comes from the Rhine (Middelkoop and Van

Haselen 1999). The altitudes in the river basin vary from

4,000 m in the Alps to 6 m below sea level in the Neth-

erlands (Table 1).

The average discharge in the upstream area before Lake

Constance is around 1,000 m3 s-1. This discharge level

increases up to 2,300 m3 s-1 at the Dutch border (Lobith)

(Fig. 2). In general, the discharge regime of the Rhine

River is mainly dominated by rainfall and melt-water

coming from snow and Alpine glaciers. About 70 % of the

summer flow at Lobith comes from the Alps, whereas only

around 30 % of the winter flow comes from the Alps as

winter precipitation is stored as snow in winter until it

melts in late spring (Fig. 3).

In this study, the Rhine sub-basins are organised at two

spatial scales; at the scale of 134 catchments and at the

scale of 7 sub-basins. It should be noted that the 134

catchments, shown in Fig. 4, have already been identified

for previous hydrological modelling purposes in the Rhine

River (e.g. Renner et al. 2009; Te Linde et al. 2010;

Te Linde et al. 2008; Reggiani et al. 2009). The scale of 7

sub-basins is chosen to explore the large scale signals of

dominant processes such as snow melt and groundwater

discharges. The upper Rhine is sub-divided into the West

Alpine (WA) and East Alpine (EA) Rhine to analysis the

impact of Lake Constance on low flows, in addition to

snow storage in the Alps. The middle Rhine is sub-divided

into four sub-basins: Neckar, Main and Mosel tributaries

and the main channel between Basel and Koblenz, which is

called the Middle Rhine (MR). The remaining part of the

Rhine River from Koblenz to Lobith is called the Lower

Rhine (LR) as shown in Fig. 1.

2.2 Discharge data

Daily discharge (Q) series have been provided by the

Global Runoff Data Centre (GRDC), Koblenz (Germany).

Discharge data of 170 stations for 108 out of the 134

catchments are used to estimate the seasonality ratio indi-

ces. There are no discharge stations in 26 sub-basins.

Besides, 7 stations at the outlets of the 7 major sub-basins

are included in the nonlinear analyses. The daily discharge

data series span from 1989 to 2008. The net generated

annual discharge for each sub-basin is given in Fig. 3.

For the West Alpine, Middle Rhine and Lower Rhine

Fig. 1 Pre-defined 7 sub-basins in the Rhine River numbered as (1)

East Alpine (2) West Alpine (3) Middle Rhine (4) Neckar (5) Main

(6) Mosel (7) Lower Rhine

Table 1 Spatial characteristics and generated discharges in the seven

sub-basins

Sub-basin Area

(km2)

Altitude

range (m)

Annual generated

discharge (mm)

East Alpine (1) 16,051 143–3,270 890

West Alpine (2) 17,679 252–3,980 1,021

Middle Rhine (3) 37,908 67–1,340 344

Neckar (4) 12,616 90–970 363

Main (5) 24,833 83–939 244

Mosel (6) 27,262 59–1,326 410

Lower Rhine (7) 23,738 5–779 273
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sub-basins, the annual discharge generation is calculated as

a net discharge, i.e. the inlet discharge subtracted from the

outlet discharge over the sub-basin area. The discharge

generation is highest in the WA sub-basin whereas it is

lowest in the Main sub-basin (Table 1). Dry years such as

1985 and 2003 can be identified in Fig. 3, since the dis-

charge generation is significantly less in the upstream

basins.

3 Methodology

We applied several steps to analyse the low flows and to

identify the number of dominant processes in the Rhine

basin. These steps are shown in a general framework

(Fig. 4). The first step is the seasonality analysis of

discharge series from 108 catchments to render the general

picture of low flow seasonality in the Rhine basin. In the

second step, we defined 7 major sub-basins by spatially

aggregating the 134 catchments. The number of 7 sub-

basins is selected to distinguish between large tributaries

and associated different processes like snow melt processes

in the Alpine sub-basins and groundwater flows in the

rainfed sub-basins. In the third step, we applied the corre-

lation dimension method to identify the number of domi-

nant processes in each major sub-basin. The delay times

required for the correlation dimension analysis were cal-

culated with the mutual information method. In the fourth

step, the validities of the estimated correlation dimensions

were examined with the rescaled range analysis. In the fifth

and final step, the spatial variability of correlation dimen-

sion values was investigated by comparing them with the
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Fig. 2 Long term average daily

discharge for the seven major

sub-basins

Fig. 3 Net generated annual

discharge (mm) in each sub-

basin

Stoch Environ Res Risk Assess

123



mean seasonality ratio indices of the seven major sub-

basins.

3.1 Seasonality ratio index

Low flows in summer and winter have different spatial char-

acteristics caused by the variability of catchment properties

and climatology. The seasonality ratio (SR) index reflects

these low flow characteristics and underlying hydrological

processes (Laaha and Blöschl 2006). Daily discharge data

with a minimum length of 20 years from 108 of the 134

catchments were used to calculate the seasonality ratio for

each sub-basin. The series were divided into summer and

winter discharge series. The threshold level, Q75 (flows

extracted from flow duration curve and exceeded 75 % of the

time) was selected for the definition of low flows in the Rhine

River for summer low flows (Q75s) and winter low flows

(Q75w). The SR index is calculated as shown in Eq. (1).

SR ¼ Q75s=Q75w ð1Þ

The calculated SR values will be presented in a map.

Values of SR [ 1 indicate the presence of a winter low

flow regime and values of SR \ 1 indicate the presence of

a summer low flow regime (Laaha and Blöschl 2007).

3.2 Correlation dimension method

In the literature, several methods are available to identify the

existence of chaos in a time series (e.g. the Lyapunov

exponent, the Kolmogorov entropy, the continuous power

spectrum methods). Among these methods, the correlation

dimension method has been widely employed in attempts to

understand streamflow dynamics from a chaotic perspective

(Wang et al. 2006; Sivakumar 2007; Lisi and Villi 2001; Ng

et al. 2007). The advantage of the correlation dimension

method is that it represents the essential features of a system

using time series of only a single variable of the entire sys-

tem. The resulting correlation dimension indicates not only

whether the system is chaotic but also the number of domi-

nant processes governing the system (Sivakumar 2004b).

The most commonly used algorithm for computing the

correlation dimension is the Grassberger–Procaccia algo-

rithm (Grassberger and Procaccia 1983). In the Grassber-

ger–Procaccia algorithm, dynamics of the considered

system is tried to be captured by constructing an appro-

priate series of state vectors in the m-dimensional phase

space. The phase-space can be reconstructed using the

method of delays (Takens 1981; Packard et al. 1980; Ru-

elle 1981) which tries to capture the underlying dynamics

by using single-variable series. The idea behind this

method is that a nonlinear system is characterized by self-

interaction and a single variable can carry the informa-

tion of the dynamics of the entire multi-variable system

(Sivakumar 2008). For a scalar time series (e.g. stream-

flow) Xi, where i ¼ 1; 2; . . .;N, N is the number of data

points, the phase space can be reconstructed according to:

Yj ¼ ðXj;Xjþs;Xjþ2s; . . .;Xjþðm�1ÞsÞ ð2Þ

where j ¼ 1; 2; . . .;N � m� 1ð Þs, m is the embedding

dimension of the Yj vector and s is a delay time. The long

term behaviour of a system in the phase space is charac-

terized by a geometric object which is called a d-dimen-

sional attractor. According to the embedding theorem of

Takens (1981), to characterize a dynamic system with an

attractor dimension d, a (m = 2d ? 1)-dimensional phase

space is required. However, Abarbanel et al. (1990) sug-

gested that m [ d would be sufficient.

To construct a representative phase space by the time

delay method, a proper choice of s is critical. The auto-

correlation function and the mutual information (MI)

Seasonality Analysis

Rhine Basin

Define
major sub-basins

Use 
134 sub-basins

Correlation Integral 
Analysis

Mutual Information 
Analysis

R/S Analysis

Determination of low 
flow regimes

Determination of 
appropriate delay 

times

Obtaining of number 
of dominant 
processes

Verifying non -
randomness and 

obtained number of 
dominant processes

Investigate the spatial 
variability of number 

of dominant 
processes

Fig. 4 General framework for identifying the number of dominant winter and summer processes in the Rhine River
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methods are the two commonly preferred methods in

determining the delay time (Williams 1997). However,

Frazer and Swinney (1986) proposed that since the auto-

correlation function measures the linear dependence

between successive points, this method may not be

appropriate for analyzing nonlinear dynamics. They sug-

gested the use of the local minimum of the mutual infor-

mation which measures the general dependence between

successive points based on probability distributions.

For a discrete time series with Xi and Xi-s as successive

values, the mutual information function MI, is computed

according to

MI ¼
XN

i

XN

i�s

PðXi;Xi�sÞ log2

PðXi;Xi�sÞ
PðXiÞPðXi�sÞ

� �
ð3Þ

where, N is the number of data points, P(Xi) and P(Xi-s)

are the individual probabilities of Xi and Xi-s, respectively

and P(Xi, Xi-s) is the joint probability (Sahoo et al. 2009).

The appropriate delay times were selected from the first

local minimum of the mutual information function (Frazer

and Swinney 1986). To find local minimum of the mutual

information function the following formula can be used

Relative Change ¼ MInext �MIcurrent

MIcurrent

� �
� 100 ð4Þ

where, MIcurrent is the mutual information value of which

relative change will be calculated, MInext is the successive

value of MIcurrent. Where the relative change of mutual

information as a function of delay time, starts to be

constant with lag time could be taken as first local

minimum. With a properly selected time delay, the

considered time series can be reconstructed in the m-

dimensional phase space. The correlation integral is then

calculated as follows:

CðrÞ ¼ 2

NðN � 1Þ
XN

j¼1

XN

i¼1

H r � Yi � Yj

�� ��� �
ð5Þ

where H is the Heaviside step function, with H(u) = 1 for

u [ 0, and H(u) = 0 for u B 0 where u ¼ r � Yi � Yj

�� ��, r

is the radius of a sphere centred on Yi or Yj, and N is the

number of data points.

The norm, Yi � Yj

�� �� may be any of the three usual

norms, the maximum norm (maximum absolute difference

between the Yi and Yj), the diamond norm (sum of all the

absolute differences) or the standard Euclidean norm)

(Jayawardena and Lai 1994). In this study the Euclidean

norm is adopted.

C(r) gives the probability of two randomly selected

vectors that lie within a certain distance (Ng et al. 2007).

The exponent d of the space is then related to the corre-

lation integral as:

CðrÞ / rd ð6Þ

and the correlation exponent d can be estimated by taking

the logarithm of both sides of Eq. (6). The slope is esti-

mated by a least square fit of a straight line over a certain

range of radius (r) (Sivakumar 2005). To detect if the

underlying dynamics of the system are chaotic, the corre-

lation exponent (d) must be plotted as a function of the

embedding dimension (m). If the correlation exponent

increases as the embedding dimension increases without

reaching a saturation value, then the system is considered

as purely random (e.g. white noise) or non-chaotic

(Khokhlov et al. 2008; Wang et al. 2006; Xu et al. 2010).

In a deterministic system, the correlation exponent value

reaches a saturation value. The saturation value of the

correlation exponent is called the correlation dimension of

the system (Xu et al. 2010). The correlation dimension of

the system gives a clue about the essential number of

independent variables (or dominant variables) to charac-

terize the motion of the system (Sivakumar and Jayawar-

dena 2002). It is generally assumed that the correlation

dimension equals the number of degrees of freedom of the

system and a larger number of embedding dimensions than

the correlation dimension causes redundancy (Ng et al.

2007).

3.3 Rescaled range analysis

In this study, in addition to the correlation dimension

analysis, the rescaled range analysis, also known as R/S

analysis, is employed to assess long term memory prop-

erties of the discharge series. Using this method, persis-

tency and non-persistency properties of the processes can

be identified. The results can be used as an additional

evidence to confirm or to reject the results obtained from

correlation dimension analysis. Long-term persistency

could also give a clue about the non-stochasticity of the

processes or, in other words, chaotic properties of the

processes.

Let x(t) be a time series and for any positive integer

n C 1, the mean value series is defined as:

xf gn¼
1

n

Xn

t¼1

xðtÞ n ¼ 1; 2; . . . ð7Þ

The cumulative deviation and the extreme deviation is,

respectively:

Xðt; nÞ ¼
Xt

u¼1

xðuÞ � xf gn

� �
1� t� n ð8Þ

RðnÞ ¼ max
1� t� n

Xðt; nÞ � min
1� t� n

Xðt; nÞ n ¼ 1; 2; . . . ð9Þ

The standard deviation is:
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SðnÞ ¼ 1

n

Xn

t¼1

xðtÞ � xf gn

� �2

" #0:5

n ¼ 1; 2; . . . ð10Þ

Hurst proposed a proportional relationship between the

ratio between R and S and the positive integer, n, as

follows:

R=S / n

2

� �H
ð11Þ

where; H is the Hurst coefficient which lies between 0 and

1 (Hurst 1951). The logarithm of both sides of the Eq. (11)

will give a linear relationship between the R/S statistic and

(n/2) where the slope (H) can easily be found by least

square estimation. A Hurst coefficient close to 0.5 indicates

a random process where the observations are independent

and there is no correlation between one data value and any

future value (i.e. has no long memory). A Hurst coefficient

between 0.5 and 1 indicates that the future trend of the time

series will be consistent with the past. This consistency

increases as H approaches to 1. When the H value is

between 0 and 0.5, the process has an anti-persistent

character and the future trend of the series will be contrary

to the past (Xu et al. 2010). This anti-persistency increases

as H approaches to 0. However, the studies which do not

provide statistical significance test to judge if the Hurst

coefficients are statistically different from the one charac-

terizing an independent process may be premature to

conclude anything about the presence of long term mem-

ory. Therefore, we applied the statistical significance test

which is particularly developed for the Hurst coefficient by

Couillard and Davison (2005), where the detailed expla-

nation can be found.

4 Results and discussion

4.1 Seasonality ratio index

The SR indices for the 108 of the 134 catchments are

shown in Fig. 5. The map shows the seasonal characteris-

tics of low flows. Values of SR [ 1 demonstrate the

presence of a winter low flow regime and values of SR \ 1

indicate the presence of a summer low flow regime. It is

clear that the Alpine regions show a winter low flow

regime caused by snow storage and frost processes. In the

Middle Rhine, some parts show a winter low flow regime

and others show a summer low flow regime. This could

result from being an extension of the Alpine region (winter

low flows) and being between the Neckar and Mosel sub-

basins (summer low flows). The remaining sub-basins are

dominated by summer low flows. The map with SR values

gives a clue that there could be a different number of

processes acting in generating different low flow regimes

(Fig. 5). To investigate this hypothesis, nonlinear analysis

methods were applied.

4.2 Correlation dimension

The daily discharges of seven major sub-basins were ana-

lysed with the correlation dimension method to reveal the

dynamic characteristics. The data set for each sub-basin

containing a total of 7,305 daily discharge values is

assumed to be enough for chaotic analysis. Sivakumar

(2005) showed that 1,000 data points for correlation

dimension estimation by applying the Grassberger–Pro-

caccia algorithm were sufficient. To calculate the correla-

tion integral, the delay time (s) was computed using the

mutual information method.

First local minimums were selected as where the relative

change in the mutual information function is stable and

fluctuates around a constant value. If the delay time is

chosen as the first minimum of the mutual information

function, then the reconstructed state vector would consist

of components that possess minimal mutual information

between them (Sivakumar 2000). The mutual information

functions against lag time with their relative changes are

Fig. 5 Seasonality ratio index for 108 catchments in the Rhine basin
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shown in Fig. 6 and optimal delay times are given in

Table 2.

The first local minimums of mutual information func-

tions were taken as the delay times where the relative

changes started to become stable. In Fig. 6, the time series

of the West Alpine sub-basin is the most correlated one

since its mutual information function value for lag zero is

the highest. However, the time series of the West Alpine

region is de-correlated after 8 days which could be a clue

about higher dependency on the short term that allows

short term predictions. The time series of the Neckar has

the lowest auto-correlation and modelling and predicting

might be difficult. From Table 2, the highest necessary lag

time to construct a representative phase space is obtained

for the Main and Lower Rhine and the smallest lag time is

obtained for the West Alpine and Mosel. After the deter-

mination of the delay times, the correlation integrals were

computed using the Grassberger–Procaccia algorithm for

embedding dimensions (m) varying from 1 to 25 (Fig. 7)

for all discharge series. These plots show the relationship

between ln C(r) and ln (r) for the daily discharge series for

different embedding dimensions. For a small radius, hardly

any points will be captured and for a too large radius nearly

all the available points will be included. For the former

situation, the plotted relation might curve away from the

straight line and for the latter situation the correlation sum

becomes 1 constantly, since the radius captures all the

available data points and the number of the captured data

points remain constant at the maximum available in the

data and therefore, the curve depart away from the straight

line. Thus, there is a middle segment where the correlation

integral starts to deviate from linearity (i.e. scaling region).

From the scaling regions, the slopes (i.e. according to

Eq. (5), the slopes are equal to the correlation exponents, d)

were calculated by least square estimation and the results

are given in Fig. 8. As an example, for two different

embedding dimensions, (m = 4 and m = 25) in the Lower

Rhine, the scaling regions and estimated correlation

exponent values are given in Fig. 9. In all sub-basins, the

correlation exponent values increase with an embedding

dimension up to a certain value and remain constant for

higher values. The saturation of the correlation exponents

beyond certain embedding dimension values could be an

indication of the existence of deterministic chaos

(Table 3). The obtained correlation dimension for Mosel is

depicted in Fig. 9c.

The nearest integer above the correlation dimension (i.e.

the saturation value of the correlation exponents) provides

the minimum embedding dimension for reconstructing the

phase-space that is the number of variables (i.e. the number

of dominant variables) necessary to model the dynamics of

the system (Sivakumar and Jayawardena 2002; Khokhlov

et al. 2008). Therefore, the results from this analysis

indicate that the required minimum number of variables to

model the system dynamics is equal to 2 for the Mosel, 6

for the Middle Rhine and 4 for the other sub-basins. Since

the required minimum numbers of variables to model the

system dynamics are relatively low, accurate modelling of

the system is possible by considering only a few variables.

The results are comparable with those presented in a recent

work on low flow indicators in the Rhine basin (Demirel

et al. 2011). In that study, the potential evapotranspiration

and groundwater levels have been revealed as the most

important indicators for the Mosel sub-basin. Further, the

correlation between low flows and the precipitation was

high for the rainfed sub-basins i.e. Neckar and Main.

However, due to the mixed discharge regime, the correla-

tions between low flows and the pre-selected indicators

were not high in the MR and LR sub-basins except for the

potential evapotranspiration which revealed significant

correlations with low flows.

The value of the embedding dimension at which the

correlation exponent attains saturation (Fig. 8) is consid-

ered to provide the maximum number of variables or upper

bound on the dimension of the phase-space sufficient to

describe the dynamics of the system (Table 3). However,

this embedding dimension can also be estimated by the

equation m C 2d ? 1 (Takens 1981). From Table 3, we

can conclude that the upper bound for the Mosel is about 5

variables, for the Middle Rhine is about 13 variables and

for the other sub-basins it is about 9 variables. It is obvious

that different processes are important in these sub-basins

leading to low flows. The difference in the minimum and

maximum number of variables of the Mosel and Middle

Rhine sub-basins from the other sub-basins could be caused

from these different processes and the catchment geology.

All these local differences can change the basin response

and discharge seasonality. Therefore, the discharge signal

at the outlet of the basin reveals different number of min-

imum and maximum variables. In several studies, different

results from similar basins were attributed not only to the

sub-basins’ different inter-dynamic characteristics (i.e.

reciprocal relationships) but also to the noise effect-outliers

(Sivakumar 2005; Ng et al. 2007). To understand whether

over or underestimation exist, rescaled range analysis was

applied.

4.3 Rescaled range analysis

In this study, the R/S analysis was applied to make infer-

ence about the dynamics of the processes. By using this

method, persistency and/or anti-persistency characteristics

of the runoff process can be revealed. Also, the R/S anal-

ysis allows one to interpret the validity of the correlation

dimension results by comparing these results with the Hurst

coefficients for the considered sub-basins. The Hurst
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coefficients were computed for all discharge series for the

period from 1989 to 2008 (Table 4).

The results show that all daily discharge series have

values of H greater than 0.5, indicating the presence of long

term persistence or long-memory. This result supports the

finding about the possible presence of deterministic chaos

in the considered sub-basins by rejecting the null hypoth-

esis that the processes are stochastic (H = 0.5). The

strongest long-memory is obtained in the East Alpine sub-

basin and the lowest one in the Mosel sub-basin. The

results of the Hurst coefficients as persistence indicators

are in line with the size of the arrows showing the strength

of the seasonality in the sub-basins (Demirel et al. 2011).

The p-values in parentheses show that at a 95 % confi-

dence interval the null hypothesis of randomness for all of

the series can be rejected. In other words, the Hurst coef-

ficients are statistically significant that the long term per-

sistency in the processes cannot be rejected at a 95 %
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Fig. 6 Mutual information

(MI) functions and their relative

changes for discharge series of

major sub-basins
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confidence level. The Hurst coefficients are also in agree-

ment with the obtained correlation dimension values except

for the Mosel and Middle Rhine sub-basins. This finding

could be a clue for underestimation or over estimation. The

Hurst coefficient of the Mosel sub-basin is close to the

Hurst coefficient values of Neckar and Main sub-basins.

Also, the correlation dimension values of the Neckar and

Main sub-basins are close to each other. Therefore, the

correlation dimension of the Mosel sub-basin should be

larger than 1.30 and should be close to the correlation

dimension values of Neckar and Main sub-basins. Thus, it

can be concluded the correlation dimension value for the

Mosel is underestimated. For the Middle Rhine sub-basin,

the correlation dimension value should be smaller than

5.95, because its Hurst exponent (0.8396) is close to the

Hurst exponent of the East Alpine, the West Alpine and the

Lower Rhine sub-basins.

The reason of underestimation and overestimation could

be the data quality, noise effects (i.e. errors arising from

measurement), outliers, improperly chosen delay time-

scaling regions or sub-basins inter-dynamics (intermit-

tency, long-term correlations, seasonality etc.). However,

all the data were obtained from the same source (GRDC)

and the same procedure was followed in choosing delay

time and scaling regions.

The main factor for the underestimation of the MR sub-

basin must be from the fact that the annual discharge

generation is very low and snow melt water is mixed with
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Fig. 6 continued

Table 2 First local minima of mutual information functions of seven major sub-basins

Sub-basin East

Alpine (I)

West

Alpine (II)

Middle

Rhine (III)

Neckar

(IV)

Main

(V)

Mosel

(VI)

Lower

Rhine (VII)

First local minimum (day) 17 8 11 10 18 8 18
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rainfall water in this sub-basin. As a result, the high and

low flows are affected by these interacting processes.

Secondly, human interventions in the Rhine may cause

noise effects hindering the sub-basins flow dynamics. The

reader can refer to Sivakumar (2000), Elshorbagy et al.

(2002) and Ng et al. (2007) for a detailed discussion of the

noise effects on the correlation dimension estimations.

By disregarding underestimated and overestimated

dimensions, a minimum number of 4 variables is needed to

capture the sub-basins dynamics and a maximum number

of 9 variables to fully describe the systems’ dynamics.

These dominant variable numbers are in agreement with

those of (Xu et al. 2010; Sivakumar and Jayawardena 2002;

Elshorbagy et al. 2001; Islam and Sivakumar 2002), where
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the minimum number of dominant variables of examined

streamflows were 2, 4, 3 and 4, and the maximum number

of dominant variables were 5, 9, 7 and 9, respectively.

In order to answer the question whether the correlation

dimensions vary spatially, and whether summer or winter

low flow regimes have impacts on correlation dimension,

SR values of the 7 major sub-basins are needed. Thus, the

mean values were estimated from 108 catchments and the

results can be seen in The East Alpine and West Alpine

regions show a winter low flow regime and the others show

summer low flow regimes (Table 5). We could not find any

meaningful relationship between the mean SR values and

the delay times, correlation dimensions, embedding

dimensions and Hurst coefficients. Therefore, it can be
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versus embedding dimension

for the daily discharge series
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concluded that the correlation dimension values are inde-

pendent from the dominant low flow regime. This is rea-

sonable since the governing dynamics (i.e. attractors) may

show a highly different behaviour because of a high

dependency on hydrometeorologic and/or geophysical

conditions. These conditions could be thought as initial

conditions for the runoff systems that will evolve through

time. For instance, for the East Alpine and West Alpine

sub-basins there are four dominant variables which govern

the system dynamics and in these regions a winter low flow

regime is dominant. Also, for the Main, Neckar and Lower

Rhine sub-basins there are four dominant variables but the

dominant low flow regimes are summer low flow regimes.

Therefore, with an equal number of dominant variables,

quite different low flow regimes can be found which are

highly dependent on basin location. This result also sup-

ports the conclusion that a random hydrological phenom-

enon does not necessarily need to be the outcome of a large
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Fig. 9 Illustration of correlation exponent estimation for Lower Rhine for two embedding dimensions, a m = 4 and b m = 25, and c correlation

dimension estimation for Mosel

Table 3 The correlation dimensions for the daily discharges of seven major sub-basins

Sub-basin East

Alpine (I)

West

Alpine (II)

Middle

Rhine (III)

Neckar

(IV)

Main

(V)

Mosel

(VI)

Lower

Rhine (VII)

Embedding dimension from Fig. 8 18 9 18 11 12 17 19

Correlation dimension 3.92 3.86 5.95 3.54 3.52 1.30 3.92

Embedding dimension from m C 2d ? 1 9 9 13 9 9 5 9

Table 4 Hurst exponents and correlation dimensions for the daily discharge series in the seven major sub-basins of the Rhine River

Sub-basin East

Alpine (I)

West

Alpine (II)

Middle

Rhine (III)

Neckar

(IV)

Main

(V)

Mosel

(VI)

Lower

Rhine (VII)

H 0.8546

(p = 0.000)

0.8270

(p = 0.000)

0.8396

(p = 0.000)

0.7865

(p = 0.000)

0.7781

(p = 0.000)

0.7671

(p = 0.000)

0.8245

(p = 0.000)

Correlation

dimension

3.92 3.86 5.95 3.54 3.52 1.30 3.92
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number of variables. With the same minimum number of

dominant variables (i.e. 4 dominant variables) completely

different flow regimes are observed in the East Alpine,

West Alpine sub-basins (winter low flow regime) and the

Neckar, Main and Lower Rhine sub-basins (summer low

flow regime) which could be the result of nonlinear inter-

actions of only a few variables that are interdependent

(Sivakumar 2005).

One of the benefits of the present results is that to the

authors’ knowledge this paper is the first that addresses the

potential relationship between the correlation dimension

and its spatial variation. Additional research is needed to

provide a deeper understanding of this phenomenon.

5 Conclusions

Hydrologic systems are complex and dynamic in nature as

their current and future states depend on numerous vari-

ables. Dominant low flow regimes in the Rhine basin were

investigated using seasonality ratio (SR) indices. Daily

discharge data were obtained from 172 stations over 108

catchments. While the Alpine regions are dominated by

winter low flows, the other sub-basins are dominated by

summer low flows. However, the Middle Rhine is domi-

nated by both summer and winter low flow because of its

particular location.

To analyse whether different numbers of variables are

acting in generating different low flow regimes, nonlinear

analyses were applied. For the correlation dimension

analysis, proper delay times were determined with the

mutual information method. The correlation integrals were

computed with the Grassberger–Procaccia algorithm for

embedding dimensions, varying from 1 to 25, and the

correlation exponents were determined from the scaling

regions of these plots. Except for the Middle Rhine and

Mosel, the minimum and maximum required numbers of

variables were found to be 4 and 9, respectively to properly

capture the dynamics of the considered sub-basins. For the

Mosel and Middle Rhine sub-basins, the required minimum

number of variables is 2 and 6, and the maximum number

of variables is 5 and 13, respectively. By applying the

rescaled range analysis (R/S analysis), which is a powerful

tool to analyse long-term dependence, the validities of the

estimated correlation dimensions were investigated. The

estimated R/S statistics are all above 0.5, indicating that

persistent long-term memory characteristics (i.e. non-ran-

domness) are present in the runoff processes.

The estimated correlation dimension values and the

Hurst exponents were compared with each other and it was

found that the correlation dimension value of the Middle

Rhine sub-basin was overestimated and the estimated

correlation dimension value of the Mosel sub-basin was

underestimated. The spatial variability of the correlation

dimensions was compared with the mean values of the SR

index for the seven sub-basins, however no meaningful

relationship was obtained. The minimum numbers of

required variables of the East Alpine, West Alpine, Neckar,

Main and Lower Rhine sub-basins to capture the underly-

ing dynamics are all equal to 4 but the observed low flow

regimes are different (i.e. winter low flow and summer low

flow regimes) within the considered sub-basins. This result

supports the conclusion that a few interrelated nonlinear

variables could yield completely different behaviour (i.e.

dominant low flow regime). In future research, the authors

will investigate the dominant variables themselves which

are interacting in generating low flow regimes.

Acknowledgements We acknowledge the financial support of the

Dr. Ir. Cornelis Lely Stichting (CLS), Project No. 20957310. Dis-

charge data for the Rhine River were provided by the Global Runoff

Data Centre (GRDC), Koblenz (Germany). The GIS base maps with

delineated 134 catchments of the Rhine basin were provided by Eric

Sprokkereef, the secretary general of the Rhine Commission (CHR).

References

Abarbanel HDI, Brown R, Kadtke JB (1990) Prediction in chaotic

nonlinear systems: methods for time series with broadband

Fourier spectra. Phys Rev A 41:1782–1807
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